Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,385)

Search Parameters:
Keywords = strained bonds

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 1946 KiB  
Article
Three-Dimensional Modelling for Interfacial Behavior of a Thin Penny-Shaped Piezo-Thermo-Diffusive Actuator
by Hui Zhang, Lan Zhang and Hua-Yang Dang
Modelling 2025, 6(3), 78; https://doi.org/10.3390/modelling6030078 (registering DOI) - 5 Aug 2025
Abstract
This paper presents a theoretical model of a thin, penny-shaped piezoelectric actuator bonded to an isotropic thermo-elastic substrate under coupled electrical-thermal-diffusive loading. The problem is assumed to be axisymmetric, and the peeling stress of the film is neglected in accordance with membrane theory, [...] Read more.
This paper presents a theoretical model of a thin, penny-shaped piezoelectric actuator bonded to an isotropic thermo-elastic substrate under coupled electrical-thermal-diffusive loading. The problem is assumed to be axisymmetric, and the peeling stress of the film is neglected in accordance with membrane theory, yielding a simplified equilibrium equation for the piezoelectric film. By employing potential theory and the Hankel transform technique, the surface strain of the substrate is analytically derived. Under the assumption of perfect bonding, a governing integral equation is established in terms of interfacial shear stress. The solution to this integral equation is obtained numerically using orthotropic Chebyshev polynomials. The derived results include the interfacial shear stress, stress intensity factors, as well as the radial and hoop stresses within the system. Finite element analysis is conducted to validate the theoretical predictions. Furthermore, parametric studies elucidate the influence of material mismatch and actuator geometry on the mechanical response. The findings demonstrate that, the performance of the piezoelectric actuator can be optimized through judicious control of the applied electrical-thermal-diffusive loads and careful selection of material and geometric parameters. This work provides valuable insights for the design and optimization of piezoelectric actuator structures in practical engineering applications. Full article
Show Figures

Figure 1

19 pages, 4418 KiB  
Article
Interfacial Shrinkage Properties and Mechanism Analysis of Light-Conductive Resin–Cement-Based Materials
by Shengtian Zhai, Ran Hai, Zhihang Yu, Jianjun Ma, Chao Hou, Jiufu Zhang, Shaohua Du and Xingang Wang
Buildings 2025, 15(15), 2754; https://doi.org/10.3390/buildings15152754 - 5 Aug 2025
Abstract
To address the issue of interfacial shrinkage deformation in optical resin–cement-based composites, this study examined the effects of casting methods and coupling agent treatments on the interfacial deformation behavior and underlying mechanisms at the resin–cement interface. A self-developed interfacial shrinkage testing apparatus, combined [...] Read more.
To address the issue of interfacial shrinkage deformation in optical resin–cement-based composites, this study examined the effects of casting methods and coupling agent treatments on the interfacial deformation behavior and underlying mechanisms at the resin–cement interface. A self-developed interfacial shrinkage testing apparatus, combined with ABAQUS numerical simulations, was employed to facilitate this analysis. The results revealed that the interfacial shrinkage strain followed a characteristic distribution—higher at both ends and lower in the middle region—as the temperature increased. The experimental data showed a strong agreement with the simulation outcomes. A comparative analysis indicated that the pre-cast cement method reduced the interfacial shrinkage strain by 16% compared to the pre-cast resin method. Furthermore, treatment with a coupling agent resulted in a 31% reduction in the strain, while combining a serrated surface modification with a coupling agent treatment achieved a maximum reduction of 43.5%. Microscopic characterization confirmed that the synergy between the coupling agent and surface roughening significantly enhanced interfacial bonding by filling microcracks, improving adhesion, and increasing mechanical interlocking. This synergistic effect effectively suppressed the relative slippage caused by asynchronous shrinkage between dissimilar materials, thereby mitigating the interfacial cracking issue in optical resin–cement-based composites. These findings provide theoretical insights for optimizing the interface design in organic–inorganic composite systems. Full article
Show Figures

Figure 1

18 pages, 1203 KiB  
Communication
Efficacy of a Novel Lactiplantibacillus plantarum Strain (LP815TM) in Reducing Canine Aggression and Anxiety: A Randomized Placebo-Controlled Trial with Qualitative and Quantitative Assessment
by Emmanuel M. M. Bijaoui and Noah P. Zimmerman
Animals 2025, 15(15), 2280; https://doi.org/10.3390/ani15152280 - 4 Aug 2025
Abstract
Behavioral issues in domestic dogs represent a significant welfare concern affecting both canines and their caregivers, with prevalence rates reported to range from 34 to 86% across the population. Current treatment options, including selective serotonin reuptake inhibitors (SSRIs) like fluoxetine, often present limitations [...] Read more.
Behavioral issues in domestic dogs represent a significant welfare concern affecting both canines and their caregivers, with prevalence rates reported to range from 34 to 86% across the population. Current treatment options, including selective serotonin reuptake inhibitors (SSRIs) like fluoxetine, often present limitations including adverse effects and delayed efficacy. This randomized, placebo-controlled (maltodextrin) study investigated the effects of a novel Lactiplantibacillus plantarum strain (LP815TM) on canine behavioral concerns through gut–brain axis modulation. Home-based dogs (n = 40) received either LP815TM (n = 28) or placebo (n = 12) daily for 4 weeks, with behavioral changes assessed using the comprehensive Canine Behavioral Assessment & Research Questionnaire (C-BARQ) and continuous activity monitoring. After the intervention period, dogs receiving LP815TM showed significant improvements in aggression (p = 0.0047) and anxiety (p = 0.0005) compared to placebo controls. These findings were corroborated by objective activity data, which demonstrated faster post-departure settling, reduced daytime sleep, and improved sleep consistency in the treatment group. Throughout >1120 administered doses, no significant adverse events were reported, contrasting favorably with pharmaceutical alternatives. The concordance between our findings and previous research using different L. plantarum strains suggests a consistent biological mechanism, potentially involving GABA production and vagal nerve stimulation. These results indicate that LP815TM represents a promising, safe alternative for addressing common canine behavioral concerns with potential implications for improving both canine welfare and the human–animal bond. Full article
(This article belongs to the Section Companion Animals)
Show Figures

Graphical abstract

11 pages, 1617 KiB  
Article
Mechanics of Interfacial Debonding in FRP Strengthening Systems: Energy Limits and Characteristic Bond Lengths
by Nefeli Mitsopoulou and Marinos Kattis
J. Compos. Sci. 2025, 9(8), 412; https://doi.org/10.3390/jcs9080412 - 4 Aug 2025
Abstract
This study examines the energy behavior of a strengthening system consisting of a Fiber Reinforced Polymer (FRP) plate bonded to a rigid substrate and subjected to tensile loading, where the adhesive interface is governed by a bilinear bond–slip law with a vertical descending [...] Read more.
This study examines the energy behavior of a strengthening system consisting of a Fiber Reinforced Polymer (FRP) plate bonded to a rigid substrate and subjected to tensile loading, where the adhesive interface is governed by a bilinear bond–slip law with a vertical descending branch. The investigation focuses on the interaction between the elastic energy stored in the FRP and the adhesive interface, as well as the characteristic lengths that control the debonding process. Analytical expressions for the strain energy stored in both the FRP plate and the adhesive interface are derived, enabling the identification and evaluation of two critical characteristic lengths as the bond stress at the loaded end approaches its maximum value lc, at which the elastic energies of the FRP and the adhesive interface converge, signaling energy saturation; and lmax, where the adhesive interface attains its peak energy absorption. Upon reaching the energy saturation state, the system undergoes failure through the sudden and complete debonding of the FRP from the substrate. The onset of unstable debonding is rigorously analyzed in terms of the first and second derivatives of the total potential energy with respect to the bond length. It is further demonstrated that abrupt debonding may also occur in cases where the length exceeds lc when the bond stress reaches its maximum, and the bond–slip law is characterized by a vertical branch. The findings provide significant insights into the energy balance and stability criteria governing the debonding failure mode in FRP-strengthened structures, highlighting the pivotal role of characteristic lengths in predicting both structural performance and failure mechanisms. Full article
(This article belongs to the Special Issue Polymer Composites and Fibers, 3rd Edition)
Show Figures

Figure 1

22 pages, 3515 KiB  
Article
Biodegradation of Chloroquine by a Fungus from Amazonian Soil, Penicillium guaibinense CBMAI 2758
by Patrícia de Almeida Nóbrega, Samuel Q. Lopes, Lucas S. Sá, Ryan da Silva Ramos, Fabrício H. e Holanda, Inana F. de Araújo, André Luiz M. Porto, Willian G. Birolli and Irlon M. Ferreira
J. Fungi 2025, 11(8), 579; https://doi.org/10.3390/jof11080579 - 4 Aug 2025
Abstract
Concern over the presence of pharmaceutical waste in the environment has prompted research into the management of emerging organic micropollutants (EOMs). In response, sustainable technologies have been applied as alternatives to reduce the effects of these contaminants. This study investigated the capacity of [...] Read more.
Concern over the presence of pharmaceutical waste in the environment has prompted research into the management of emerging organic micropollutants (EOMs). In response, sustainable technologies have been applied as alternatives to reduce the effects of these contaminants. This study investigated the capacity of filamentous fungi isolated from iron mine soil in the Amazon region to biodegrade the drug chloroquine diphosphate. An initial screening assessed the growth of four fungal strains on solid media containing chloroquine diphosphate: Trichoderma pseudoasperelloides CBMAI 2752, Penicillium rolfsii CBMAI 2753, Talaromyces verruculosus CBMAI 2754, and Penicillium sp. cf. guaibinense CBMAI 2758. Among them, Penicillium sp. cf. guaibinense CBMAI 2758 was selected for further testing in liquid media. A Box–Behnken factorial design was applied with three variables, pH (5, 7, and 9), incubation time (5, 10, and 15 days), and chloroquine diphosphate concentration (50, 75, and 100 mg·L−1), totaling 15 experiments. The samples were analyzed by gas chromatography–mass spectrometry (GC-MS). The most effective conditions for chloroquine biodegradation were pH 7, 100 mg·L−1 concentration, and 10 days of incubation. Four metabolites were identified: one resulting from N-deethylation M1 (N4-(7-chloroquinolin-4-yl)-N1-ethylpentane-1,4-diamine), two from carbon–carbon bond cleavage M2 (7-chloro-N-ethylquinolin-4-amine) and M3 (N1,N1-diethylpentane-1,4-diamine), and one from aromatic deamination M4 (N1-ethylbutane-1,4-diamine) by enzymatic reactions. The toxicity analysis showed that the products obtained from the biodegradation of chloroquine were less toxic than the commercial formulation of this compound. These findings highlight the biotechnological potential of Amazonian fungi for drug biodegradation and decontamination. Full article
(This article belongs to the Special Issue Fungal Biotechnology and Application 3.0)
Show Figures

Graphical abstract

15 pages, 1407 KiB  
Article
Expression of Recombinant Hirudin in Bacteria and Yeast: A Comparative Approach
by Zhongjie Wang, Dominique Böttcher, Uwe T. Bornscheuer and Christian Müller
Methods Protoc. 2025, 8(4), 89; https://doi.org/10.3390/mps8040089 (registering DOI) - 3 Aug 2025
Viewed by 115
Abstract
The expression of recombinant proteins in heterologous hosts is a common strategy to obtain larger quantities of the “protein of interest” (POI) for scientific, therapeutic or commercial purposes. However, the experimental success of such an approach critically depends on the choice of an [...] Read more.
The expression of recombinant proteins in heterologous hosts is a common strategy to obtain larger quantities of the “protein of interest” (POI) for scientific, therapeutic or commercial purposes. However, the experimental success of such an approach critically depends on the choice of an appropriate host system to obtain biologically active forms of the POI. The correct folding of the molecule, mediated by disulfide bond formation, is one of the most critical steps in that process. Here we describe the recombinant expression of hirudin, a leech-derived anticoagulant and thrombin inhibitor, in the yeast Komagataella phaffii (formerly known and mentioned throughout this publication as Pichia pastoris) and in two different strains of Escherichia coli, one of them being especially designed for improved disulfide bond formation through expression of a protein disulfide isomerase. Cultivation of the heterologous hosts and expression of hirudin were performed at different temperatures, ranging from 22 to 42 °C for the bacterial strains and from 20 to 30 °C for the yeast strain, respectively. The thrombin-inhibitory potencies of all hirudin preparations were determined using the thrombin time coagulation assay. To our surprise, the hirudin preparations of P. pastoris were considerably less potent as thrombin inhibitors than the respective preparations of both E. coli strains, indicating that a eukaryotic background is not per se a better choice for the expression of a biologically active eukaryotic protein. The hirudin preparations of both E. coli strains exhibited comparable high thrombin-inhibitory potencies when the strains were cultivated at their respective optimal temperatures, whereas lower or higher cultivation temperatures reduced the inhibitory potencies. Full article
(This article belongs to the Section Molecular and Cellular Biology)
Show Figures

Figure 1

17 pages, 5839 KiB  
Article
Hydrogen Bond-Regulated Rapid Prototyping and Performance Optimization of Polyvinyl Alcohol–Tannic Acid Hydrogels
by Xiangyu Zou and Jun Huang
Gels 2025, 11(8), 602; https://doi.org/10.3390/gels11080602 - 1 Aug 2025
Viewed by 182
Abstract
Traditional hydrogel preparation methods typically require multiple steps and certain external stimuli. In this study, rapid and stable gelation of polyvinyl alcohol (PVA)-tannic acid (TA)-based hydrogels was achieved through the regulation of hydrogen bonds. The cross-linking between PVA and TA is triggered by [...] Read more.
Traditional hydrogel preparation methods typically require multiple steps and certain external stimuli. In this study, rapid and stable gelation of polyvinyl alcohol (PVA)-tannic acid (TA)-based hydrogels was achieved through the regulation of hydrogen bonds. The cross-linking between PVA and TA is triggered by the evaporation of ethanol. Rheological testing and analysis of the liquid-solid transformation process of the hydrogel were performed. The gelation onset time (GOT) could be tuned from 10 s to over 100 s by adjusting the ethanol content and temperature. The addition of polyhydroxyl components (e.g., glycerol) significantly enhances the hydrogel’s water retention capacity (by 858%) and tensile strain rate (by 723%), while concurrently increasing the gelation time. Further studies have shown that the addition of alkaline substances (such as sodium hydroxide) promotes the entanglement of PVA molecular chains, increasing the tensile strength by 23% and the fracture strain by 41.8%. The experimental results indicate that the optimized PVA-TA hydrogels exhibit a high tensile strength (>2 MPa) and excellent tensile properties (~600%). Moreover, the addition of an excess of weakly alkaline substances (such as sodium acetate) reduces the degree of hydrolysis of PVA, enabling the system to form a hydrogel with extrudable characteristics before the ethanol has completely evaporated. This property allows for patterned printing and thus demonstrates the potential of the hydrogel in 3D printing. Overall, this study provides new insights for the application of PVA-TA based hydrogels in the fields of rapid prototyping and strength optimization. Full article
(This article belongs to the Special Issue Synthesis and Applications of Hydrogels (3rd Edition))
Show Figures

Graphical abstract

26 pages, 14851 KiB  
Article
Degradation of Synthetic Restoration Materials by Xerotolerant/Xerophilic Fungi Contaminating Canvas Paintings
by Amela Kujović, Katja Kavkler, Michel Alexander Wilson-Hernandez, Miloš Vittori, Luen Zidar, Cene Gostinčar, Kristina Sepčić, Yordanis Pérez-Llano, Ramón Alberto Batista-García, Nina Gunde-Cimerman and Polona Zalar
J. Fungi 2025, 11(8), 568; https://doi.org/10.3390/jof11080568 - 30 Jul 2025
Viewed by 206
Abstract
Canvas paintings are prone to biodeterioration due to their complex chemical composition, which can support fungal growth even under controlled conditions. This study evaluated the susceptibility of common synthetic restoration materials—Lascaux glues (303 HV, 498 HV), Acrylharz P550, BEVA 371, Laropal A81, and [...] Read more.
Canvas paintings are prone to biodeterioration due to their complex chemical composition, which can support fungal growth even under controlled conditions. This study evaluated the susceptibility of common synthetic restoration materials—Lascaux glues (303 HV, 498 HV), Acrylharz P550, BEVA 371, Laropal A81, and Regalrez 1094—to degradation by fourteen xerotolerant/xerophilic fungal strains. All tested Aspergillus and Penicillium species extensively colonized, especially artificially aged materials. FTIR-PAS analysis revealed chemical changes in carbonyl and C–H bonds in Laropal A81 and Regalrez 1094 colonized by Aspergillus spp. Scanning electron microscopy (SEM) imaging showed thinning of Lascaux glues and deformation of Regalrez 1094. Transcriptomic profiling of A. puulaauensis grown on Lascaux 498 HV and Regalrez 1094 identified altered expression of genes coding for esterases and oxidases, enzymes involved in synthetic polymer degradation. Esterase activity assays using 4-nitrophenol-based substrates confirmed significant enzymatic activity correlating with the presence of ester bonds. These findings highlight the vulnerability of synthetic restoration materials, specifically Laropal A81, Regalrez 1094, and Lascaux glues, to extremophilic fungi thriving in environments with low water activity. The results emphasize the urgent need for specific knowledge on fungi and their metabolic pathways to use/develop more durable conservation materials and strategies to protect cultural heritage objects from biodeterioration. Full article
Show Figures

Graphical abstract

17 pages, 5178 KiB  
Article
Improvement of Unconfined Compressive Strength in Granite Residual Soil by Indigenous Microorganisms
by Ya Wang, Meiqi Li, Hao Peng, Jiaxin Kang, Hong Guo, Yasheng Luo and Mingjiang Tao
Sustainability 2025, 17(15), 6895; https://doi.org/10.3390/su17156895 - 29 Jul 2025
Viewed by 228
Abstract
In order to study how indigenous microorganisms can enhance the strength properties of granite residual soil in the Hanzhong area, two Bacillus species that produce urease were isolated from the local soil. The two Bacillus species are Bacillus subtilis and Bacillus tequilensis, [...] Read more.
In order to study how indigenous microorganisms can enhance the strength properties of granite residual soil in the Hanzhong area, two Bacillus species that produce urease were isolated from the local soil. The two Bacillus species are Bacillus subtilis and Bacillus tequilensis, and they were used for the solidification and improvement of the granite residual soil. Unconfined compressive strength tests, scanning electron microscope (SEM) and X-ray diffraction (XRD) analyses were systematically used to analyze the influence and mechanism of different cementation solution concentrations on the improvement effect. It has been found that with the growth of cementing fluid concentration, the unconfined compressive strength of improved soil specimens shows an increasing tendency, reaching its highest value when the cementing solution concentration is 2.0 mol/L. Among different bacterial species, curing results vary; Bacillus tequilensis demonstrates better performance across various cementing solution concentrations. The examination of failure strain in improved soil samples indicates that brittleness has been successfully alleviated, with optimal outcomes obtained at a cementing solution concentration of 1.0 mol/L. SEM and XRD analyses show that calcium carbonate precipitates (CaCO3) are formed in soil samples treated by both strains. These precipitates effectively bond soil particles, verifying improvement effects on a microscopic level. The present study proposes an environmentally friendly and economical method for enhancing engineering applications of granite residual soil in Hanzhong area, which holds significant importance for projects such as artificial slope filling, subgrade filling, and foundation pit backfilling. Full article
Show Figures

Figure 1

20 pages, 6713 KiB  
Article
Influence of Nanosilica and PVA Fibers on the Mechanical and Deformation Behavior of Engineered Cementitious Composites
by Mohammed A. Albadrani
Polymers 2025, 17(15), 2067; https://doi.org/10.3390/polym17152067 - 29 Jul 2025
Viewed by 232
Abstract
This paper evaluates the synergistic effect of polyvinyl alcohol (PVA) fibers and nanosilica (nS) on the mechanical behavior and deformation properties of engineered cementitious composites (ECCs). ECCs have gained a reputation for high ductility, crack control, and strain-hardening behavior. Nevertheless, the next step [...] Read more.
This paper evaluates the synergistic effect of polyvinyl alcohol (PVA) fibers and nanosilica (nS) on the mechanical behavior and deformation properties of engineered cementitious composites (ECCs). ECCs have gained a reputation for high ductility, crack control, and strain-hardening behavior. Nevertheless, the next step is to improve their performance even more through nano-modification and fine-tuning of fiber dosage—one of the major research directions. In the experiment, six types of ECC mixtures were made by maintaining constant PVA fiber content (0.5, 1.0, 1.5, and 2.0%), while the nanosilica contents were varied (0, 1, 2, 3, and 5%). Stress–strain tests carried out in the form of compression, together with unrestrained shrinkage measurement, were conducted to test strength, strain capacity, and resistance to deformation, which was highest at 80 MPa, recorded in the concrete with 2% nS and 0.5% PVA. On the other hand, the mixture of 1.5% PVA and 3% nS had the highest strain result of 2750 µm/m, which indicates higher ductility. This is seen to be influenced by refined microstructures, improved fiber dispersion, and better fiber–matrix interfacial bonding through nS. In addition to these mechanical modifications, the use of nanosilica, obtained from industrial byproducts, provided the possibility to partially replace Portland cement, resulting in a decrease in the amount of CO2 emissions. In addition, the enhanced crack resistance implies higher durability and reduced long-term maintenance. Such results demonstrate that optimized ECC compositions, including nS and PVA, offer high performance in terms of strength and flexibility as well as contribute to the sustainability goals—features that will define future eco-efficient infrastructure. Full article
Show Figures

Figure 1

28 pages, 14358 KiB  
Article
Three-Dimensional Mesoscopic DEM Modeling and Compressive Behavior of Macroporous Recycled Concrete
by Yupeng Xu, Fei Geng, Haoxiang Luan, Jun Chen, Hangli Yang and Peiwei Gao
Buildings 2025, 15(15), 2655; https://doi.org/10.3390/buildings15152655 - 27 Jul 2025
Viewed by 339
Abstract
The mesoscopic-scale discrete element method (DEM) modeling approach demonstrated high compatibility with macroporous recycled concrete (MRC). However, existing DEM models failed to adequately balance modeling accuracy and computational efficiency for recycled aggregate (RA), replicate the three distinct interfacial transition zone (ITZ) types and [...] Read more.
The mesoscopic-scale discrete element method (DEM) modeling approach demonstrated high compatibility with macroporous recycled concrete (MRC). However, existing DEM models failed to adequately balance modeling accuracy and computational efficiency for recycled aggregate (RA), replicate the three distinct interfacial transition zone (ITZ) types and pore structure of MRC, or establish a systematic calibration methodology. In this study, PFC 3D was employed to establish a randomly polyhedral RA composite model and an MRC model. A systematic methodology for parameter testing and calibration was proposed, and compressive test simulations were conducted on the MRC model. The model incorporated all components of MRC, including three types of ITZs, achieving an aggregate volume fraction of 57.7%. Errors in simulating compressive strength and elastic modulus were 3.8% and 18.2%, respectively. Compared to conventional concrete, MRC exhibits larger strain and a steeper post-peak descending portion in stress–strain curves. At peak stress, stress is concentrated in the central region and the surrounding arc-shaped zones. After peak stress, significant localized residual stress persists within specimens; both toughness and toughness retention capacity increase with rising porosity and declining compressive strength. Failure of MRC is dominated by tension rather than shear, with critical bonds determining strength accounting for only 1.4% of the total. The influence ranking of components on compressive strength is as follows: ITZ (new paste–old paste) > ITZ (new paste–natural aggregates) > new paste > old paste > ITZ (old paste–natural aggregates). The Poisson’s ratio of MRC (0.12–0.17) demonstrates a negative correlation with porosity. Predictive formulas for peak strain and elastic modulus of MRC were established, with errors of 2.6% and 3.9%, respectively. Full article
(This article belongs to the Special Issue Advances in Modeling and Characterization of Cementitious Composites)
Show Figures

Figure 1

17 pages, 6755 KiB  
Article
Quantum Simulation of Fractal Fracture in Amorphous Silica
by Rachel M. Morin, Nicholas A. Mecholsky and John J. Mecholsky
Materials 2025, 18(15), 3517; https://doi.org/10.3390/ma18153517 - 27 Jul 2025
Viewed by 300
Abstract
In order to design new materials at atomic-length scales, there is a need to connect the fractal nature of fracture surfaces at the atomic scale using quantum mechanics modeling with that of the experimental data of fracture surfaces at macroscopic-length scales. We use [...] Read more.
In order to design new materials at atomic-length scales, there is a need to connect the fractal nature of fracture surfaces at the atomic scale using quantum mechanics modeling with that of the experimental data of fracture surfaces at macroscopic-length scales. We use a semi-empirical quantum mechanics simulation of fracture in amorphous silica to calculate a parameter identified as a critical characteristic length, a0, which has been experimentally derived from the fractal nature of fracture for many materials that fail in a brittle matter. To our knowledge, there are no known simulation models other than our related research that use the fractal parameter a0 to describe the fractal fracture of the fracture surface using quantum mechanical simulations. We provide evidence that a0 can be calculated at both the atomic and macroscopic scale, making it a fundamental property of the structure and one of the elements of fractal fracture. We use a continuous random network model and reaction coordinate method to simulate fracture. We propose that fracture in amorphous silica occurs due to bond reconfiguration resulting in increased strain volume at the crack tip. We hypothesize two specific configurations leading to fracture from a four-fold ring reconfiguration to three-fold ring or (newly observed) five-fold ring configurations resulting in a change in volume. Finally, we define a reconfiguration fracture energy at the atomic level, which is approximately the value of the experimental fracture surface energy. Full article
(This article belongs to the Special Issue Fatigue Damage, Fracture Mechanics of Structures and Materials)
Show Figures

Figure 1

18 pages, 4365 KiB  
Article
Analytical and Numerical Investigation of Adhesive-Bonded T-Shaped Steel–Concrete Composite Beams for Enhanced Interfacial Performance in Civil Engineering Structures
by Tahar Hassaine Daouadji, Fazilay Abbès, Tayeb Bensatallah and Boussad Abbès
Inventions 2025, 10(4), 61; https://doi.org/10.3390/inventions10040061 - 23 Jul 2025
Viewed by 254
Abstract
This study introduces a new method for modeling the nonlinear behavior of adhesively bonded composite steel–concrete T-beam systems. The model characterizes the interfacial behavior between the steel beam and the concrete slab using a strain compatibility approach within the framework of linear elasticity. [...] Read more.
This study introduces a new method for modeling the nonlinear behavior of adhesively bonded composite steel–concrete T-beam systems. The model characterizes the interfacial behavior between the steel beam and the concrete slab using a strain compatibility approach within the framework of linear elasticity. It captures the nonlinear distribution of shear stresses over the entire depth of the composite section, making it applicable to various material combinations. The approach accounts for both continuous and discontinuous bonding conditions at the bonded steel–concrete interface. The analysis focuses on the top flange of the steel section, using a T-beam configuration commonly employed in bridge construction. This configuration stabilizes slab sliding, making the composite beam rigid, strong, and resistant to deformation. The numerical results demonstrate the advantages of the proposed solution over existing steel beam models and highlight key characteristics at the steel–concrete interface. The theoretical predictions are validated through comparison with existing analytical and experimental results, as well as finite element models, confirming the model’s accuracy and offering a deeper understanding of critical design parameters. The comparison shows excellent agreement between analytical predictions and finite element simulations, with discrepancies ranging from 1.7% to 4%. This research contributes to a better understanding of the mechanical behavior at the interface and supports the design of hybrid steel–concrete structures. Full article
Show Figures

Figure 1

17 pages, 3321 KiB  
Article
Multi-Objective Automated Machine Learning for Inversion of Mesoscopic Parameters in Discrete Element Contact Models
by Xu Ao, Shengpeng Hao, Yuyu Zhang and Wenyu Xu
Appl. Sci. 2025, 15(15), 8181; https://doi.org/10.3390/app15158181 - 23 Jul 2025
Viewed by 159
Abstract
Accurate calibration of mesoscopic contact model parameters is essential for ensuring the reliability of Particle Flow Code in Three Dimensions (PFC3D) simulations in geotechnical engineering. Trial-and-error approaches are often used to determine the parameters of the contact model, but they are time-consuming, labor-intensive, [...] Read more.
Accurate calibration of mesoscopic contact model parameters is essential for ensuring the reliability of Particle Flow Code in Three Dimensions (PFC3D) simulations in geotechnical engineering. Trial-and-error approaches are often used to determine the parameters of the contact model, but they are time-consuming, labor-intensive, and offer no guarantee of parameter validity or simulation credibility. Although conventional machine learning techniques have been applied to invert the contact model parameters, they are hampered by the difficulty of selecting the optimal hyperparameters and, in some cases, insufficient data, which limits both the predictive accuracy and robustness. In this study, a total of 361 PFC3D uniaxial compression simulations using a linear parallel bond model with varied mesoscopic parameters were generated to capture a wide range of rock and geotechnical material behaviors. From each stress–strain curve, eight characteristic points were extracted as inputs to a multi-objective Automated Machine Learning (AutoML) model designed to invert three key mesoscopic parameters, i.e., the elastic modulus (E), stiffness ratio (ks/kn), and degraded elastic modulus (Ed). The developed AutoML model, comprising two hidden layers of 256 and 32 neurons with ReLU activation function, achieved coefficients of determination (R2) of 0.992, 0.710, and 0.521 for E, ks/kn, and Ed, respectively, demonstrating acceptable predictive accuracy and generalizability. The multi-objective AutoML model was also applied to invert the parameters from three independent uniaxial compression tests on rock-like materials to validate its practical performance. The close match between the experimental and numerically simulated stress–strain curves confirmed the model’s reliability for mesoscopic parameter inversion in PFC3D. Full article
Show Figures

Figure 1

17 pages, 13984 KiB  
Article
Isolation and Purification of Novel Antioxidant Peptides from Mussel (Mytilus edulis) Prepared by Marine Bacillus velezensis Z-1 Protease
by Jing Lu, Pujing Shi, Yutian Cao, Bingxin Shi, Huilin Shen, Shuai Zhao, Yuchen Gao, Huibing Chi, Lei Wang and Yawei Shi
Mar. Drugs 2025, 23(8), 294; https://doi.org/10.3390/md23080294 - 23 Jul 2025
Viewed by 267
Abstract
Mussels are nutrient-rich but perishable, resulting in substantial resource loss. A protease-producing strain (Bacillus velezensis Z-1, Mytilus edulis) isolated from marine sludge was used to hydrolyze mussels, producing Y-1, a hydrolysate with antioxidant activity. In this study, ultrafiltration, gel chromatography, and [...] Read more.
Mussels are nutrient-rich but perishable, resulting in substantial resource loss. A protease-producing strain (Bacillus velezensis Z-1, Mytilus edulis) isolated from marine sludge was used to hydrolyze mussels, producing Y-1, a hydrolysate with antioxidant activity. In this study, ultrafiltration, gel chromatography, and LC-MS/MS were employed to isolate and identify bioactive peptides from the hydrolysate. The results revealed that the hydrolysate exhibited antioxidant activity, pancreatic cholesterol esterase inhibitory activity, pancreatic lipase inhibitory activity, and α-glucosidase inhibitory activity. Molecular docking using AutoDock Tools 1.5.6 was performed to analyze the interactions of peptides with CD38 and Keap1, leading to the identification of five potentially bioactive peptides: VPPFY, IMLFP, LPFLF, FLPF, and FPRIM. These peptides formed hydrogen bonds and hydrophobic interactions with CD38 and Keap1, demonstrating strong DPPH radical scavenging and superoxide anion radical scavenging capacities. This study highlights the multifunctional bioactive potential of these peptides, offering insights into their therapeutic applications. The findings provide a novel approach for the effective utilization of mussel resources and highlight their potential application value in the development of functional foods. Full article
(This article belongs to the Section Marine Pharmacology)
Show Figures

Figure 1

Back to TopTop