Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (148)

Search Parameters:
Keywords = strain energy harvesting

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 6377 KiB  
Article
Experimental and Numerical Study on the Restitution Coefficient and the Corresponding Elastic Collision Recovery Mechanism of Rapeseed
by Chuandong Liu, Haoping Zhang, Zebao Li, Zhiheng Zeng, Xuefeng Zhang, Lian Gong and Bin Li
Agronomy 2025, 15(8), 1872; https://doi.org/10.3390/agronomy15081872 - 1 Aug 2025
Viewed by 166
Abstract
In this study, we aimed to address the lack of systematic research on key collision dynamics parameters (elastic restitution coefficient) in the full mechanization of rapeseed operations, which hinders the development of precision agriculture. In this present work, the restitution coefficient of rapeseed [...] Read more.
In this study, we aimed to address the lack of systematic research on key collision dynamics parameters (elastic restitution coefficient) in the full mechanization of rapeseed operations, which hinders the development of precision agriculture. In this present work, the restitution coefficient of rapeseed was systematically investigated, and a predictive model (R2 = 0.959) was also established by using Box–Behnken design response surface methodology (BBD-RSM). The results show that the collision restitution coefficient varies in the range of 0.539–0.649, with the key influencing factors ranked as follows: moisture content (Mc) > material layer thickness (L) > drop height (H). The EDEM simulation methodology was adopted to validate the experimental results, and the results show that there is a minimal relative error (−1% < δ < 1%) between the measured and simulated rebound heights, indicating that the established model shows a reliable prediction performance. Moreover, by comprehensively analyzing stress, strain, and energy during the collision process between rapeseed and Q235 steel, it can be concluded that the process can be divided into five stages—free fall, collision compression, collision recovery, rebound oscillation, and rebound stabilization. The maximum stress (1.19 × 10−2 MPa) and strain (6.43 × 10−6 mm) were observed at the beginning of the collision recovery stage, which can provide some theoretical and practical basis for optimizing and designing rapeseed machines, thus achieving the goals of precise control, harvest loss reduction, and increased yields. Full article
(This article belongs to the Section Precision and Digital Agriculture)
Show Figures

Figure 1

18 pages, 2280 KiB  
Article
Theoretical Modeling of a Bionic Arm with Elastomer Fiber as Artificial Muscle Controlled by Periodic Illumination
by Changshen Du, Shuhong Dai and Qinglin Sun
Polymers 2025, 17(15), 2122; https://doi.org/10.3390/polym17152122 - 31 Jul 2025
Viewed by 262
Abstract
Liquid crystal elastomers (LCEs) have shown great potential in the field of soft robotics due to their unique actuation capabilities. Despite the growing number of experimental studies in the soft robotics field, theoretical research remains limited. In this paper, a dynamic model of [...] Read more.
Liquid crystal elastomers (LCEs) have shown great potential in the field of soft robotics due to their unique actuation capabilities. Despite the growing number of experimental studies in the soft robotics field, theoretical research remains limited. In this paper, a dynamic model of a bionic arm using an LCE fiber as artificial muscle is established, which exhibits periodic oscillation controlled by periodic illumination. Based on the assumption of linear damping and angular momentum theorem, the dynamics equation of the model oscillation is derived. Then, based on the assumption of linear elasticity model, the periodic spring force of the fiber is given. Subsequently, the evolution equations for the cis number fraction within the fiber are developed, and consequently, the analytical solution for the light-excited strain is derived. Following that, the dynamics equation is numerically solved, and the mechanism of the controllable oscillation is elucidated. Numerical calculations show that the stable oscillation period of the bionic arm depends on the illumination period. When the illumination period aligns with the natural period of the bionic arm, the resonance is formed and the amplitude is the largest. Additionally, the effects of various parameters on forced oscillation are analyzed. The results of numerical studies on the bionic arm can provide theoretical support for the design of micro-machines, bionic devices, soft robots, biomedical devices, and energy harvesters. Full article
(This article belongs to the Section Polymer Physics and Theory)
Show Figures

Figure 1

20 pages, 3903 KiB  
Article
High-Performance Barium Titanate, Carbon Nanotube, and Styrene–Butadiene Rubber-Based Single Composite TENG for Energy Harvesting and Handwriting Recognition
by Md Najib Alam, Vineet Kumar, Youjung Kim, Dong-Joo Lee and Sang-Shin Park
Polymers 2025, 17(15), 2016; https://doi.org/10.3390/polym17152016 - 23 Jul 2025
Viewed by 289
Abstract
In this research, a single composite-type stretchable triboelectric nanogenerator (TENG) is proposed for efficient energy harvesting and handwriting recognition. The composite TENGs were fabricated by blending dielectric barium titanate (BT) and conductive carbon nanotubes (CNTs) in varying amounts into a styrene–butadiene rubber matrix. [...] Read more.
In this research, a single composite-type stretchable triboelectric nanogenerator (TENG) is proposed for efficient energy harvesting and handwriting recognition. The composite TENGs were fabricated by blending dielectric barium titanate (BT) and conductive carbon nanotubes (CNTs) in varying amounts into a styrene–butadiene rubber matrix. The energy harvesting efficiency depends on the type and amount of fillers, as well as their dispersion within the matrix. Stearic acid modification of BT enables near-nanoscale filler distribution, resulting in high energy conversion efficiencies. The composite achieved power efficiency, power density, charge efficiency, and charge density values of 1.127 nW/N, 8.258 mW/m3, 0.146 nC/N, and 1.072 mC/m3, respectively, under only 2% cyclic compressive strain at 0.85 Hz. The material performs better at low stress–strain ranges, exhibiting higher charge efficiency. The generated charge in the TENG composite is well correlated with the compressive stress, which provides a minimum activation pressure of 0.144 kPa, making it suitable for low-pressure sensing applications. A flat composite with dimensions of 0.02 × 6 × 5 cm3 can produce a power density of 26.04 W/m3, a charge density of 0.205 mC/m3, and an output voltage of 10 V from a single hand pat. The rubber composite also demonstrates high accuracy in handwriting recognition across different individuals, with clear differences in sensitivity curves. Repeated attempts by the same person show minimal deviation (<5%) in writing time. Additionally, the presence of reinforcing fillers enhances mechanical strength and durability, making the composite suitable for long-term cyclic energy harvesting and wearable sensor applications. Full article
(This article belongs to the Special Issue Polymeric Materials in Energy Conversion and Storage, 2nd Edition)
Show Figures

Graphical abstract

13 pages, 1746 KiB  
Article
Calibration of DEM Parameters and Microscopic Deformation Characteristics During Compression Process of Lateritic Soil with Different Moisture Contents
by Chao Ji, Wanru Liu, Yiguo Deng, Yeqin Wang, Peimin Chen and Bo Yan
Agriculture 2025, 15(14), 1548; https://doi.org/10.3390/agriculture15141548 - 18 Jul 2025
Viewed by 337
Abstract
Lateritic soils in tropical regions feature cohesive textures and high specific resistance, driving up energy demands for tillage and harvesting machinery. However, current equipment designs lack discrete element models that account for soil moisture variations, and the microscopic effects of water content on [...] Read more.
Lateritic soils in tropical regions feature cohesive textures and high specific resistance, driving up energy demands for tillage and harvesting machinery. However, current equipment designs lack discrete element models that account for soil moisture variations, and the microscopic effects of water content on lateritic soil deformation remain poorly understood. This study aims to calibrate and validate discrete element method (DEM) models of lateritic soil at varying moisture contents of 20.51%, 22.39%, 24.53%, 26.28%, and 28.04% by integrating the Hertz–Mindlin contact mechanics with bonding and JKR cohesion models. Key parameters in the simulations were calibrated through systematic experimentation. Using Plackett–Burman design, critical factors significantly affecting axial compressive force—including surface energy, normal bond stiffness, and tangential bond stiffness—were identified. Subsequently, Box–Behnken response surface methodology was employed to optimize these parameters by minimizing deviations between simulated and experimental maximum axial compressive forces under each moisture condition. The calibrated models demonstrated high fidelity, with average relative errors of 4.53%, 3.36%, 3.05%, 3.32%, and 7.60% for uniaxial compression simulations across the five moisture levels. Stress–strain analysis under axial loading revealed that at a given surface displacement, both fracture dimensions and stress transfer rates decreased progressively with increasing moisture content. These findings elucidate the moisture-dependent micromechanical behavior of lateritic soil and provide critical data support for DEM-based design optimization of soil-engaging agricultural implements in tropical environments. Full article
(This article belongs to the Section Agricultural Technology)
Show Figures

Figure 1

22 pages, 5129 KiB  
Article
A Dynamic Analysis of a Cantilever Piezoelectric Vibration Energy Harvester with Maximized Electric Polarization Due to the Optimal Shape of the Thickness for First Eigen Frequency
by Paulius Skėrys and Rimvydas Gaidys
Appl. Sci. 2025, 15(13), 7525; https://doi.org/10.3390/app15137525 - 4 Jul 2025
Viewed by 304
Abstract
This study presents an analytical and experimental approach to enhance cantilever-based piezoelectric energy harvesters by optimizing thickness distribution. Using a gradient projection algorithm within a state-space framework, the unimorph beam’s geometry is tailored while constraining the first natural frequency. The objective is to [...] Read more.
This study presents an analytical and experimental approach to enhance cantilever-based piezoelectric energy harvesters by optimizing thickness distribution. Using a gradient projection algorithm within a state-space framework, the unimorph beam’s geometry is tailored while constraining the first natural frequency. The objective is to amplify axial strain within the piezoelectric layers, thereby increasing electric polarization and maximizing the conversion efficiency of mechanical vibrations into electrical energy. The steady-state response under harmonic base excitation at resonance was modeled to evaluate the harvester’s dynamic behavior against uniform-thickness counterparts. Results show that the optimized beam achieves significantly higher output voltage and energy harvesting efficiency. Simulations reveal effective strain concentration in regions of high piezoelectric sensitivity, enhancing power generation under resonant conditions. Two independent experimental setups were employed for empirical validation: a non-contact laser vibrometry system (Polytec 3D) and a first resonant base excitation setup. Eigenfrequencies matched within 5% using a Polytec multipath interferometry system, and constant excitation tests showed approximately 30% higher in optimal shapes electrical potential value generation. The outcome of this study highlights the efficacy of geometric tailoring—specifically, non-linear thickness shaping—as a key strategy in achieving enhanced energy output from piezoelectric harvesters operating at their fundamental frequency. This work establishes a practical route for optimizing unimorph structures in real-world applications requiring efficient energy capture from low-frequency ambient vibrations. Full article
Show Figures

Figure 1

33 pages, 12802 KiB  
Review
Developments and Future Directions in Stretchable Display Technology: Materials, Architectures, and Applications
by Myung Sub Lim and Eun Gyo Jeong
Micromachines 2025, 16(7), 772; https://doi.org/10.3390/mi16070772 - 30 Jun 2025
Viewed by 688
Abstract
Stretchable display technology has rapidly evolved, enabling a new generation of flexible electronics with applications ranging from wearable healthcare and smart textiles to implantable biomedical devices and soft robotics. This review systematically presents recent advances in stretchable displays, focusing on intrinsic stretchable materials, [...] Read more.
Stretchable display technology has rapidly evolved, enabling a new generation of flexible electronics with applications ranging from wearable healthcare and smart textiles to implantable biomedical devices and soft robotics. This review systematically presents recent advances in stretchable displays, focusing on intrinsic stretchable materials, wavy surface engineering, and hybrid integration strategies. The paper highlights critical breakthroughs in device architectures, energy-autonomous systems, durable encapsulation techniques, and the integration of artificial intelligence, which collectively address challenges in mechanical reliability, optical performance, and operational sustainability. Particular emphasis is placed on the development of high-resolution displays that maintain brightness and color fidelity under mechanical strain, and energy harvesting systems that facilitate self-powered operation. Durable encapsulation methods ensuring long-term stability against environmental factors such as moisture and oxygen are also examined. The fusion of stretchable electronics with AI offers transformative opportunities for intelligent sensing and adaptive human–machine interfaces. Despite significant progress, issues related to large-scale manufacturing, device miniaturization, and the trade-offs between stretchability and device performance remain. This review concludes by discussing future research directions aimed at overcoming these challenges and advancing multifunctional, robust, and scalable stretchable display systems poised to revolutionize flexible electronics applications. Full article
(This article belongs to the Special Issue Advances in Flexible and Wearable Electronics: Devices and Systems)
Show Figures

Figure 1

20 pages, 1233 KiB  
Review
Microalgal Valorization of CO2: A Sustainable Pathway to Biofuels and High-Value Chemicals
by Shutong Wu, Kaiyin Ye, Xiaochuan Zheng and Lei Zhao
Fermentation 2025, 11(7), 371; https://doi.org/10.3390/fermentation11070371 - 27 Jun 2025
Viewed by 509
Abstract
The escalating climate crisis and the imperative to transition from a fossil fuel-dependent economy demand transformative solutions for sustainable energy and carbon management. Biological CO2 capture and utilization (CCU) using microalgae represents a particularly compelling approach, capitalizing on microalgae’s high photosynthetic efficiency [...] Read more.
The escalating climate crisis and the imperative to transition from a fossil fuel-dependent economy demand transformative solutions for sustainable energy and carbon management. Biological CO2 capture and utilization (CCU) using microalgae represents a particularly compelling approach, capitalizing on microalgae’s high photosynthetic efficiency and remarkable product versatility. This review critically examines the principles and recent breakthroughs in microalgal CO2 bioconversion, spanning strain selection, advanced photobioreactor (PBR) design, and key factors influencing carbon sequestration efficiency. We explore diverse valorization strategies, including next-generation biofuel production, integrated wastewater bioremediation, and the synthesis of value-added chemicals, underscoring their collective potential for mitigating CO2 emissions and achieving comprehensive resource valorization. Persistent challenges, such as economically viable biomass harvesting, cost-effective scale-up, and enhancing strain robustness, are rigorously examined. Furthermore, we delineate promising future prospects centered on cutting-edge genetic engineering, integrated biorefinery concepts, and synergistic coupling with waste treatment to maximize sustainability. By effectively bridging carbon neutrality with renewable resource production, microalgae-based technologies hold considerable potential to spearhead the circular bioeconomy, accelerate the renewable energy transition, and contribute significantly to achieving global climate objectives. Full article
(This article belongs to the Special Issue Algae—The Medium of Bioenergy Conversion: 2nd Edition)
Show Figures

Figure 1

17 pages, 1988 KiB  
Article
Transcriptomic Profiling of Thermotolerant Sarcomyxa edulis PQ650759 Reveals the Key Genes and Pathways During Fruiting Body Formation
by Zitong Liu, Minglei Li, Hongyu Ma, Fei Wang, Lei Shi, Jinhe Wang, Chunge Sheng, Peng Zhang, Haiyang Yu, Jing Zhao and Yanfeng Wang
J. Fungi 2025, 11(7), 484; https://doi.org/10.3390/jof11070484 - 26 Jun 2025
Viewed by 380
Abstract
Sarcomyxa edulis is a characteristic low-temperature, edible mushroom in Northeast China. It has a delicious taste and rich nutritional and medicinal value. S. edulis can undergo explosive fruiting, neat fruiting, and unified harvesting, making it suitable for factory production. The molecular mechanisms underlying [...] Read more.
Sarcomyxa edulis is a characteristic low-temperature, edible mushroom in Northeast China. It has a delicious taste and rich nutritional and medicinal value. S. edulis can undergo explosive fruiting, neat fruiting, and unified harvesting, making it suitable for factory production. The molecular mechanisms underlying fruiting body development in S. edulis remain poorly understood. This study employed transcriptome analysis to compare the post-ripening mycelium (NPM) and primordial fruiting bodies (PRMs) of the thermostable S. edulis strain PQ650759, which uniquely forms primordia under constant temperature. A total of 4862 differentially expressed genes (DEGs) (|log2(fold change)| ≥ 1) were identified and found to be predominantly enriched in biological processes such as cell wall organization, DNA replication, and carbohydrate metabolism. KEGG pathway analysis revealed significant enrichment in 20 metabolic pathways, including mismatch repair, yeast cell cycle, and starch/sucrose metabolism. Ten candidate genes (e.g., SKP1, MRE11, GPI) linked to cell cycle regulation, DNA repair, and energy metabolism were randomly selected and prioritized for functional analysis. Quantitative PCR validation confirmed the reliability of transcriptome data, with expression trends consistent across both methods. Our findings provide critical insights into the molecular regulation of fruiting body development in S. edulis and establish a foundation for future mechanistic studies and strain optimization in industrial cultivation. Full article
(This article belongs to the Special Issue Fungal Metabolomics and Genomics)
Show Figures

Figure 1

19 pages, 2046 KiB  
Article
An Analytical Solution for Energy Harvesting Using a High-Order Shear Deformation Model in Functionally Graded Beams Subjected to Concentrated Moving Loads
by Sy-Dan Dao, Dang-Diem Nguyen, Trong-Hiep Nguyen and Ngoc-Lam Nguyen
Modelling 2025, 6(3), 55; https://doi.org/10.3390/modelling6030055 - 25 Jun 2025
Viewed by 337
Abstract
This study presents a high-order shear deformation theory (HSDT)-based model for evaluating the energy harvesting performance of functionally graded material (FGM) beams integrated with a piezoelectric layer and subjected to a moving concentrated load at constant velocity. The governing equations are derived using [...] Read more.
This study presents a high-order shear deformation theory (HSDT)-based model for evaluating the energy harvesting performance of functionally graded material (FGM) beams integrated with a piezoelectric layer and subjected to a moving concentrated load at constant velocity. The governing equations are derived using Hamilton’s principle, and the dynamic response is obtained through the State Function Method with trigonometric mode shapes. The output voltage and harvested power are calculated based on piezoelectric constitutive relations. A comparative analysis with homogeneous isotropic beams demonstrates that HSDT yields more accurate predictions than the Classical Beam Theory (CBT), especially for thick beams; for instance, at a span-to-thickness ratio of h/L = 12.5, HSDT predicts increases of approximately 6%, 7%, and 12% in displacement, voltage, and harvested power, respectively, compared to CBT. Parametric studies further reveal that increasing the load velocity significantly enhances the strain rate in the piezoelectric layer, resulting in higher voltage and power output, with the latter exhibiting quadratic growth. Moreover, increasing the material gradation index n reduces the beam’s effective stiffness, which amplifies vibration amplitudes and improves energy conversion efficiency. These findings underscore the importance of incorporating shear deformation and material gradation effects in the design and optimization of piezoelectric energy harvesting systems using FGM beams subjected to dynamic loading. Full article
Show Figures

Figure 1

27 pages, 13836 KiB  
Article
Combining Microbial Cellulose with FeSO4 and FeCl2 by Ex Situ and In Situ Methods
by Silvia Barbi, Marcello Brugnoli, Salvatore La China, Monia Montorsi and Maria Gullo
Polymers 2025, 17(13), 1743; https://doi.org/10.3390/polym17131743 - 23 Jun 2025
Viewed by 414
Abstract
Environmentally sustainable methods for producing flexible electronics, such as paper-based energy harvesters in nanogenerators, are a major objective in materials science. In this frame, the present study investigated two different Komagataeibacter sp. strains (K2G30 and K2G44), never tested as biocatalysts for the production [...] Read more.
Environmentally sustainable methods for producing flexible electronics, such as paper-based energy harvesters in nanogenerators, are a major objective in materials science. In this frame, the present study investigated two different Komagataeibacter sp. strains (K2G30 and K2G44), never tested as biocatalysts for the production of bacterial cellulose (BC) functionalized with iron particles to provide potential electrical conductivity. Two functionalization strategies (ex situ and in situ) were evaluated using two iron compounds FeCl2 and FeSO4, individually and in combination (up to 0.1% w/v), to assess efficiency and feasibility. In addition, a Design of Experiment approach was implemented to calculate quantitative mathematical models to correlate the functionalization methods with the iron amount in the BC. Among the tested conditions, BC produced by strain K2G44 using the ex situ method with FeCl2 showed the most promising results, achieving the highest iron content (~37% atomic weight) with a highly homogeneous dispersion of iron nanoparticles. Moreover, the in situ BC functionalization using FeSO4 led to the formation of iron gluconate. FeSO4 alone significantly enhanced BC production in the in situ process, with yields of 2.62 ± 0.15 g/L for K2G30 and 2.05 ± 0.09 g/L for K2G44. Full article
(This article belongs to the Special Issue Sustainable Bio-Based and Circular Polymers and Composites)
Show Figures

Figure 1

15 pages, 2930 KiB  
Article
Energy Harvesting from Ankle Flexion During Gait Using Flexible CdS and PVDF Sensors
by Kimberly Trevizo, Luis Santana, Manuel Chairez, Amanda Carrillo and Rafael Gonzalez-Landaeta
Micromachines 2025, 16(6), 698; https://doi.org/10.3390/mi16060698 - 11 Jun 2025
Viewed by 677
Abstract
In this work, energy was harvested from ankle flexion during gait. For this, two piezoelectric thin films were tested: PVDF and CdS. The PVDF film was a commercial option, and the CdS film was fabricated in our laboratory. Deposition of the CdS film [...] Read more.
In this work, energy was harvested from ankle flexion during gait. For this, two piezoelectric thin films were tested: PVDF and CdS. The PVDF film was a commercial option, and the CdS film was fabricated in our laboratory. Deposition of the CdS film is also reported in this work. Energy harvested during gait from heel strike and ankle flexion was compared. Tests were performed with 10 healthy volunteers walking on a treadmill at 1.2–1.5 km/h. The volunteers wore a sock with piezoelectric films incorporated in the heel and ankle joint (talocrural joint). Tests were performed first with the PVDF film and then with the CdS film. The CdS thin film obtained a d33 coefficient of 1.4928 nm/V, indicating high electrical energy generated from strain-stress. The talocrural joint generated the most energy: 11.359 μJ for the PVDF film and 0.854 μJ for the CdS film. Although the CdS film generated less energy than the commercial option, it was shown that harvesting energy from ankle flexion increased the energy harvested by more than 700% during gait compared to the energy harvested from heel-to-ground impact. Full article
Show Figures

Figure 1

26 pages, 4583 KiB  
Article
Mathematical Modeling and Finite Element Simulation of the M8514-P2 Composite Piezoelectric Transducer for Energy Harvesting
by Demeke Girma Wakshume and Marek Łukasz Płaczek
Sensors 2025, 25(10), 3071; https://doi.org/10.3390/s25103071 - 13 May 2025
Viewed by 3434
Abstract
This paper focuses on the mathematical and numerical modeling of a non-classical macro fiber composite (MFC) piezoelectric transducer, MFC-P2, integrated with an aluminum cantilever beam for energy harvesting applications. It seeks to harness the transverse vibration energy in the environment to power small [...] Read more.
This paper focuses on the mathematical and numerical modeling of a non-classical macro fiber composite (MFC) piezoelectric transducer, MFC-P2, integrated with an aluminum cantilever beam for energy harvesting applications. It seeks to harness the transverse vibration energy in the environment to power small electronic devices, such as wireless sensors, where conventional power sources are inconvenient. The P2-type macro fiber composites (MFC-P2) are specifically designed for transverse energy harvesting applications. They offer high electric source capacitance and improved electric charge generation due to the strain developed perpendicularly to the voltage produced. The system is modeled analytically using Euler–Bernoulli beam theory and piezoelectric constitutive equations, capturing the electromechanical coupling in the d31 mode. Numerical simulations are conducted using COMSOL Multiphysics 6.29 to reduce the complexity of the mathematical model and analyze the effects of material properties, geometric configurations, and excitation conditions. The theoretical model is based on the transverse vibrations of a cantilevered beam using Euler–Bernoulli theory. The natural frequencies and mode shapes for the first four are determined. Depending on these, the resonance frequency, voltage, and power outputs are evaluated across a 12 kΩ resistive load. The results demonstrate that the energy harvester effectively operates near its fundamental resonant frequency of 10.78 Hz, achieving the highest output voltage of approximately 0.1952 V and a maximum power output of 0.0031 mW. The generated power is sufficient to drive ultra-low-power devices, validating the viability of MFC-based cantilever structures for autonomous energy harvesting systems. The application of piezoelectric phenomena and obtaining electrical energy from mechanical vibrations can be powerful solutions in such systems. The application of piezoelectric phenomena to convert mechanical vibrations into electrical energy presents a promising solution for self-powered mechatronic systems, enabling energy autonomy in embedded sensors, as well as being used for structural health monitoring applications. Full article
(This article belongs to the Special Issue Smart Sensors Based on Optoelectronic and Piezoelectric Materials)
Show Figures

Figure 1

26 pages, 10313 KiB  
Article
Design of a Portable Integrated Fluid–Structure Interaction-Based Piezoelectric Flag Energy-Harvesting System
by Haochen Wang, Xingrong Huang, Zhe Li and Le Fang
Fluids 2025, 10(5), 121; https://doi.org/10.3390/fluids10050121 - 8 May 2025
Viewed by 558
Abstract
Fluid–structure interaction-based energy-harvesting technology has gained significant attention due to its potential for energy conversion. However, most existing studies primarily focus on energy capture, resulting in incomplete systems with limited portability and a lack of integrated circuitry. To address these limitations, this study [...] Read more.
Fluid–structure interaction-based energy-harvesting technology has gained significant attention due to its potential for energy conversion. However, most existing studies primarily focus on energy capture, resulting in incomplete systems with limited portability and a lack of integrated circuitry. To address these limitations, this study presents a portable, integrated piezoelectric flag energy-harvesting system that achieves a complete closed-loop conversion from fluid kinetic energy, through structural strain energy, to electrical energy. The system utilizes an upstream bluff body to generate vortex-induced vibrations, a downstream support structure that maintains operational stability, and an internally integrated wiring channel that enables overall energy conversion. Charge–discharge experiments on the energy storage unit enable a comprehensive evaluation of system performance, marking the first efficiency measurement of a fully integrated energy-harvesting system. Experimental results demonstrate the first quantified map of losses across all conversion stages in a portable piezo-flag platform, highlighting the system’s potential for powering small-scale, low-power self-sustaining devices. This work establishes a reference framework and provides a novel technological pathway for advancing practical applications of fluid-induced energy harvesting, contributing to the development of autonomous power sources in various engineering fields. Full article
(This article belongs to the Section Mathematical and Computational Fluid Mechanics)
Show Figures

Figure 1

22 pages, 4727 KiB  
Review
Review of Magnetoelectric Effects on Coaxial Fibers of Ferrites and Ferroelectrics
by Sujoy Saha, Sabita Acharya, Ying Liu, Peng Zhou, Michael R. Page and Gopalan Srinivasan
Appl. Sci. 2025, 15(9), 5162; https://doi.org/10.3390/app15095162 - 6 May 2025
Viewed by 560
Abstract
Composites of ferromagnetic and ferroelectric phases are of interest for studies on mechanical strain-mediated coupling between the two phases and for a variety of applications in sensors, energy harvesting, and high-frequency devices. Nanocomposites are of particular importance since their surface area-to-volume ratio, a [...] Read more.
Composites of ferromagnetic and ferroelectric phases are of interest for studies on mechanical strain-mediated coupling between the two phases and for a variety of applications in sensors, energy harvesting, and high-frequency devices. Nanocomposites are of particular importance since their surface area-to-volume ratio, a key factor that determines the strength of magneto-electric (ME) coupling, is much higher than for bulk or thin-film composites. Core–shell nano- and microcomposites of the ferroic phases are the preferred structures, since they are free of any clamping due to substrates that are present in nanobilayers or nanopillars on a substrate. This review concerns recent efforts on ME coupling in coaxial fibers of spinel or hexagonal ferrites for the magnetic phase and PZT or barium titanate for the ferroelectric phase. Several recent studies on the synthesis and ME measurements of fibers with nickel ferrite, nickel zinc ferrite, or cobalt ferrite for the spinel ferrite and M-, Y-, and W-types for the hexagonal ferrites were considered. Fibers synthesized by electrospinning were found to be free of impurity phases and had uniform core and shell structures. Piezo force microscopy (PFM) and scanning microwave microscopy (SMM) measurements of strengths of direct and converse ME effects on individual fibers showed evidence for strong coupling. Results of low-frequency ME voltage coefficient and magneto-dielectric effects on 2D and 3D films of the fibers assembled in a magnetic field, however, were indicative of ME couplings that were weaker than in bulk or thick-film composites. A strong ME interaction was only evident from data on magnetic field-induced variations in the remnant ferroelectric polarization in the discs of the fibers. Follow-up efforts aimed at further enhancement in the strengths of ME coupling in core–shell composites are also discussed in this review. Full article
(This article belongs to the Special Issue Applied Electronics and Functional Materials)
Show Figures

Figure 1

21 pages, 1743 KiB  
Article
Bacterivorous Ciliate Tetrahymena pyriformis Facilitates vanA Antibiotic Resistance Gene Transfer in Enterococcus faecalis
by Temilola O. Olanrewaju, James S. G. Dooley, Heather M. Coleman, Chris McGonigle and Joerg Arnscheidt
Antibiotics 2025, 14(5), 448; https://doi.org/10.3390/antibiotics14050448 - 28 Apr 2025
Viewed by 599
Abstract
Background: Wastewater treatment plants (WWTPs) are hotspots for the emergence and spread of antibiotic resistance genes (ARGs). In activated sludge treatment systems, bacterivorous protozoa play a crucial role in biological processes, yet their impact on the horizontal gene transfer in Gram-positive enteric bacteria [...] Read more.
Background: Wastewater treatment plants (WWTPs) are hotspots for the emergence and spread of antibiotic resistance genes (ARGs). In activated sludge treatment systems, bacterivorous protozoa play a crucial role in biological processes, yet their impact on the horizontal gene transfer in Gram-positive enteric bacteria remains largely unexplored. This study investigated whether the ciliate Tetrahymena pyriformis facilitates the transfer of antibiotic resistance genes between Enterococcus faecalis strains. Methods: Conjugation assays were conducted under laboratory conditions using a vanA-carrying donor and a rifampicin-resistant recipient at an initial bacterial concentration of 109 CFU/mL and ciliate density of 105 N/mL. Results: Transconjugant numbers peaked at 2 h when experiments started with recipient bacteria harvested in the exponential growth phase, and at 24 h when bacteria were in the stationary phase. In both cases, vanA gene transfer frequency was highest at 24 h (10−4–10−5 CFU/mL), and the presence of energy sources increased gene transfer frequency by one order of magnitude. Conclusions: These findings suggest that ciliate grazing may contribute to vanA gene transfer in WWTP effluents, potentially facilitating its dissemination among permissive bacteria. Given the ecological and public health risks associated with vanA gene persistence in wastewater systems, understanding protozoan-mediated gene transfer is crucial for mitigating the spread of antibiotic resistance in aquatic environments. Full article
(This article belongs to the Special Issue Tracking Reservoirs of Antimicrobial Resistance Genes in Environment)
Show Figures

Graphical abstract

Back to TopTop