Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (114)

Search Parameters:
Keywords = strawberry flower

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 2015 KB  
Article
Dark Septate Endophytic Fungi Improve Dry Matter Production and Fruit Yield in Ever-Bearing Strawberry (Fragaria × ananassa Duch.) Under High Temperatures
by Nanako Aomura, Ryuta Ninohei, Mana Noguchi, Midori Sakoda, Eiichi Inoue, Kazuhiko Narisawa and Yuya Mochizuki
Plants 2026, 15(1), 129; https://doi.org/10.3390/plants15010129 - 2 Jan 2026
Viewed by 270
Abstract
In Japan, strawberries are produced in the off-season (June to November) in cool regions; however, the high temperatures and strong sunlight limit fruit production. Dark septate endophytic fungi (DSEs) support growth and flower bud formation of plants grown in environments unsuitable for plant [...] Read more.
In Japan, strawberries are produced in the off-season (June to November) in cool regions; however, the high temperatures and strong sunlight limit fruit production. Dark septate endophytic fungi (DSEs) support growth and flower bud formation of plants grown in environments unsuitable for plant growth. In this study, we investigated the effects of DSE on dry matter production and flower bud formation in strawberry plants grown in the summer and autumn. The seeds were sown in soil mixed with DSE on 5 February 2024. The DSEs used were Cladophialophora chaetospira SK51 (S) and Cc. MNB12 (M), and Veronaeopsis simplex Y34 (Y). Plants were planted in a plastic house on April 18. The total dry weight was significantly increased by DSEs. This is because S and Y-cultured plants did not show a significant decrease in leaf emergence under high temperatures, unlike those grown with M; however, its leaf area was larger than that of the control. This resulted in a larger leaf area for receiving light and higher cumulative light reception and light-use efficiency. Although the DSEs increased cumulative fruit yield, the harvest period was limited to July because of the extreme summer heat. In addition, there was no difference in the budding date or flowering date between the treatments. These results suggest that DSEs improve light use efficiency, thereby increasing total dry matter weight and contributing to increased fruit yield in summer-autumn cultivation. Full article
Show Figures

Figure 1

18 pages, 1205 KB  
Article
Genetic Dissection of Petal Abscission Rate in Strawberry Unveils QTLs and Hormonal Pathways for Gray Mold Avoidance
by Guilin Xiao, Xiangguo Zeng, Dongmei Zhang and Yongchao Han
Horticulturae 2025, 11(12), 1525; https://doi.org/10.3390/horticulturae11121525 - 16 Dec 2025
Viewed by 339
Abstract
Gray mold, caused by Botrytis cinerea, is a devastating disease of strawberry, with petal abscission rate (PAR) being a critical disease-avoidance trait. Rapid petal abscission removes a key infection site for the pathogen, thereby reducing disease incidence. To dissect the genetic basis [...] Read more.
Gray mold, caused by Botrytis cinerea, is a devastating disease of strawberry, with petal abscission rate (PAR) being a critical disease-avoidance trait. Rapid petal abscission removes a key infection site for the pathogen, thereby reducing disease incidence. To dissect the genetic basis of PAR, a segregating F1 population was constructed from a cross between ‘Benihoppe’ (rapid abscission) and ‘Sweet Charlie’ (slow abscission). Utilizing BSR-Seq analysis of extreme bulks, five high-confidence quantitative trait loci (QTLs) were identified on chromosomes Fvb2-2, Fvb4-4, and Fvb6-3. These QTLs encompassed 672 candidate genes, with enrichment in “Plant hormone signal transduction” pathway. Integrated analysis of gene expression and SNPs identified 16 candidate genes, including those involved in flowering time (e.g., ELF3, HUA2 and AGL62) and plant hormone (e.g., ANT, RTE (ethylene), NDL2, FPF1 (auxin), and CYP707A7, ABF2 (abscisic acid) signaling, as well as calcium transport (ACA1, ECA3). Fourteen Kompetitive Allele-Specific PCR (KASP) markers were developed from candidate genes, with four markers showing significant correlations with PAR. This study provides the first genetic mapping of PAR in strawberry, revealing candidate genes and molecular markers that will facilitate the breeding of cultivars with improved gray mold resistance through enhanced petal abscission. Full article
(This article belongs to the Section Genetics, Genomics, Breeding, and Biotechnology (G2B2))
Show Figures

Figure 1

15 pages, 1491 KB  
Article
Relations Among Agronomic Traits of Commercial Blackberry (Rubus subg. Eubatus Focke) Cultivars Under the Climatic Conditions of the Moscow Region
by Olga Ladyzhenskaya, Maxim Simakhin, Vitaliy Donskih, Vladimir Pashutin, Taisiya Glinyuk and Viktoria Kryuchkova
Agronomy 2025, 15(12), 2774; https://doi.org/10.3390/agronomy15122774 - 30 Nov 2025
Viewed by 400
Abstract
Blackberry (Rubus subg. Eubatus Focke) ranks among the four most commercially valuable berry crops globally, alongside raspberry, strawberry, and blueberry, owing to its high antioxidant content—particularly flavonoids, anthocyanins, and polyphenols. Compared to other berry crops, blackberry cultivation requires lower labor and financial [...] Read more.
Blackberry (Rubus subg. Eubatus Focke) ranks among the four most commercially valuable berry crops globally, alongside raspberry, strawberry, and blueberry, owing to its high antioxidant content—particularly flavonoids, anthocyanins, and polyphenols. Compared to other berry crops, blackberry cultivation requires lower labor and financial inputs, with plantations remaining productive for 12–15 years. In Russia, total blackberry area is limited (~100 ha), and the Moscow Region is particularly suited for trailing and semi-trailing cultivars with early-to-mid-season ripening. This three-year study (2021–2023) conducted at the Tsitsin Main Botanical Garden (RAS) evaluated ten promising blackberry cultivars to (i) assess interrelationships among phenological, morphological, and fruit quality traits; and (ii) identify optimal market niches for each genotype. Cultivars were grouped by ripening time: early (‘Karaka Black’, ‘Loch Tay’, ‘Natchez’) and medium (‘Columbia Sunrise’, ‘Hall’s Beauty’, ‘Caddo’, ‘Columbia Giant’, ‘Victoria’, ‘Brzezina’). Morphologically, ‘Columbia Giant’, ‘Columbia Star’, ‘Columbia Sunrise’, ‘Hall’s Beauty’, and ‘Loch Tay’ exhibited the most balanced architecture. For fresh-market retail, ‘Hall’s Beauty’ (650.3 gf), ‘Loch Tay’ (632.0 gf), and ‘Victoria’ (882.2 gf) stood out for high fruit firmness, whereas ‘Columbia Giant’ (11.5 g fruit mass, 354.1 gf) is recommended for direct consumer sales due to its large fruit size and acceptable firmness. Key trait associations included flowering duration and drupelet number (r = −0.83); fruiting onset and lateral length (r = 0.75); central leaflet length and fruiting laterals per shoot (r = −0.86); fruit number per lateral and Soluble Solids Content (SSC, r = 0.83); and lateral length (r = 0.84). These findings indicate the importance of proper variety selection for establishing blackberry plantations in the specific climatic conditions of the Moscow Region. Full article
(This article belongs to the Section Horticultural and Floricultural Crops)
Show Figures

Figure 1

19 pages, 930 KB  
Article
Improving Pollination Efficiency in Greenhouse Strawberries Through Honeybee (Apis mellifera L.) Feeding Management
by Heeji Kim, Minwoong Son, Dong Hee Lee, Sung Hyun Min, Bo-Sun Park, Kyu-Won Kwak, Su Jin Lee, Su-Bae Kim, Sung-Kook Kim, Young-Bo Lee and Kyeong Yong Lee
Agronomy 2025, 15(11), 2608; https://doi.org/10.3390/agronomy15112608 - 13 Nov 2025
Viewed by 835
Abstract
Stable pollination by honeybees (Apis mellifera L.) is essential for the reliable production of strawberries cultivated in winter greenhouses in Korea. Few studies focused on the management of pollination hives within greenhouses during flowering. Thus, this study aimed to investigate the effects [...] Read more.
Stable pollination by honeybees (Apis mellifera L.) is essential for the reliable production of strawberries cultivated in winter greenhouses in Korea. Few studies focused on the management of pollination hives within greenhouses during flowering. Thus, this study aimed to investigate the effects of nutritional feed management by supplementing pollen patties and sugar solution on the pollination efficiency and colony longevity of honeybees under greenhouse conditions. In March, the number of foraging bees in the treatment group was 1.94 times higher than that in the control group. The number of bees inside the hive was approximately 2000 greater in February and approximately 2925 greater in March in the treatment group than in the control group. The pollen patties supplemented one time were completely consumed after 53 days, whereas 50% of the patties remained even after 70 days when supplemented three times. The commercial fruit set rate was 5.9% higher, and the fruit weight was significantly heavier, by 1.7 g, in the treatment group than in the control group, although other quality parameters showed no significant differences. Additionally, bee activity was approximately 2.2 times higher in the treatment group with sugar syrup supplementation than in the control group, but the fruit set rate or quality did not significantly differ between the two groups. These findings indicate that the feed management of honeybees during winter greenhouse strawberry cultivation is essential for stable pollination. Proper nutritional supplementation not only enhances bee activity and colony longevity but also improves strawberry productivity, leading to an estimated additional profit of approximately KRW 2.29 million (≈USD 1700) per 0.1 ha. This demonstrates that nutritional management of pollination hives provides both biological and economic benefits for greenhouse strawberry growers. Full article
(This article belongs to the Section Horticultural and Floricultural Crops)
Show Figures

Figure 1

13 pages, 1040 KB  
Article
Fertilizers and Microorganisms Promote Strawberry Growth, Yield, and Quality in Peru
by Betsabe Ttacca León, Ariana Jossety Peña Meneses, Reyno Leonardo Chipana Manrique, Manuel Alfredo Ñique Alvarez and César Oswaldo Arévalo-Hernández
AgriEngineering 2025, 7(11), 381; https://doi.org/10.3390/agriengineering7110381 - 10 Nov 2025
Viewed by 862
Abstract
The use of sustainable and efficient practices is important for high crop yields. This study aimed to determine the effects of microorganisms and fertilizers on the growth, yield, and fruit quality of two strawberry cultivars in Cañete, Peru. The experiment was set up [...] Read more.
The use of sustainable and efficient practices is important for high crop yields. This study aimed to determine the effects of microorganisms and fertilizers on the growth, yield, and fruit quality of two strawberry cultivars in Cañete, Peru. The experiment was set up in a randomized complete block design with a split-plot arrangement, where the main plots were the fertilizer doses (0, 50, 100, and 150%) and the subplots were arranged in a factorial scheme of 2 × 4, with two strawberry varieties, three microorganisms (Azospirillum brasilense, Rhizophagus spp., and Trichoderma sp.), and the control. Growth variables included the number of leaves, crowns, and flowers; petiole length and diameter; foliar area; number of fruits; and yield. Nutrient concentrations of nitrogen, phosphorus, potassium, calcium, and magnesium were determined. For fruit quality, the variables of pH, Brix grade, and acidity were measured. The results indicated that the Sabrina cultivar had higher growth and yield (+15%). All fertilizer doses promoted yield and firmness, especially the 50% dose. All microorganisms promoted growth, yield (+60%), and fruit quality, demonstrating their importance in improving fruit production in this crop in Peru. Full article
(This article belongs to the Section Sustainable Bioresource and Bioprocess Engineering)
Show Figures

Figure 1

5587 KB  
Proceeding Paper
Towards Autonomous Raised Bed Flower Pollination with IoT and Robotics
by Rusira Thamuditha Karunarathna, Chathupa Wickramarathne, Mohamed Akmal Mohamed Alavi, Chamath Shanaka Wickrama Arachchi, Kapila Dissanayaka, Bhagya Nathali Silva and Ruchire Eranga Wijesinghe
Eng. Proc. 2025, 118(1), 55; https://doi.org/10.3390/ECSA-12-26572 - 7 Nov 2025
Viewed by 169
Abstract
Strawberries, a high-value crop with growing demand, face increasing challenges from labour shortages, declining pollinator populations, and the limitations of inconsistent manual pollination. This paper presents an IoT-enabled robotic system designed to automate strawberry pollination in open-field raised-bed environments with minimal human intervention. [...] Read more.
Strawberries, a high-value crop with growing demand, face increasing challenges from labour shortages, declining pollinator populations, and the limitations of inconsistent manual pollination. This paper presents an IoT-enabled robotic system designed to automate strawberry pollination in open-field raised-bed environments with minimal human intervention. The system consists of a mobile rover equipped with an ESP32-CAM for image capture and a robotic arm mounted on an Arduino Uno, capable of controlled X, Y, and Z positioning to perform targeted pollination. Images of strawberry beds are transmitted to a locally deployed server, which uses a lightweight detection model to identify flowers. System components communicate asynchronously via HTTP and I2C protocols, and the onboard event-driven architecture enables responsive behaviour while minimizing RAM and power usage, which is an essential requirement for low-cost, field-deployable robotics. The server also manages multi-rover scheduling through a custom priority queue designed for low-end hardware. In controlled lo0ad tests, the scheduler improved average response time by 6.9% and handled 2.4% more requests compared to the default queueing system, while maintaining stability. Preliminary field tests demonstrate successful flower identification and reliable arm positioning under real-world conditions. Although full system yield measurements are ongoing, current results validate the core design’s functional feasibility. Unlike previous systems that focus on greenhouse deployments or simpler navigation approaches, this work emphasizes modularity, affordability, and adaptability for small and medium farms, particularly in resource-constrained agricultural regions such as Sri Lanka. This study presents a promising step toward autonomous and scalable pollination systems that integrate embedded systems, robotics, and IoT for practical use in precision agriculture. Full article
Show Figures

Figure 1

22 pages, 5191 KB  
Article
Thermal Vulnerability and Potential Cultivation Areas of Four Day-Neutral Strawberries in Chile: Implications for Climate Adaptation
by Angela Sierra-Almeida, Loreto V. Morales, Diego Guerrero, Rodrigo J. N. Hasbún, Luis Retamal, Adrián Garrido-Bigotes, Ítalo Tamburrino and Andrea Maruri
Plants 2025, 14(20), 3205; https://doi.org/10.3390/plants14203205 - 18 Oct 2025
Viewed by 965
Abstract
Understanding strawberry thermal resilience is crucial for optimizing cultivation in the face of climate change. However, its thermal niche remains underexplored. We assessed the thermal vulnerability of leaves and flowers in four day-neutral strawberry varieties cultivated in Chile and evaluated potential shifts in [...] Read more.
Understanding strawberry thermal resilience is crucial for optimizing cultivation in the face of climate change. However, its thermal niche remains underexplored. We assessed the thermal vulnerability of leaves and flowers in four day-neutral strawberry varieties cultivated in Chile and evaluated potential shifts in their suitable cultivation areas under warming scenarios. Tolerance to freezing, heat (LT50), and Thermal Tolerance Breadth (TTB) were determined, and habitat suitability was modeled using MaxEnt under two climate change projections and time periods. Heat LT50 of leaves and flowers was similar across strawberry varieties, averaging 56 °C. Conversely, the average freezing LT50 of flowers was 12 K less negative than that of leaves across varieties. The TTB of leaves was generally broader than that of flowers, except for San Andreas, with Monterrey displaying the broadest TTB difference (14.6 K). Climatic models indicated slight southward shifts in suitable cultivation areas under warming in Chile and globally. Nevertheless, the potential for strawberry cultivation in the more southern regions will depend on the development and implementation of cultivation strategies that effectively minimize the risk of freezing damage to the flowers. This highlights the need to plan cultivation areas according to each variety’s thermal tolerance to enhance resilience and sustainability in a changing climate. Full article
Show Figures

Figure 1

19 pages, 3394 KB  
Article
Monitoring Strawberry Plants’ Growth in Soil Amended with Biochar
by Ilaria Orlandella, Kyra Nancie Smith, Elena Belcore, Renato Ferrero, Marco Piras and Silvia Fiore
AgriEngineering 2025, 7(10), 324; https://doi.org/10.3390/agriengineering7100324 - 1 Oct 2025
Cited by 1 | Viewed by 1112
Abstract
This study evaluated the impact of biochar on the growth of strawberry plants, combining visual and proximal sensing monitoring. The plants were rooted in soil enriched with biochar, derived from pyrolysis of soft wood at 550 °C and applied in two doses (2 [...] Read more.
This study evaluated the impact of biochar on the growth of strawberry plants, combining visual and proximal sensing monitoring. The plants were rooted in soil enriched with biochar, derived from pyrolysis of soft wood at 550 °C and applied in two doses (2 and 15 g/L), and after physical activation with CO2 at 900 °C; there was also a treatment with no biochar (unaltered). Visual monitoring was based on data logging twice per week of plants’ height and number of flowers and ripe fruits. Proximal sensing monitoring involved a system including a low-cost multispectral camera and a Raspberry Pi 4. The camera acquired nadiral images hourly in three spectral bands (550, 660, and 850 nm), allowing calculation of the normalized difference vegetation index (NDVI). After three months, control plants reached a height of 12.3 ± 0.4 cm, while those treated with biochar and activated biochar grew to 18.03 ± 1.0 cm and 17.93 ± 1.2 cm, respectively. NDVI values were 0.15 ± 0.11 for control plants, increasing to 0.26 ± 0.03 (+78%) with biochar and to 0.28 ± 0.03 (+90%) with activated biochar. In conclusion, biochar application was beneficial for strawberry plants’ growth according to both visual and proximal-sensed measures. Further research is needed to optimize the integration of visual and proximal sensing monitoring, also enhancing the measured parameters. Full article
Show Figures

Figure 1

14 pages, 1164 KB  
Article
Alternative Plant Protection Strategies Using Bacteria and Thyme to Improve Strawberry (cv. Elsanta) Yield and Quality
by Neringa Rasiukevičiūtė, Armina Morkeliūnė, Ingrida Mažeikienė, Juozas Lanauskas and Alma Valiuškaitė
Plants 2025, 14(12), 1827; https://doi.org/10.3390/plants14121827 - 14 Jun 2025
Cited by 2 | Viewed by 986
Abstract
Alternative plant protection methods should be promoted to mitigate the dangers and consequences of using chemical pesticides, ensuring a safe environment and protecting human health (Directive 2009/128/EC). One of the objectives of the EU organic production action plan is to provide substitutes for [...] Read more.
Alternative plant protection methods should be promoted to mitigate the dangers and consequences of using chemical pesticides, ensuring a safe environment and protecting human health (Directive 2009/128/EC). One of the objectives of the EU organic production action plan is to provide substitutes for plant protection methods, decrease the adverse effects on the environment, and promote the diversity of living organisms. The use of synthetic and non-organic chemicals has significantly expanded, damaging human health and the environment. This study aimed to evaluate alternative plant protection solutions for the improvement of the strawberry cv. Elsanta plant’s generative development, yield, fruit quality, and biochemical composition. The two-year strawberry experiment conducted in a tunnel greenhouse included chemical and biological means (Bacteria and Thyme preparations). The experiment randomised a block design with four replicates and 32 plants per replicate. The treatments were conducted at the 10% flowering state (BBCH 61–65), every 7–10 days (a total of four times): (1) Control, (2) Chemical, (3) Bacteria, and (4) Thyme. We evaluated the yield, fruit weight, size, number of leaves, crowns, flowers, inflorescences, fruit firmness, soluble solids, and Vitamin C. The highest fruit weight at the first picking was in the Bacteria treatment. The number of rotten fruits was similar after all treatments. Additionally, they were firmer and bigger in size but had a smaller soluble solids content. The strawberry ascorbic acid and soluble solids content (Brix %) showed significant variation. The highest ascorbic acid concentration in the fruit was after the Thyme application (45.06%). Our study showed that alternative plant protection measures can reduce the use of chemical fungicides and maintain proper fruit quality. Full article
Show Figures

Figure 1

15 pages, 1669 KB  
Article
Benchmark Study of Point Cloud Semantic Segmentation Architectures on Strawberry Organs
by Rundong Xu, Hiroki Naito and Fumiki Hosoi
AgriEngineering 2025, 7(6), 181; https://doi.org/10.3390/agriengineering7060181 - 9 Jun 2025
Viewed by 2842
Abstract
With the increasing consumer demand for healthy and natural foods, strawberries have emerged as one of the most popular small berries globally. Consequently, careful investigation of the relationship between leaf photosynthetic activity (source strength) and fruit development (sink strength) during strawberry growth provides [...] Read more.
With the increasing consumer demand for healthy and natural foods, strawberries have emerged as one of the most popular small berries globally. Consequently, careful investigation of the relationship between leaf photosynthetic activity (source strength) and fruit development (sink strength) during strawberry growth provides important insights for maximizing the production potential of this crop. This objective necessitates accurate strawberry organ segmentation. Recently, advancements in deep learning (DL) have driven the development of numerous semantic segmentation models that have performed effectively on benchmark datasets. Nevertheless, their small-organ plant segmentation efficacy remains insufficiently explored. Consequently, this study evaluates eight representative point-based semantic segmentation models for the strawberry organ segmentation task: PointNet++, PointMetaBase, Point Transformer V2, Swin3D, KPConv, RandLA-Net, PointCNN, and Sparse UNet. The employed dataset comprises two components: the open-source LAST-Straw strawberry dataset and a custom Japanese strawberry dataset. Strawberry point cloud organs were categorized into four classes: leaf, stem, flower, and berry. The sparse convolution-based Sparse UNet achieved the highest mean intersection over union of 81.3, followed by the PointMetaBase model at 80.7. This study provides insights into the strengths and limitations of existing architectures, assisting researchers and practitioners in selecting appropriate models for strawberry organ segmentation tasks. Full article
Show Figures

Figure 1

16 pages, 853 KB  
Article
Response of the Invasive Alien Plant Duchesnea indica (Andrews) Teschem. to Different Environmental and Competitive Settings
by Maja Kreća, Nina Šajna and Mirjana Šipek
Plants 2025, 14(11), 1563; https://doi.org/10.3390/plants14111563 - 22 May 2025
Viewed by 799
Abstract
Indian mock strawberry (Duchesnea indica, syn. Potentilla indica), a clonal invasive plant native to Asia, has rapidly spread in Europe, where its ecological adaptation allows it to thrive under varying environmental conditions. It is mostly found in urban habitats such [...] Read more.
Indian mock strawberry (Duchesnea indica, syn. Potentilla indica), a clonal invasive plant native to Asia, has rapidly spread in Europe, where its ecological adaptation allows it to thrive under varying environmental conditions. It is mostly found in urban habitats such as lawns, parks, and urban and peri-urban forests, where it thrives in various plant communities. It can become dominant in certain communities, indicating its competitive advantage over native plants. Due to similar habitat preferences, it often coexists with the native species Glechoma hederacea, with which it shares other characteristics such as clonal growth. This study investigates the effects of light, nutrients, and competition on the growth, morphology, and physiology of D. indica. A controlled pot experiment exposed plants to combinations of sunlight and shade, optimal and increased nutrient levels, and competitive scenarios with the native plant G. hederacea. The plant traits of biomass, leaf and ramet number, stolon and flower production, leaf greenness, the photosynthetic efficiency of Photosystem II, and stomatal conductance were assessed. Results revealed that light and nutrient availability significantly enhanced growth metrics. In shaded conditions, D. indica adapted with elongated petioles and increased specific leaf area. Competition significantly reduced growth, with G. hederacea outperforming D. indica. These findings highlight the complex interplay between abiotic and biotic factors in influencing invasive species impact, providing essential insights for ecosystem management. Full article
(This article belongs to the Special Issue Plant Invasions across Scales)
Show Figures

Figure 1

14 pages, 2155 KB  
Article
The Effect of Root Zone Cooling on the Growth and Development of Strawberry (Fragaria × ananassa) in a Tropical Climate
by Daruni Naphrom, Choochad Santasup, Werapat Panchai, Suwit Boonraeng and Anucha Promwungkwa
Int. J. Plant Biol. 2025, 16(2), 54; https://doi.org/10.3390/ijpb16020054 - 21 May 2025
Cited by 1 | Viewed by 2633
Abstract
Strawberry production in tropical and subtropical climates has been adversely affected by rising temperatures and reduced cooling periods, leading to a decrease in flower induction and overall yield. This experiment aimed to investigate the effects of root zone cooling on short-day strawberry plants [...] Read more.
Strawberry production in tropical and subtropical climates has been adversely affected by rising temperatures and reduced cooling periods, leading to a decrease in flower induction and overall yield. This experiment aimed to investigate the effects of root zone cooling on short-day strawberry plants cultivated under evaporative greenhouse conditions. The cooling methods employed included of four root zone cooling treatments: normal water dripping (NWD), cold-water (10 °C) dripping (CWD), cold-water dripping plus cold-water pipe (CWD + CWP), and normal water dripping plus cold-water pipe (NWD + CWP) embedded within the growing media. The results indicated that the CWD + CWP treatment was particularly effective, reducing RZT by approximately 2 °C compared to other treatments, thereby promoting both vegetative and reproductive growth, particularly in the ‘Akihime’ strawberry. In the absence of root zone cooling, ‘Akihime’ and ‘Pharachatan 88’ were still capable of producing flowers and yield, whereas ‘Pharachatan 80’ was not. In addition, ‘Pharachatan 80’ was affected by CWD + CWP which showed the highest levels of total phenolic compound, total anthocyanin, and total vitamin C among all treatments. It can be concluded that reducing the root zone temperature through the integrated application of cold-water dripping and embedded cold-water pipes in the growing media can enhance the growth and development of short-day strawberry plants cultivated under evaporative greenhouse conditions in a tropical climate. Full article
(This article belongs to the Section Plant Reproduction)
Show Figures

Figure 1

13 pages, 4174 KB  
Article
Nesting Preferences of Osmia orientalis (Hymenoptera: Megachilidae) in the Field and Its Potential as a Strawberry Pollinator in Greenhouses
by Ikuo Kandori, Yudai Ogata and Tomoyuki Yokoi
Insects 2025, 16(5), 473; https://doi.org/10.3390/insects16050473 - 29 Apr 2025
Viewed by 2009
Abstract
The western honeybee, Apis mellifera, is used worldwide as a pollinator of crops such as strawberries; however, it is an introduced species in Japan. The mason bee, Osmia orientalis Benoist (Hymenoptera: Megachilidae), is native to Japan, where it nests in empty snail [...] Read more.
The western honeybee, Apis mellifera, is used worldwide as a pollinator of crops such as strawberries; however, it is an introduced species in Japan. The mason bee, Osmia orientalis Benoist (Hymenoptera: Megachilidae), is native to Japan, where it nests in empty snail shells and has potential as a crop pollinator. We conducted three experiments to collect information on the nesting habits and potential agricultural use of this species as a pollinator of greenhouse-grown strawberries. Our first experiment investigated the bees’ nesting preferences in the field by placing the empty shells of four snail species, Euhadra amaliae, Satsuma japonica, Sinotaia quadrata histrica, and Helix lucorum, in six different environments. The nesting rate was significantly higher in medium-sized, empty E. amaliae shells. Regarding the surrounding environment, O. orientalis preferred tall and short grasslands to bare ground and forest interiors. Our second experiment investigated per-visit strawberry flower pollination efficiency. The results indicated that the efficiency of O. orientalis was equal to or greater than that of A. mellifera. In our third experiment, as a replacement for empty snail shells, which are scarce natural sources, four types of plastic artificial shells were created and placed inside a greenhouse together with E. amaliae shells. The nesting rates in three types of artificial shells were nearly identical to those in E. amaliae shells, implying that these artificial shells may be effective nesting materials. Although many questions remain before practical application, our results indicate the potential for using O. orientalis as a pollinator of greenhouse-grown strawberries. Full article
(This article belongs to the Collection Insects on Pollination Ecology)
Show Figures

Figure 1

18 pages, 5469 KB  
Article
Identification of the SAUR Members in Woodland Strawberry (Fragaria vesca) and Detection of Their Expression Profiles in Response to Auxin Signals
by Ruian Zhou, Jiahui Feng, Zhihong Zhang and Yuexue Liu
Int. J. Mol. Sci. 2025, 26(8), 3638; https://doi.org/10.3390/ijms26083638 - 11 Apr 2025
Cited by 2 | Viewed by 1037
Abstract
The SAUR (Small Auxin-Upregulated RNA) family members are important early auxin responsive genes in plants, playing a key regulatory role in the auxin metabolism, signal transduction, plant organ development, and abiotic stress response. Auxin signaling is also crucial for strawberry fruit development, but [...] Read more.
The SAUR (Small Auxin-Upregulated RNA) family members are important early auxin responsive genes in plants, playing a key regulatory role in the auxin metabolism, signal transduction, plant organ development, and abiotic stress response. Auxin signaling is also crucial for strawberry fruit development, but its specific regulatory mechanism remains unclear. In this study, bioinformatics methods were used to systematically identify and evaluate the FvSAUR gene family members associated with the auxin signaling in strawberry. The woodland strawberry Yellow Wonder line ‘YW5AF7’ was used as the material to further investigate the expressional characteristics of FvSAUR members in response to the auxin signals. A total of 64 members of the SAUR gene family were identified in the woodland strawberry genome, associated with FvSAUR1-64. Further bioinformatics analysis revealed that the FvSAUR members have undergone significant structural differentiation during evolution, and their encoded proteins exhibit diversity in folding stability, physicochemical properties, and other aspects. The prediction of the cis-elements in the promoter sequences of these genes suggests that the FvSAUR genes may mediate multiple hormonal and environmental signals, participating in a wide range of biological processes. RNA seq data analysis combined with RT-qPCR analysis revealed a dynamic spatiotemporal expression pattern of the FvSAUR genes in the vegetative and reproductive organs of strawberries, particularly the high expression levels of FvSAUR11, 17, 19, 21, and other genes in flowers and young fruits, suggesting their potential regulatory roles in strawberry fruit development. Exogenous auxin treatment experiments further suggested that the expression of FvSAUR11 and FvSAUR19 is sensitive to the changes in auxin levels, indicating their potential involvement in auxin signal transduction during strawberry fruit development. Subcellular localization results showed that both proteins are located in the nucleus. The results of this study systematically analyzed the sequence structure characteristics, evolutionary history, expression patterns, and potential functions of the strawberry FvSAUR family members, providing important insights for further elucidating the roles of FvSAUR genes in strawberry fruit growth and development. Full article
Show Figures

Figure 1

23 pages, 1101 KB  
Review
Regulation of Anthocyanins and Quality in Strawberries Based on Light Quality
by Fang Wang, Jingxuan Wang, Guangsi Ji, Xinna Kang, Yali Li, Jiangtao Hu, Chun Qian and Sen Wang
Horticulturae 2025, 11(4), 377; https://doi.org/10.3390/horticulturae11040377 - 31 Mar 2025
Cited by 6 | Viewed by 4481
Abstract
Strawberry fruits accumulate nutritionally critical anthocyanins and phytochemicals through light=quality-dependent metabolic regulation. This review systematically examines spectral modulation strategies for enhancing anthocyanin biosynthesis and fruit quality parameters. We demonstrate that dual red (660 nm) and blue (450 nm) irradiation optimally activates the flavonoid [...] Read more.
Strawberry fruits accumulate nutritionally critical anthocyanins and phytochemicals through light=quality-dependent metabolic regulation. This review systematically examines spectral modulation strategies for enhancing anthocyanin biosynthesis and fruit quality parameters. We demonstrate that dual red (660 nm) and blue (450 nm) irradiation optimally activates the flavonoid pathway, co-upregulating structural genes (CHS, F3H, DFR, ANS) and regulatory factors (FaMYB10, FaHY5). Mechanistic analyses reveal that blue light preferentially induces upstream phenylpropanoid enzymes (PAL, C4H, CHI), while red light enhances proanthocyanidin production through differential induction of LAR and ANR. Strategic supplementation with UV-C (254 nm, 1–2 kJ/m2/d) and far-red (730 nm, 15 μmol·m−2·s−1) improves anthocyanin spatial distribution via stress-mediated epidermal accumulation. Spectral optimization further coordinates flavor development by (1) balancing sucrose–hexose ratios through FaSPS1 modulation, (2) reducing organic acid content via FaMYB44.2 suppression, and (3) amplifying volatile esters (e.g., methyl anthranilate) through SAAT induction. Postharvest UV-C treatment (4 kJ/m2) extends shelf life by 30–35% through microbial inhibition and antioxidant system activation. Practical implementation frameworks propose phase-specific LED protocols related to vegetative growth (R:B = 3:1), flowering (R:B = 1:1), and maturation (R:B = 4:1) stages integrated with environmental sensors in controlled agriculture systems. These findings establish an actionable paradigm for photonic crop management, synergizing molecular precision with commercial horticultural operations to achieve sustainable yield enhancement (projected 22–28% increase) and nutraceutical enrichment. Full article
(This article belongs to the Section Protected Culture)
Show Figures

Graphical abstract

Back to TopTop