Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (30,079)

Search Parameters:
Keywords = strength mechanism

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 1612 KiB  
Article
Flexible Strain Sensor Based on PVA/Tannic Acid/Lithium Chloride Ionically Conductive Hydrogel with Excellent Sensing and Good Adhesive Properties
by Xuanyu Pan, Hongyuan Zhu, Fufei Qin, Mingxing Jing, Han Wu and Zhuangzhi Sun
Sensors 2025, 25(15), 4765; https://doi.org/10.3390/s25154765 (registering DOI) - 1 Aug 2025
Abstract
Ion-conductive-hydrogel strain sensors demonstrate broad application prospects in the fields of flexible sensing and bioelectric signal monitoring due to their excellent skin conformability and efficient signal transmission characteristics. However, traditional preparation methods face significant challenges in enhancing adhesion strength, conductivity, and mechanical stability. [...] Read more.
Ion-conductive-hydrogel strain sensors demonstrate broad application prospects in the fields of flexible sensing and bioelectric signal monitoring due to their excellent skin conformability and efficient signal transmission characteristics. However, traditional preparation methods face significant challenges in enhancing adhesion strength, conductivity, and mechanical stability. To address this issue, this study employed a freeze–thaw cycling method, using polyvinyl alcohol (PVA) as the matrix material, tannic acid (TA) as the adhesion reinforcement material, and lithium chloride (LiCl) as the conductive medium, successfully developing an ion-conductive hydrogel with superior comprehensive performance. Experimental data confirm that the PVA-TA-0.5/LiCl-1 hydrogel achieves optimal levels of adhesion strength (2.32 kPa on pigskin) and conductivity (0.64 S/m), while also exhibiting good tensile strength (0.1 MPa). Therefore, this hydrogel shows great potential for use in strain sensors, demonstrating excellent sensitivity (GF = 1.15), reliable operational stability, as the ΔR/R0 signal remains virtually unchanged after 2500 cycles of stretching, and outstanding strain sensing and electromyographic signal acquisition capabilities, fully highlighting its practical value in the fields of flexible sensing and bioelectric monitoring. Full article
(This article belongs to the Section Sensor Materials)
21 pages, 20135 KiB  
Article
Strain-Rate Effects on the Mechanical Behavior of Basalt-Fiber-Reinforced Polymer Composites: Experimental Investigation and Numerical Validation
by Yuezhao Pang, Chuanlong Wang, Yue Zhao, Houqi Yao and Xianzheng Wang
Materials 2025, 18(15), 3637; https://doi.org/10.3390/ma18153637 (registering DOI) - 1 Aug 2025
Abstract
Basalt-fiber-reinforced polymer (BFRP) composites, utilizing a natural high-performance inorganic fiber, exhibit excellent weathering resistance, including tolerance to high and low temperatures, salt fog, and acid/alkali corrosion. They also possess superior mechanical properties such as high strength and modulus, making them widely applicable in [...] Read more.
Basalt-fiber-reinforced polymer (BFRP) composites, utilizing a natural high-performance inorganic fiber, exhibit excellent weathering resistance, including tolerance to high and low temperatures, salt fog, and acid/alkali corrosion. They also possess superior mechanical properties such as high strength and modulus, making them widely applicable in aerospace and shipbuilding. This study experimentally investigated the mechanical properties of BFRP plates under various strain rates (10−4 s−1 to 103 s−1) and directions using an electronic universal testing machine and a split Hopkinson pressure bar (SHPB).The results demonstrate significant strain rate dependency and pronounced anisotropy. Based on experimental data, relationships linking the strength of BFRP composites in different directions to strain rate were established. These relationships effectively predict mechanical properties within the tested strain rate range, providing reliable data for numerical simulations and valuable support for structural design and engineering applications. The developed strain rate relationships were successfully validated through finite element simulations of low-velocity impact. Full article
(This article belongs to the Special Issue Mechanical Properties of Advanced Metamaterials)
Show Figures

Figure 1

17 pages, 5354 KiB  
Article
Carboxymethyl Polysaccharides/Montmorillonite Biocomposite Films and Their Sorption Properties
by Adrian Krzysztof Antosik, Marcin Bartkowiak, Magdalena Zdanowicz and Katarzyna Wilpiszewska
Polymers 2025, 17(15), 2130; https://doi.org/10.3390/polym17152130 (registering DOI) - 1 Aug 2025
Abstract
The production of bionanocomposite films based on carboxymethyl derivatives of starch and cellulose with sodium montmorillonite (MMT-Na) as a filler was described. The developed films with high absorbency can be used in the preparation of adhesive dressings for wounds oozing as a result [...] Read more.
The production of bionanocomposite films based on carboxymethyl derivatives of starch and cellulose with sodium montmorillonite (MMT-Na) as a filler was described. The developed films with high absorbency can be used in the preparation of adhesive dressings for wounds oozing as a result of abrasions or tattoos. Carboxymethyl cellulose (CMC), carboxymethyl starch (CMS), and potato starch were used as the raw materials for film manufacturing. Citric acid was used as a crosslinking agent and glycerol as a plasticizer. The following parameters were evaluated for the obtained films: solubility in water, swelling behavior, moisture absorption, and mechanical durability (tensile strength, elongation at break, and Young’s modulus). This study revealed that filler concentration has a significant influence on the stability, durability, and moisture absorption parameters of films. The best nanocomposite with a high absorption capacity was a two-component film CMS/CMC containing 5 pph of sodium montmorillonite and can be used as a base material for wound dressing, among other applications. Full article
(This article belongs to the Section Innovation of Polymer Science and Technology)
Show Figures

Figure 1

12 pages, 1862 KiB  
Article
Effect of Si Addition on Microstructure and Mechanical Properties of SiC Ceramic Fabricated by Direct LPBF with CVI Technology
by Yipu Wang, Pei Wang, Liqun Li, Jian Zhang, Yulei Zhang, Jin Peng, Xingxing Wang, Nan Kang, Mohamed El Mansori and Konda Gokuldoss Prashanth
Appl. Sci. 2025, 15(15), 8585; https://doi.org/10.3390/app15158585 (registering DOI) - 1 Aug 2025
Abstract
In this paper, SiC and Si/SiC ceramics were fabricated using direct laser powder bed fusion with chemical vapor infiltration. Their microstructure, mechanical properties and the impacts of silicon addition were analyzed. The incorporation of silicon led to an increase in the relative density [...] Read more.
In this paper, SiC and Si/SiC ceramics were fabricated using direct laser powder bed fusion with chemical vapor infiltration. Their microstructure, mechanical properties and the impacts of silicon addition were analyzed. The incorporation of silicon led to an increase in the relative density of the silicon carbide ceramics from 76.4% to 78.3% and the compression strength increased from 39 ± 13 MPa to 90 ± 8 MPa after laser powder bed fusion with chemical vapor infiltration. The melting and re-solidification of silicon allows the silicon to encapsulate the silicon carbide grains, changing the microstructure and the failure mechanism of the silicon carbide ceramics, resulting in a small amount of silicon residue. In the LPBF-CVI SiC ceramic specimen, the LPBF-formed SiC exhibits a microhardness of 24.2 ± 1.0 GPa. In LPBF-CVI Si/SiC, the spherical dual-phase structure displays a moderately increased hardness (25.9 ± 4.4 GPa), and the CVI-formed SiC exhibits a hardness of 55.3 ± 9.3 GPa. Full article
24 pages, 13038 KiB  
Article
Simulation and Analysis of Electric Thermal Coupling for Corrosion Damage of Metro Traction Motor Bearings
by Haisheng Yang, Zhanwang Shi, Xuelan Wang, Jiahang Zhang, Run Zhang and Hengdi Wang
Machines 2025, 13(8), 680; https://doi.org/10.3390/machines13080680 (registering DOI) - 1 Aug 2025
Abstract
With the electrification of generator sets, electric locomotives, new energy vehicles, and other industries, AC motors subject bearings to an electric field environment, leading to galvanic corrosion due to the use of variable frequency power supply drives. The phenomenon of bearing discharge breakdown [...] Read more.
With the electrification of generator sets, electric locomotives, new energy vehicles, and other industries, AC motors subject bearings to an electric field environment, leading to galvanic corrosion due to the use of variable frequency power supply drives. The phenomenon of bearing discharge breakdown in subway traction motors is a critical issue in understanding the relationship between shaft current strength and the extent of bearing damage. This paper analyzes the mechanism of impulse discharge that leads to galvanic corrosion damage in bearings at a microscopic level and conducts electric thermal coupling simulations of the traction motor bearing discharge breakdown process. It examines the temperature rise associated with lubricant film discharge breakdown during the dynamic operation of the bearing and investigates how breakdown channel parameters and operational conditions affect the temperature rise in the micro-region of bearing lubrication. Ultimately, the results of the electric thermal coupling simulation are validated through experimental tests. This study revealed that in an electric field environment, the load-bearing area of the outer ring experiences significantly more severe corrosion damage than the inner ring, whereas non-bearing areas remain unaffected by electrolytic corrosion. When the inner ring reaches a speed of 4500_rpm, the maximum widths of electrolytic corrosion pits for the outer and inner rings are measured at 89 um and 51 um, respectively. Additionally, the highest recorded temperatures for the breakdown channels in the outer and inner rings are 932 °C and 802 °C, respectively. Furthermore, as the inner ring speed increases, both the width of the electrolytic corrosion pits and the temperature of the breakdown channels rise. Specifically, at inner ring speeds of 2500_rpm, 3500_rpm, and 4500_rpm, the widths of the electrolytic pits in the outer ring raceway load zone were measured at 34 um, 56 um, and 89 um, respectively. The highest temperatures of the lubrication film breakdown channels were recorded as 612 °C, 788 °C, and 932 °C, respectively. This study provides a theoretical basis and data support for the protective and maintenance practices of traction motor bearings. Full article
(This article belongs to the Section Electrical Machines and Drives)
Show Figures

Figure 1

20 pages, 3657 KiB  
Article
Numerical Study of Chemo–Mechanical Coupling Behavior of Concrete
by Feng Guo, Weijie He, Longlong Tu and Huiming Hou
Buildings 2025, 15(15), 2725; https://doi.org/10.3390/buildings15152725 (registering DOI) - 1 Aug 2025
Abstract
Subsurface mass concrete infrastructure—including immersed tunnels, dams, and nuclear waste containment systems—frequently faces calcium-leaching risks from prolonged groundwater exposure. An anisotropic stress-leaching damage model incorporating microcrack propagation is developed for underground concrete’s chemo–mechanical coupling. This model investigates stress-induced anisotropy in concrete through the [...] Read more.
Subsurface mass concrete infrastructure—including immersed tunnels, dams, and nuclear waste containment systems—frequently faces calcium-leaching risks from prolonged groundwater exposure. An anisotropic stress-leaching damage model incorporating microcrack propagation is developed for underground concrete’s chemo–mechanical coupling. This model investigates stress-induced anisotropy in concrete through the evolution of oriented microcrack networks. The model incorporates nonlinear anisotropic plastic strain from coupled chemical–mechanical damage. Unlike conventional concrete rheology, this model characterizes chemical creep through stress-chemical coupled damage mechanics. The numerical model is incorporated within COMSOL Multiphysics to perform coupled multiphysics simulations. A close match is observed between the numerical predictions and experimental findings. Under high stress loads, calcium leaching and mechanical stress exhibit significant coupling effects. Regarding concrete durability, chemical degradation has a more pronounced effect on concrete’s stiffness and strength reduction compared with stress-generated microcracking. Full article
Show Figures

Figure 1

14 pages, 2428 KiB  
Article
Fracture Behavior of Steel-Fiber-Reinforced High-Strength Self-Compacting Concrete: A Digital Image Correlation Analysis
by Maoliang Zhang, Junpeng Chen, Junxia Liu, Huiling Yin, Yan Ma and Fei Yang
Materials 2025, 18(15), 3631; https://doi.org/10.3390/ma18153631 (registering DOI) - 1 Aug 2025
Abstract
In this study, steel fibers were used to improve the mechanical properties of high-strength self-compacting concrete (HSSCC), and its effect on the fracture mechanical properties was investigated by a three-point bending test with notched beams. Coupled with the digital image correlation (DIC) technique, [...] Read more.
In this study, steel fibers were used to improve the mechanical properties of high-strength self-compacting concrete (HSSCC), and its effect on the fracture mechanical properties was investigated by a three-point bending test with notched beams. Coupled with the digital image correlation (DIC) technique, the fracture process of steel-fiber-reinforced HSSCC was analyzed to elucidate the reinforcing and fracture-resisting mechanisms of steel fibers. The results indicate that the compressive strength and flexural strength of HSSCC cured for 28 days exhibited an initial decrease and then an enhancement as the volume fraction (Vf) of steel fibers increased, whereas the flexural-to-compressive ratio linearly increased. All of them reached their maximum of 110.5 MPa, 11.8 MPa, and 1/9 at 1.2 vol% steel fibers, respectively. Steel fibers significantly improved the peak load (FP), peak opening displacement (CMODP), fracture toughness (KIC), and fracture energy (GF) of HSSCC. Compared with HSSCC without steel fibers (HSSCC-0), the FP, KIC, CMODP, and GF of HSSCC with 1.2 vol% (HSSCC-1.2) increased by 23.5%, 45.4%, 11.1 times, and 20.1 times, respectively. The horizontal displacement and horizontal strain of steel-fiber-reinforced HSSCC both increased significantly with an increasing Vf. HSSCC-0 experienced unstable fracture without the occurrence of a fracture process zone during the whole fracture damage, whereas the fracture process zone formed at the notched beam tip of HSSCC-1.2 at its initial loading stage and further extended upward in the beams of high-strength self-compacting concrete with a 0.6% volume fraction of steel fibers and HSSCC-1.2 as the load approaches and reaches the peak. Full article
20 pages, 10391 KiB  
Article
Sustainable Substitution of Petroleum-Based Processing Oils with Soybean-Derived Alternatives in Styrene–Butadiene Rubber: Effects on Processing Behavior and Mechanical Properties
by Yang-Wei Lin, Tsung-Yi Chen, Chen-Yu Chueh, Yi-Ting Chen, Tsunghsueh Wu and Hsi-Ming Hsieh
Polymers 2025, 17(15), 2129; https://doi.org/10.3390/polym17152129 (registering DOI) - 1 Aug 2025
Abstract
This study evaluates the replacement of petroleum-based naphthenic oil with four types of soybean-derived alternatives—virgin soybean oil (SBO), epoxidized SBO (ESBO), expired SBO, and recycled SBO—in styrene–butadiene rubber (SBR) composites. The materials were tested in both staining rubber (SR) and non-staining rubber (NSR) [...] Read more.
This study evaluates the replacement of petroleum-based naphthenic oil with four types of soybean-derived alternatives—virgin soybean oil (SBO), epoxidized SBO (ESBO), expired SBO, and recycled SBO—in styrene–butadiene rubber (SBR) composites. The materials were tested in both staining rubber (SR) and non-staining rubber (NSR) systems to assess processing characteristics, mechanical performance, and environmental durability. Among the alternatives, SBO demonstrated the best overall performance, improving processability and tensile strength by over 10%, while ESBO enhanced ozone resistance by 35% due to its epoxide functionality. Expired and recycled SBOs maintained essential mechanical properties within 90% of virgin SBO values. The full replacement of CH450 with SBO in tire prototypes resulted in burst strength exceeding 1000 kPa and stable appearance after 5000 km of road testing. To validate industrial relevance, the developed green tire was exhibited at the 2025 Taipei International Cycle Show, attracting interest from international buyers and stakeholders for its eco-friendly composition and carbon footprint reduction potential, thereby demonstrating both technical feasibility and commercial viability. Full article
(This article belongs to the Special Issue Functional Polymers and Their Composites for Sustainable Development)
Show Figures

Figure 1

18 pages, 5167 KiB  
Article
Comparative Study of Local Stress Approaches for Fatigue Strength Assessment of Longitudinal Web Connections
by Ji Hoon Kim, Jae Sung Lee and Myung Hyun Kim
J. Mar. Sci. Eng. 2025, 13(8), 1491; https://doi.org/10.3390/jmse13081491 (registering DOI) - 1 Aug 2025
Abstract
Ship structures are subjected to cyclic loading from waves and currents during operation, which can lead to fatigue failure, particularly at locations with structural discontinuities such as welds. Although various fatigue assessment methods have been developed, there is a lack of experimental data [...] Read more.
Ship structures are subjected to cyclic loading from waves and currents during operation, which can lead to fatigue failure, particularly at locations with structural discontinuities such as welds. Although various fatigue assessment methods have been developed, there is a lack of experimental data and comparative studies for actual ship structure details. This study addresses this limitation by evaluating the fatigue strength of longi-web connections in hull structures using local stress approaches, including hot spot stress, effective notch stress, notch stress intensity factor, and structural stress methods. Finite element analyses were conducted, and the predicted fatigue lives and failure locations were compared with experimental results. Although there are some differences between each method, all methods are valid and reasonable for predicting the primary failure locations and evaluating fatigue life. These findings provide a basis for considering suitable fatigue assessment methods for welded ship structures with respect to joint geometry and failure mechanisms. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

19 pages, 3771 KiB  
Article
Effect of Carboxymethyl Konjac Glucomannan on the Gel Properties of Silver Carp Surimi: A Study on the Regulatory Mechanism of Substitution Degree
by Wenli Yan, Zhihan Ouyang, Xiaoying Luo, Rankun Xiao, Siqiao Liao, Fatang Jiang, Yonghui Li, Shanbai Xiong, Tao Yin and Xiangwei Zhu
Foods 2025, 14(15), 2715; https://doi.org/10.3390/foods14152715 (registering DOI) - 1 Aug 2025
Abstract
Freshwater surimi typically exhibits poor gel-forming capability and is prone to gel deterioration, limiting its applications in food products. This study successfully prepared silver carp surimi gels with improved gel strength and water-holding capacity (WHC) using carboxymethyl konjac glucomannan (CKGM) as a functional [...] Read more.
Freshwater surimi typically exhibits poor gel-forming capability and is prone to gel deterioration, limiting its applications in food products. This study successfully prepared silver carp surimi gels with improved gel strength and water-holding capacity (WHC) using carboxymethyl konjac glucomannan (CKGM) as a functional modifier. Furthermore, the regulatory mechanism of CKGM with different degrees of substitution (DS) on the gel properties of silver carp surimi was systematically investigated. Results demonstrated that DS significantly influenced gel strength, WHC, and microstructure. CKGM (DS = 0.21%) substantially enhanced the gel strength and WHC through strengthened hydrophobic interactions and hydrogen-bond networks. However, CKGM with a higher DS (0.41%) induced a steric hindrance effect, decreasing elastic modulus and WHC and resulting in a more porous gel network. Raman spectroscopy analysis revealed that CKGM facilitated the conformational transition of myofibrillar proteins from α-helix to β-sheet, thereby improving the density of the gel network. The study provides theoretical foundations and technical guidance for the quality improvement of surimi products. Full article
(This article belongs to the Special Issue Food Proteins: Extraction, Functions and Applications)
Show Figures

Figure 1

29 pages, 5505 KiB  
Article
Triaxial Response and Elastoplastic Constitutive Model for Artificially Cemented Granular Materials
by Xiaochun Yu, Yuchen Ye, Anyu Yang and Jie Yang
Buildings 2025, 15(15), 2721; https://doi.org/10.3390/buildings15152721 (registering DOI) - 1 Aug 2025
Abstract
Because artificially cemented granular (ACG) materials employ diverse combinations of aggregates and binders—including cemented soil, low-cement-content cemented sand and gravel (LCSG), and concrete—their stress–strain responses vary widely. In LCSG, the binder dosage is typically limited to 40–80 kg/m3 and the sand–gravel skeleton [...] Read more.
Because artificially cemented granular (ACG) materials employ diverse combinations of aggregates and binders—including cemented soil, low-cement-content cemented sand and gravel (LCSG), and concrete—their stress–strain responses vary widely. In LCSG, the binder dosage is typically limited to 40–80 kg/m3 and the sand–gravel skeleton is often obtained directly from on-site or nearby excavation spoil, endowing the material with a markedly lower embodied carbon footprint and strong alignment with current low-carbon, green-construction objectives. Yet, such heterogeneity makes a single material-specific constitutive model inadequate for predicting the mechanical behavior of other ACG variants, thereby constraining broader applications in dam construction and foundation reinforcement. This study systematically summarizes and analyzes the stress–strain and volumetric strain–axial strain characteristics of ACG materials under conventional triaxial conditions. Generalized hyperbolic and parabolic equations are employed to describe these two families of curves, and closed-form expressions are proposed for key mechanical indices—peak strength, elastic modulus, and shear dilation behavior. Building on generalized plasticity theory, we derive the plastic flow direction vector, loading direction vector, and plastic modulus, and develop a concise, transferable elastoplastic model suitable for the full spectrum of ACG materials. Validation against triaxial data for rock-fill materials, LCSG, and cemented coal–gangue backfill shows that the model reproduces the stress and deformation paths of each material class with high accuracy. Quantitative evaluation of the peak values indicates that the proposed constitutive model predicts peak deviatoric stress with an error of 1.36% and peak volumetric strain with an error of 3.78%. The corresponding coefficients of determination R2 between the predicted and measured values are 0.997 for peak stress and 0.987 for peak volumetric strain, demonstrating the excellent engineering accuracy of the proposed model. The results provide a unified theoretical basis for deploying ACG—particularly its low-cement, locally sourced variants—in low-carbon dam construction, foundation rehabilitation, and other sustainable civil engineering projects. Full article
(This article belongs to the Special Issue Low Carbon and Green Materials in Construction—3rd Edition)
Show Figures

Figure 1

23 pages, 888 KiB  
Article
Correlations Between Coffee Intake, Glycemic Control, Cardiovascular Risk, and Sleep in Type 2 Diabetes and Hypertension: A 12-Month Observational Study
by Tatiana Palotta Minari, José Fernando Vilela-Martin, Juan Carlos Yugar-Toledo and Luciana Pellegrini Pisani
Biomedicines 2025, 13(8), 1875; https://doi.org/10.3390/biomedicines13081875 (registering DOI) - 1 Aug 2025
Abstract
Background: The consumption of coffee has been widely debated regarding its effects on health. This study aims to analyze the correlations between daily coffee intake and sleep, blood pressure, anthropometric measurements, and biochemical markers in individuals with type 2 diabetes (T2D) and hypertension [...] Read more.
Background: The consumption of coffee has been widely debated regarding its effects on health. This study aims to analyze the correlations between daily coffee intake and sleep, blood pressure, anthropometric measurements, and biochemical markers in individuals with type 2 diabetes (T2D) and hypertension over a 12-month period. Methods: An observational study was conducted with 40 participants with T2D and hypertension, comprising 20 females and 20 males. Participants were monitored for their daily coffee consumption over a 12-month period, being assessed every 3 months. Linear regression was utilized to assess interactions and relationships between variables, providing insights into potential predictive associations. Additionally, correlation analysis was performed using Pearson’s and Spearman’s tests to evaluate the strength and direction of linear and non-linear relationships. Statistical significance was set at p < 0.05. Results: Significant changes were observed in fasting blood glucose (FBG), glycated hemoglobin (HbA1c), body weight, body mass index, sleep duration, nocturnal awakenings, and waist-to-hip ratio (p < 0.05) over the 12-month study in both sexes. No significant differences were noted in the remaining parameters (p > 0.05). The coffee consumed by the participants was of the “traditional type” and contained sugar (2g per cup) for 100% of the participants. An intake of 4.17 ± 0.360 cups per day was found at baseline and 5.41 ± 0.316 cups at 12 months (p > 0.05). Regarding correlation analysis, a higher coffee intake was significantly associated with shorter sleep duration in women (r = −0.731; p = 0.037). Conversely, greater coffee consumption correlated with lower LDL cholesterol (LDL-C) levels in women (r = −0.820; p = 0.044). Additionally, a longer sleep duration was linked to lower FBG (r = -0.841; p = 0.031), HbA1c (r = -0.831; p = 0.037), and LDL-C levels in women (r = -0.713; p = 0.050). No significant correlations were observed for the other parameters in both sexes (p > 0.05). Conclusions: In women, coffee consumption may negatively affect sleep duration while potentially offering beneficial effects on LDL-C levels, even when sweetened with sugar. Additionally, a longer sleep duration in women appears to be associated with improvements in FBG, HbA1c, and LDL-C. These correlations emphasize the importance of a balanced approach to coffee consumption, weighing both its potential health benefits and drawbacks in postmenopausal women. However, since this study does not establish causality, further randomized clinical trials are warranted to investigate the underlying mechanisms and long-term implications—particularly in the context of T2D and hypertension. Full article
(This article belongs to the Special Issue Diabetes: Comorbidities, Therapeutics and Insights (3rd Edition))
18 pages, 4093 KiB  
Article
Study of Mechanical and Wear Properties of Fabricated Tri-Axial Glass Composites
by Raghu Somanna, Rudresh Bekkalale Madegowda, Rakesh Mahesh Bilwa, Prashanth Malligere Vishveshwaraiah, Prema Nisana Siddegowda, Sandeep Bagrae, Madhukar Beejaganahalli Sangameshwara, Girish Hunaganahalli Nagaraju and Madhusudan Puttaswamy
J. Compos. Sci. 2025, 9(8), 409; https://doi.org/10.3390/jcs9080409 (registering DOI) - 1 Aug 2025
Abstract
This study investigates the mechanical, morphological, and wear properties of SiO2-filled tri-axial warp-knitted (TWK) glass fiber-reinforced vinyl ester matrix composites, with a focus on void fraction, tensile, flexural, hardness, and wear behavior. Adding SiO2 fillers reduced void fractions, enhancing composite [...] Read more.
This study investigates the mechanical, morphological, and wear properties of SiO2-filled tri-axial warp-knitted (TWK) glass fiber-reinforced vinyl ester matrix composites, with a focus on void fraction, tensile, flexural, hardness, and wear behavior. Adding SiO2 fillers reduced void fractions, enhancing composite strength, with values ranging from 1.63% to 5.31%. Tensile tests revealed that composites with 5 wt% SiO2 (GV1) exhibited superior tensile strength, Young’s modulus, and elongation due to enhanced fiber–matrix interaction. Conversely, composites with 10 wt% SiO2 (GV2) showed decreased tensile performance, indicating increased brittleness. Flexural tests demonstrated that GV1 outperformed GV2, showcasing higher flexural strength, elastic modulus, and deflection, reflecting improved load-bearing capacity at optimal filler content. Shore D hardness tests confirmed that GV1 had the highest hardness among the specimens. SEM analysis revealed wear behavior under various loads and sliding distances. GV1 exhibited minimal wear loss at lower loads and distances, while higher loads caused significant matrix detachment and fiber damage. These findings highlight the importance of optimizing SiO2 filler content to enhance epoxy composites’ mechanical and tribological performance. Full article
Show Figures

Figure 1

28 pages, 9076 KiB  
Article
Performance Evaluation of Waste Toner and Recycled LDPE-Modified Asphalt Pavement: A Mechanical and Carbon Assessment-Based Optimization Approach Towards Sustainability
by Muhammad Usman Siddiq, Muhammad Kashif Anwar, Faris H. Almansour, Jahanzeb Javed and Muhammad Ahmed Qurashi
Sustainability 2025, 17(15), 7003; https://doi.org/10.3390/su17157003 (registering DOI) - 1 Aug 2025
Abstract
Due to the increasing environmental concerns and the growing generation of electronic waste and plastic, sustainable waste management solutions are essential for the construction industry. This study explores the potential of using electronic waste toner powder (WTP) and recycled low-density polyethylene (LDPE), either [...] Read more.
Due to the increasing environmental concerns and the growing generation of electronic waste and plastic, sustainable waste management solutions are essential for the construction industry. This study explores the potential of using electronic waste toner powder (WTP) and recycled low-density polyethylene (LDPE), either individually or in combination as modifiers for asphalt binder to enhance pavement performance and reduce environmental impact. The analysis focused on three key components: (1) binder development and testing; (2) performance evaluation through Marshall stability, indirect tensile strength, and Dynamic Shear Rheometer (DSR) testing for rutting resistance; and (3) sustainability assessment in terms of carbon footprint reduction. The results revealed that the formulation of 25% WTP and 8% LDPE processed at 160 °C achieved the best mechanical performance and lowest carbon index, enhancing Marshall stability by 32% and rutting resistance by 41%. Additionally, this formulation reduced the carbon footprint by 27% compared to conventional asphalt. The study demonstrated that the combination of WTP and LDPE significantly improves the sustainability and performance of asphalt pavements, offering mechanical, environmental, and economic benefits. By providing a quantitative assessment of waste-modified asphalt, this study uniquely demonstrates the combined use of WTP and LDPE in asphalt, offering a novel dual-waste valorization approach that enhances pavement performance while promoting circular economy practices. Full article
(This article belongs to the Special Issue Sustainable Development of Asphalt Materials and Pavement Engineering)
Show Figures

Figure 1

19 pages, 4487 KiB  
Article
Recycling Volcanic Lapillus as a Supplementary Cementitious Material in Sustainable Mortars
by Fabiana Altimari, Luisa Barbieri, Andrea Saccani and Isabella Lancellotti
Recycling 2025, 10(4), 153; https://doi.org/10.3390/recycling10040153 (registering DOI) - 1 Aug 2025
Abstract
This study investigates the feasibility of using volcanic lapillus as a supplementary cementitious material (SCM) in mortar production to improve the sustainability of the cement industry. Cement production is one of the main sources of CO2 emissions, mainly due to clinker production. [...] Read more.
This study investigates the feasibility of using volcanic lapillus as a supplementary cementitious material (SCM) in mortar production to improve the sustainability of the cement industry. Cement production is one of the main sources of CO2 emissions, mainly due to clinker production. Replacing clinker with SCMs, such as volcanic lapillus, can reduce the environmental impact while maintaining adequate mechanical properties. Experiments were conducted to replace up to 20 wt% of limestone Portland cement with volcanic lapillus. Workability, compressive strength, microstructure, resistance to alkali-silica reaction (ASR), sulfate, and chloride penetration were analyzed. The results showed that up to 10% replacement had a minimal effect on mechanical properties, while higher percentages resulted in reduced strength but still improved some durability features. The control sample cured 28 days showed a compressive strength of 43.05 MPa compared with 36.89 MPa for the sample containing 10% lapillus. After 90 days the respective values for the above samples were 44.76 MPa and 44.57 MPa. Scanning electron microscopy (SEM) revealed good gel–aggregate adhesion, and thermogravimetric analysis (TGA) confirmed reduced calcium hydroxide content, indicating pozzolanic activity. Overall, volcanic lapillus shows promise as a sustainable SCM, offering CO2 reduction and durability benefits, although higher replacement rates require further optimization. Full article
Show Figures

Figure 1

Back to TopTop