Monitoring Strawberry Plants’ Growth in Soil Amended with Biochar
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials and Experimental Setup
2.2. Visual and Proximal Sensing Monitoring
2.3. Sensitivity Analysis
3. Results and Discussion
3.1. Visual Monitoring
3.2. Proximal Sensing Monitoring
3.3. Sensitivity Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
PVC | Polyvinyl chloride |
NDVI | Normalized difference vegetation index |
C | Strawberry plant control |
SW2 | Strawberry plant treated with unaltered biochar with dose of 2 g/pot |
SW15 | Strawberry plant treated with unaltered biochar with dose of 15 g/pot |
SW2a | Strawberry plant treated with activated biochar with dose of 2 g/pot |
SW15a | Strawberry plant treated with activated biochar with dose of 15 g/pot |
ANOVA | Analysis of variance test |
References
- European Commission. Available online: https://commission.europa.eu/strategy-and-policy/priorities-2019-2024/european-green-deal (accessed on 15 July 2025).
- Marques Filho, A.C.; Santana, L.S.; Martins, M.B.; Guimarães Júnnyor, W.d.S.; Medeiros, S.D.S.d.; Lanças, K.P. Straw Cover and Tire Model Effect on Soil Stress. AgriEngineering 2025, 7, 263. [Google Scholar] [CrossRef]
- Wang, Z.; Xiao, S.; Wang, J.; Parab, A.; Patel, S. Reinforcement Learning-Based Agricultural Fertilization and Irrigation Considering N2O Emissions and Uncertain Climate Variability. AgriEngineering 2025, 7, 252. [Google Scholar] [CrossRef]
- Yan, F. Agricultural biomass wastes and their resource utilization technologies: A review. Biomass Bioenergy 2025, 203, 108291. [Google Scholar] [CrossRef]
- Le, L.; Reddy, V.R.; Jin, J.; Rahut, D.B. Circular economy and sustainable agriculture ecosystems a case of hybrid paper mulberry in the Yellow River Basin, China. Discov. Sustain. 2025, 6, 448. [Google Scholar] [CrossRef]
- Álvarez-González, A.; Castro, I.M.; Ortiz, A.; Díez-Montero, R.; Passos, F.; Garfí, M.; Uggetti, E. Environmental and economic benefits of using microalgae grown in wastewater as biofertilizer for lettuce cultivation. Bioresour. Technol. 2025, 424, 132230. [Google Scholar] [CrossRef]
- Bouhzam, I.; Azarkamand, S.; Puig, R.; Bala, A.; Fullana-I.-Palmer, P.; Sazdovski, I.; Mazurenko, B.; Mir, S.; Sani, N.H.; Lopes, I.G.; et al. Assessing environmental impacts of various biofertilizers in Europe: A step toward circular economy transition. Sustain. Prod. Consum. 2025, 56, 460–476. [Google Scholar] [CrossRef]
- Martín-Sanz-Garrido, C.; Revuelta-Aramburu, M.; Santos-Montes, A.M.; Morales-Polo, C. A Review on Anaerobic Digestate as a Biofertilizer: Characteristics, Production, and Environmental Impacts from a Life Cycle Assessment Perspective. Appl. Sci. 2025, 15, 8635. [Google Scholar] [CrossRef]
- Liu, J.; Nauta, J.; van Eekert, M.H.; Chen, W.-S.; Buisman, C.J. Integrated life cycle assessment of biotreatment and agricultural use of domestic organic residues: Environmental benefits, trade-offs, and impacts on soil application. Sci. Total. Environ. 2023, 897, 165372. [Google Scholar] [CrossRef]
- Aali, N.; Ansari, N.A.; Zahedi, S.M. Development of sustainable strawberry production in closed cultivation systems: Effects of bagasse biochar on morphological and physiological attributes, yield and autotoxic changes. J. Environ. Manag. 2024, 371, 123100. [Google Scholar] [CrossRef]
- Das, S.K.; Ghosh, G.K.; Avasthe, R. Application of biochar in agriculture and environment, and its safety issues. Biomass Conv. Bioref. 2023, 13, 1359–1369. [Google Scholar] [CrossRef]
- De Tender, C.A.; Debode, J.; Vandecasteele, B.; D’hOse, T.; Cremelie, P.; Haegeman, A.; Ruttink, T.; Dawyndt, P.; Maes, M. Biological, physicochemical and plant health responses in lettuce and strawberry in soil or peat amended with biochar. Appl. Soil Ecol. 2016, 107, 1–12. [Google Scholar] [CrossRef]
- Babu, S.; Singh, R.; Kumar, S.; Rathore, S.S.; Yadav, D.; Yadav, S.K.; Yadav, V.; Alam Ansari, M.; Das, A.; Rajanna, G.A.; et al. Biochar implications in cleaner agricultural production and environmental sustainability. Environ. Sci. Adv. 2023, 2, 1042–1059. [Google Scholar] [CrossRef]
- Graziano, S.; Caldara, M.; Gullì, M.; Cornali, S.; Vassura, I.; Coralli, I.; Pagano, L.; Marmiroli, M.; Donati, M.; Bevivino, A.; et al. Improving the Sustainability of Tomato Production With Biochar and Biofertilizers in Emilia-Romagna, Italy. Soil Use Manag. 2025, 41, e70091. [Google Scholar] [CrossRef]
- Tadayon, M.S.; Mousavi, S.M.; Hosseini, S.M. Salicylic acid and biochar-biofertilizer improve soil fertility, drought tolerance, and fig yield in a semi-arid region. J. Soil Sci. Plant Nutr. 2025, 25, 7496–7510. [Google Scholar] [CrossRef]
- Filiberto, D.M.; Gaunt, J.L. Practicality of Biochar Additions to Enhance Soil and Crop Productivity. Agriculture 2013, 3, 715–725. [Google Scholar] [CrossRef]
- Torchia, D.F.D.O.; van Tol de Castro, T.A.; Tavares, O.C.H.; Souza, C.C.B.; da Silva, H.F.O.; de Moura, O.V.T.; da Silva, K.C.M.; de Souza Rocha, F.; Zonta, E.; García, A.C. Effects of Artisanal Biochar Applied to Rice Cultivation in Fragile Sandy Planosol at Rio de Janeiro (Brazil). J. Soil Sci. Plant Nutr. 2023, 24, 172–189. [Google Scholar] [CrossRef]
- Sánchez-Reinoso, A.D.; Ávila-Pedraza, E.Á.; Lombardini, L.; Restrepo-Díaz, H. The Application of Coffee Pulp Biochar Improves the Physical, Chemical, and Biological Characteristics of Soil for Coffee Cultivation. J. Soil Sci. Plant Nutr. 2023, 23, 2512–2524. [Google Scholar] [CrossRef]
- Kebede, T.; Berhe, D.T.; Zergaw, Y.; Cocozza, C. Effects of Biochar and Compost Application on Soil Properties and on the Growth and Yield of Hot Pepper (Capsicum annuum L.). Appl. Environ. Soil Sci. 2023, 2023, 8546135. [Google Scholar] [CrossRef]
- Lilli, M.A.; Paranychianakis, N.V.; Lionoudakis, K.; Kritikaki, A.; Voutsadaki, S.; Saru, M.L.; Komnitsas, K.; Nikolaidis, N.P. The Impact of Sewage-Sludge- and Olive-Mill-Waste-Derived Biochar Amendments to Tomato Cultivation. Sustainability 2023, 15, 3879. [Google Scholar] [CrossRef]
- Zonayet, M.; Paul, A.K.; Faisal-E.-Alam, M.; Syfullah, K.; Castanho, R.A.; Meyer, D. Impact of Biochar as a Soil Conditioner to Improve the Soil Properties of Saline Soil and Productivity of Tomato. Sustainability 2023, 15, 4832. [Google Scholar] [CrossRef]
- González-Pernas, F.M.; Grajera-Antolín, C.; García-Cámara, O.; González-Lucas, M.; Martín, M.T.; González-Egido, S.; Aguirre, J.L. Effects of Biochar on Biointensive Horticultural Crops and Its Economic Viability in the Mediterranean Climate. Energies 2022, 15, 3407. [Google Scholar] [CrossRef]
- Warzukni, W.; Zaitun, Z.; Jauharlina, J. Changes in soil chemical properties due to the application of young coconut waste biochar and goat manure fertilizer on tomato (Solanum lycopersicum L.) cultivation land. In IOP Conference Series: Earth and Environmental Science; Institute of Physics: London, UK, 2022. [Google Scholar] [CrossRef]
- Asri, F.Ö. Effects of biochar and fertilizer application on soil properties and nutrient status of lettuce. Chil. J. Agric. Res. 2022, 82, 469–483. [Google Scholar] [CrossRef]
- Cedeño, Á.; Saldarriaga, V.; Cedeño, G.; López, G.; Mendoza, J. Effects of Biochar Type on the Growth and Harvest Index of Onion (Allium cepa L.). AgriEngineering 2024, 6, 1568–1580. [Google Scholar] [CrossRef]
- Pérez-Pérez, C.A.; Viejo, C.G.; Fuentes, S.; Valiente-Banuet, J.I. Vineyard proximal sensing using multispectral imaging to evaluate grape ripening and quality traits using artificial neural networks modeling. J. Agric. Food Res. 2025, 23, 102252. [Google Scholar] [CrossRef]
- Jennewein, J.S.; Davis, B.W.; Seehaver-Eagen, S.; Nicolette, J.; Pittman, J.; Hively, W.D.; Goldsmith, A.; Hidalgo, C.; Reberg-Horton, C.; Mirsky, S.B. Multi-sensor proximal remote sensing for cover crop biomass estimation at high and moderate spatial resolutions. Smart Agric. Technol. 2025, 12, 101201. [Google Scholar] [CrossRef]
- Ndlovu, H.S.; Odindi, J.; Sibanda, M.; Mutanga, O. Multi-temporal analysis of taro crop water stress using high-resolution thermal and multispectral proximal sensing for improved resilience of smallholder farming systems. Smart Agric. Technol. 2025, 12, 101337. [Google Scholar] [CrossRef]
- Tao, H.; Xu, S.; Tian, Y.; Li, Z.; Ge, Y.; Zhang, J.; Wang, Y.; Zhou, G.; Deng, X.; Zhang, Z.; et al. Proximal and remote sensing in plant phenomics: 20 years of progress, challenges, and perspectives. Plant Commun. 2022, 14, 100344. [Google Scholar] [CrossRef] [PubMed]
- Schuster, J.; Hagn, L.; Mittermayer, M.; Maidl, F.-X.; Hülsbergen, K.-J. Using Remote and Proximal Sensing in Organic Agriculture to Assess Yield and Environmental Performance. Agronomy 2023, 13, 1868. [Google Scholar] [CrossRef]
- Luo, Z.; Deng, M.; Tang, M.; Liu, R.; Feng, S.; Zhang, C.; Zheng, Z. Estimating soil profile salinity under vegetation cover based on UAV multi-source remote sensing. Sci. Rep. 2025, 15, 2713. [Google Scholar] [CrossRef]
- Alemán-Montes, B.; Serra, P.; Zabala, A.; Masó, J.; Pons, X. A near real-time spatial decision support system for improving sugarcane monitoring through a satellite mapping web browser. Smart Agric. Technol. 2025, 12, 101084. [Google Scholar] [CrossRef]
- Bånkestad, D.; Wik, T. Growth tracking of basil by proximal remote sensing of chlorophyll fluorescence in growth chamber and greenhouse environments. Comput. Electron. Agric. 2016, 128, 77–86. [Google Scholar] [CrossRef]
- Dilillo, N.; Sanna, A.; Belcore, E.; Smith, K.; Piras, M.; Montrucchio, B.; Ferrero, R. Enhancing lettuce classification: Optimizing spectral wavelength selection via CCARS and PLS-DA. Smart Agric. Technol. 2025, 11, 100962. [Google Scholar] [CrossRef]
- Wei, Z.; Fang, W. UV-NDVI for real-time crop health monitoring in vertical farms. Smart Agric. Technol. 2024, 8, 100462. [Google Scholar] [CrossRef]
- Dehkordi, R.H.; Denis, A.; Fouche, J.; Burgeon, V.; Cornelis, J.T.; Tychon, B.; Gomez, E.P.; Meersmans, J. Remotely-sensed assessment of the impact of century-old biochar on chicory crop growth using high-resolution UAV-based imagery. Int. J. Appl. Earth Obs. Geoinf. 2020, 91, 102147. [Google Scholar] [CrossRef]
- Lee, H.; Fiore, S.; Berruti, F. Adsorption of methyl orange and methylene blue on activated biocarbon derived from birchwood pellets. Biomass Bioenergy 2024, 191, 107446. [Google Scholar] [CrossRef]
- Chiappero, M.; Fiore, S.; Berruti, F. Impact of biochar on anaerobic digestion: Meta-analysis and economic evaluation. J. Environ. Chem. Eng. 2022, 10, 108870. [Google Scholar] [CrossRef]
- Chiappero, M.; Cillerai, F.; Berruti, F.; Mašek, O.; Fiore, S. Addition of different biochars as catalysts during the mesophilic anaerobic digestion of mixed wastewater sludge. Catalysts 2021, 11, 1094. [Google Scholar] [CrossRef]
- Graber, E.R.; Harel, Y.M.; Kolton, M.; Cytryn, E.; Silber, A.; David, D.R.; Tsechansky, L.; Borenshtein, M.; Elad, Y. Biochar impact on development and productivity of pepper and tomato grown in fertigated soilless media. Plant Soil 2010, 337, 481–496. [Google Scholar] [CrossRef]
- Song, Z.; Yan, D.; Fang, W.; Zhang, D.; Jin, X.; Li, Y.; Wang, Q.; Wang, G.; Li, Q.; Cao, A. Response of Strawberry Fruit Yield, Soil Chemical and Microbial Properties to Anaerobic Soil Disinfestation with Biochar and Rice Bran. Agriculture 2023, 13, 1466. [Google Scholar] [CrossRef]
- Yuan, J.; Liang, X.; Yang, X. Impact of Biochar on the Flowering and Growth of Strawberry Varied with Different Pyrolysis Temperatures. J. Plant Growth Regul. 2025, 44, 4155–4164. [Google Scholar] [CrossRef]
- University of Turin. Meteorological Observatory. Available online: https://www.meteo.dfg.unito.it/m/previsioni/mese-5-2024 (accessed on 15 July 2025).
- Kadir, S.; Sidhu, G.; Al-Khatib, K. Strawberry (Fragaria ×ananassa Duch.) growth and productivity as affected by temperature. HortScience 2006, 41, 1423–1430. [Google Scholar] [CrossRef]
- Pan, Y.; Wang, D.; Tan, T.; An, J.; Jin, X.; Zou, H.; Zhang, Y.; Yu, N.; Siddique, K.H. Effect of organic amendments on soil organic carbon fractions, water retention, and mechanical properties in a Chinese Alfisol. Soil Tillage Res. 2025, 254, 106723. [Google Scholar] [CrossRef]
- Yang, P.; Xu, H.; Yu, M.; Yamsomphong, K.; Setyawan, M.I.B.; Takahashi, F. Enhancing water retention performance of biochar modified by alkali-treated coal fly ash: Pyrolysis behavior, field simulation, and metal leaching assessment. Environ. Technol. Innov. 2025, 39, 104306. [Google Scholar] [CrossRef]
- Zheng, C.; Abd-Elrahman, A.; Whitaker, V. Remote Sensing and Machine Learning in Crop Phenotyping and Management, with an Emphasis on Applications in Strawberry Farming. Remote. Sens. 2021, 13, 531. [Google Scholar] [CrossRef]
- Treder, W. Morphological and Physiological Responses of Strawberry Plants to Water Stress. Agric. Conspec. Sci. 2006, 71, 159–165. Available online: https://hrcak.srce.hr/7902 (accessed on 15 July 2025).
- Sujeeun, L.; Thomas, S.C. Biochar Rescues Native Trees in the Biodiversity Hotspot of Mauritius. Forests 2022, 13, 277. [Google Scholar] [CrossRef]
Ref | Feedstock | Pyrolysis Conditions | Dose (t/ha) | Crop | Key Findings |
---|---|---|---|---|---|
[17] | Eucalyptus | 270–380 °C for 24 h | 10; 20; 30 | Rice | Fresh mass decreased (up to 27%) and root mass increased (up to 56%) with the application of biochar in all treatments. A dose of 30 t/ha led to 8% root dry mass increase. Biochar enhanced nutrients, photosynthetic parameters, and root morphology. |
[18] | Coffee pulp | 500 °C for 20 min | 4; 8; 16 | Coffee | Doses of biochar of 8–16 t/ha improved soil quality by reducing bulk density and acidity and increasing aggregation, pH, and organic carbon. |
[19] | Coffee pulp | 500 °C for 180 min | 2; 3; 4 | Hot pepper | The highest dose of biochar increased the yield (up to about 5%) and improved soil chemical properties (pH, nutrients, organic carbon). |
[20] | Sewage sludge; olive mill waste | 400 °C for 60 min | 10; 25 | Tomato | Sewage sludge biochar led to higher yield in plants’ growth (98% for 10 t/ha and 180% for 25 t/ha) and soil properties compared to olive mill waste biochar (29% for 25 t/ha) with respect to control group. |
[21] | Grass, wood | 450 °C for 15 min | 1; 1.5; 2 | Tomato | A 2 t/ha dose of biochar mixed with fertilizer produced the highest percentage (87%) of marketable tomatoes > 20 g and improvement of soil properties. |
[22] | Wood | 600 °C for 20 min | 10; 20 | Lettuce, tomato, sweet pepper, radish | A dose of 10 t/ha led to an increase in the fresh weight of tomato (38%), radish (70%), lettuce (126%), and sweet pepper (95%). |
[23] | Coconut | N.A. | 5; 10 | Tomato | The highest soil exchangeable K value was found in the treatment of coconut waste biochar at 10 t/ha. |
[24] | Tomato plant | 300 °C for 180 min | 10; 20; 30; 40 | Lettuce | Biochar applications without chemical fertilizer were not sufficient for nutrition of lettuce plants, and 30 t/ha of biochar can halve chemical fertilizer dose. |
Parameter | Unit of Measurement | Average Value | Standard Deviation |
---|---|---|---|
Moisture | wt% | 1.52 | 0.16 |
Ctot | wt% | 85.52 | 1.22 |
H | wt% | 2.77 | 0.09 |
O | wt% | 10.36 | 1.19 |
H:Ctot | Molar ratio | 0.39 | 0.01 |
O:Ctot | Molar ratio | 0.09 | 0.01 |
Total ash | wt% | 1.25 | 0.42 |
Total N | wt% | <0.10 | - |
pH | [-] | 7.91 | 0.30 |
Electric conductivity | dS/m | 0.09 | 0.03 |
Biochar C stability | % C-basis | 69.62 | 0.20 |
Total P | wt% | 0.06 | 0.04 |
Total K | wt% | 0.25 | 0.04 |
Volatile matter | wt% | 14.20 | 0.81 |
Specific surface area | m2/g | 25.9 | - |
Total pore volume | cm3/g | 0.027 | - |
Average pore diameter | nm | 5.25 | - |
Treatment Class | Mean ± SD |
---|---|
C | 0.21 ± 0.03 |
SW15 | 0.26 ± 0.02 |
SW15a | 0.27 ± 0.01 |
SW2 | 0.25 ± 0.02 |
SW2a | 0.27 ± 0.01 |
Height of the Plant | SQ | df | MQ | F | p-Value | F Crit |
Between groups | 554.05 | 4 | 138.51 | 41.35 | 1.9367× 10-21 | 2.45 |
Within groups | 385.25 | 115 | 3.35 | |||
Number of Flowers | SQ | df | MQ | F | p-Value | F Crit |
Between groups | 0.43 | 4 | 0.11 | 0.76 | 0.55244117 | 2.45 |
Within groups | 16.43 | 115 | 0.14 | |||
Number of Fruits | SQ | df | MQ | F | p-Value | F Crit |
Between groups | 0.27 | 4 | 0.07 | 0.29 | 0.8856143 | 2.45 |
Within groups | 26.86 | 115 | 0.23 | |||
NDVI | SQ | df | MQ | F | p-Value | F Crit |
Between groups | 0.02 | 4 | 0.006 | 4.91 | 0.002027 | 2.56 |
Within groups | 0.06 | 50 | 0.001 |
Height of the Plant | SQ | df | MQ | F | p-Value | F Crit |
Sample | 630.37 | 2.00 | 315.19 | 102.93 | 0.000000000 | 3.03 |
Rows | 83.36 | 3.00 | 27.79 | 9.07 | 0.000009489 | 2.64 |
Interactions | 5.29 | 6.00 | 0.88 | 0.29 | 0.942471383 | 2.13 |
Number of Flowers | SQ | df | MQ | F | p-Value | F Crit |
Sample | 5.22 | 2.00 | 2.61 | 7.07 | 0.001012596 | 3.03 |
Rows | 1.15 | 3.00 | 0.38 | 1.04 | 0.375808735 | 2.64 |
Interactions | 1.17 | 6.00 | 0.20 | 0.53 | 0.785062853 | 2.13 |
Number of Fruits | SQ | df | MQ | F | p-Value | F Crit |
Sample | 20.67 | 2.00 | 10.34 | 36.99 | 0.000000000 | 3.03 |
Rows | 0.79 | 3.00 | 0.26 | 0.94 | 0.421627718 | 2.64 |
Interactions | 2.33 | 6.00 | 0.39 | 1.39 | 0.219579137 | 2.13 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Orlandella, I.; Smith, K.N.; Belcore, E.; Ferrero, R.; Piras, M.; Fiore, S. Monitoring Strawberry Plants’ Growth in Soil Amended with Biochar. AgriEngineering 2025, 7, 324. https://doi.org/10.3390/agriengineering7100324
Orlandella I, Smith KN, Belcore E, Ferrero R, Piras M, Fiore S. Monitoring Strawberry Plants’ Growth in Soil Amended with Biochar. AgriEngineering. 2025; 7(10):324. https://doi.org/10.3390/agriengineering7100324
Chicago/Turabian StyleOrlandella, Ilaria, Kyra Nancie Smith, Elena Belcore, Renato Ferrero, Marco Piras, and Silvia Fiore. 2025. "Monitoring Strawberry Plants’ Growth in Soil Amended with Biochar" AgriEngineering 7, no. 10: 324. https://doi.org/10.3390/agriengineering7100324
APA StyleOrlandella, I., Smith, K. N., Belcore, E., Ferrero, R., Piras, M., & Fiore, S. (2025). Monitoring Strawberry Plants’ Growth in Soil Amended with Biochar. AgriEngineering, 7(10), 324. https://doi.org/10.3390/agriengineering7100324