Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (625)

Search Parameters:
Keywords = strain compatibility

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 6430 KB  
Article
Evaluation of Biocontrol Efficacy of Bacillus velezensis HAB-2 Combined with Pseudomonas hunanensis and Enterobacter soli Against Cowpea Fusarium Wilt
by Wei Wei, Tianlong Qi, Jinpeng Lu, Xi Wei, Peilin Wu, Justice Norvienyeku, Weiguo Miao and Wenbo Liu
Microorganisms 2025, 13(11), 2578; https://doi.org/10.3390/microorganisms13112578 (registering DOI) - 12 Nov 2025
Abstract
Cowpea Fusarium wilt (CFW) is a soilborne fungal disease caused by Fusarium oxysporum f. sp. tracheiphilum (Fot), leading to substantial yield losses globally. This study evaluates the biocontrol potential of Bacillus velezensis HAB-2 and develops a microbial combination for effective disease management. B. [...] Read more.
Cowpea Fusarium wilt (CFW) is a soilborne fungal disease caused by Fusarium oxysporum f. sp. tracheiphilum (Fot), leading to substantial yield losses globally. This study evaluates the biocontrol potential of Bacillus velezensis HAB-2 and develops a microbial combination for effective disease management. B. velezensis HAB-2 suppressed F. oxysporum f. sp. tracheiphilum AIQBFO93 growth by 69.8% in vitro and exhibited multiple plant growth-promoting traits. Pot experiments demonstrated that HAB-2 alone achieved a 47.62% control rate against CFW. Furthermore, two compatible plant growth-promoting rhizobacteria (PGPR), Pseudomonas hunanensis HD33 and Enterobacter soli HD42, were isolated from the rhizosphere soil of cowpea previously treated with HAB-2. These two strains were combined with HAB-2 at different concentrations in 15 microbial combinations. The combined application of the three strains provided more consistent disease control, with the optimal combination demonstrating a 15.15% higher control rate than HAB-2 alone. Compared to the untreated control, this combination significantly increased cowpea fresh weight, leaf area, and plant height by 10.60%, 8.04%, and 7.81%, respectively, and upregulated the expression of defense-related genes, indicating enhanced resistance. These results confirm that B. velezensis HAB-2 is an effective biocontrol agent against wilt disease, and its synergistic application with functionally complementary PGPR strains provides a viable strategy for sustainable crop disease management. Full article
(This article belongs to the Section Plant Microbe Interactions)
Show Figures

Figure 1

23 pages, 3222 KB  
Review
Rhizospheric and Endophytic Plant Growth-Promoting Bacteria Associated with Coffea arabica L. and Coffea canephora Pierre ex Froehner: A Review of Their Agronomic Potential
by Marisol Ramírez-López, Angélica Bautista-Cruz, Arcelia Toledo-López and Teodulfo Aquino-Bolaños
Microorganisms 2025, 13(11), 2567; https://doi.org/10.3390/microorganisms13112567 - 11 Nov 2025
Abstract
Plant growth-promoting bacteria (PGPB) associated with Coffea arabica L. and Coffea canephora Pierre ex Froehner offer a viable strategy to reduce synthetic inputs and enhance resilience in coffee agroecosystems. This review synthesizes evidence from the past decade on rhizosphere-associated and endophytic taxa, their [...] Read more.
Plant growth-promoting bacteria (PGPB) associated with Coffea arabica L. and Coffea canephora Pierre ex Froehner offer a viable strategy to reduce synthetic inputs and enhance resilience in coffee agroecosystems. This review synthesizes evidence from the past decade on rhizosphere-associated and endophytic taxa, their plant growth-promotion and biocontrol mechanisms and the resulting agronomic outcomes. A compartment-specific core microbiome is reported, in the rhizosphere of both hosts, in which Bacillus and Pseudomonas consistently dominate. Within endophytic communities, Bacillus predominates across tissues (roots, leaves and seeds), whereas accompanying genera are host- and tissue-specific. In C. arabica, endophytes frequently include Pseudomonas in roots and leaves. In C. canephora, root endophytes recurrently include Burkholderia, Kitasatospora and Rahnella, while seed endophytes are enriched for Curtobacterium. Functionally, coffee-associated PGPB solubilize phosphate; fix atmospheric nitrogen via biological nitrogen fixation; produce auxins; synthesize siderophores; and express 1-aminocyclopropane-1-carboxylate deaminase. Indirect benefits include the production of antifungal and nematicidal metabolites, secretion of hydrolytic enzymes and elicitation of induced systemic resistance. Under greenhouse conditions, inoculation with PGPB commonly improves germination, shoot and root biomass, nutrient uptake and tolerance to drought or nutrient limitation. Notable biocontrol activity against fungal phytopathogens and plant-parasitic nematodes has also been documented. Key priorities for translation to practice should include (i) multi-site, multi-season field trials to quantify performance, persistence and economic returns; (ii) strain-resolved omics to link taxa to functions expressed within the plant host; (iii) improved bioformulations compatible with farm management and (iv) rationally designed consortia aligned with production goals and biosafety frameworks. Full article
(This article belongs to the Section Plant Microbe Interactions)
Show Figures

Figure 1

26 pages, 6676 KB  
Article
Antimicrobial Efficacy of Green Silver Nanoparticles Synthesized Using Crataegus monogyna Extract
by Mihaela Cristina Lite, Roxana Constantinescu, Laura Chirilă, Alina Popescu, Andrei Kuncser, Cosmin Romanițan, Oana Brîncoveanu, Ioana Lăcătușu and Nicoleta Badea
Biomimetics 2025, 10(11), 737; https://doi.org/10.3390/biomimetics10110737 - 3 Nov 2025
Viewed by 448
Abstract
Current demands in the field of functional textiles include the integration of specific characteristics, such as self-cleaning, antimicrobial efficacy and possible wound healing properties. Green synthesis of nanoparticles represents a promising strategy to address these challenges, combining biocompatibility and ecological safety with effective [...] Read more.
Current demands in the field of functional textiles include the integration of specific characteristics, such as self-cleaning, antimicrobial efficacy and possible wound healing properties. Green synthesis of nanoparticles represents a promising strategy to address these challenges, combining biocompatibility and ecological safety with effective antimicrobial and antioxidant performance. In this study, silver nanoparticles (AgNPs) have been synthesized using different ratios of Crataegus monogyna extract: AgNO3. Physically stable AgNPs with spherical shape, particle main diameters ranging from 61.9 to 85.4 nm and appropriate polydispersity indices were produced. Crataegus monogyna presented high phenolic content (30.58 ± 2.20 mg/g) and strong antioxidant activity (96 ± 1.6 µmol TE/g). The obtained nanoparticles were characterized by TEM, EDX, and XRD analysis. When applied to cotton and wool textiles, the AgNPs adhered uniformly, caused minimal colour change, and exhibited enhanced antimicrobial activity against bacterial and fungal strains compared to other plant-derived AgNPs, with values between 8 and 13.5 mm. The treated textiles demonstrated strong performance against Staphylococcus aureus with inhibition zones of 11 ± 0.53 for cotton and 13.5 ± 0.42 for wool. These findings highlight the potential of Crataegus monogyna-based AgNPs as effective and fabric-compatible antimicrobial agents. Full article
Show Figures

Figure 1

10 pages, 3491 KB  
Article
Prestrain-Enabled Stretchable and Conductive Aerogel Fibers
by Hao Yin and Jian Zhou
Polymers 2025, 17(21), 2936; https://doi.org/10.3390/polym17212936 - 1 Nov 2025
Viewed by 603
Abstract
Aerogels combine ultralow density with high surface area, yet their brittle, open networks preclude tensile deformation and hinder integration into wearable electronics. Here we introduce a prestrain-enabled coaxial architecture that converts a brittle conductive aerogel into a highly stretchable fiber. A porous thermoplastic [...] Read more.
Aerogels combine ultralow density with high surface area, yet their brittle, open networks preclude tensile deformation and hinder integration into wearable electronics. Here we introduce a prestrain-enabled coaxial architecture that converts a brittle conductive aerogel into a highly stretchable fiber. A porous thermoplastic elastomer (TPE) hollow sheath is wet-spun using a sacrificial lignin template to ensure solvent exchange and robust encapsulation. Conductive polymer-based precursor dispersions are infused into prestretched TPE tubes, frozen, and lyophilized; releasing the prestretch then programs a buckled aerogel core that unfolds during elongation without catastrophic fracture. The resulting TPE-wrapped aerogel fibers exhibit reversible elongation up to 250% while retaining electrical function. At low strains (<60%), resistance changes are small and stable (ΔR/R0 < 0.04); at larger strains the response remains monotonic and fully recoverable, enabling broad-range sensing. The mechanism is captured by a strain-dependent percolation model in which elastic decompression, contact sliding, and controlled fragmentation/reconnection of the aerogel network govern the signal. This generalizable strategy decouples elasticity from conductivity, establishing a scalable route to ultralight, encapsulated, and skin-compatible aerogel fibers for smart textiles and deformable electronics. Full article
(This article belongs to the Special Issue Advances in Polymers-Based Functional and Smart Textiles)
Show Figures

Figure 1

25 pages, 6936 KB  
Article
Sustainable Cyclodextrin Modification and Alginate Incorporation: Viscoelastic Properties, Release Behavior, and Morphology in Bulk and Microbead Hydrogel Systems
by Maja Čič, Nejc Petek, Iztok Dogša, Andrijana Damjanović, Boštjan Genorio, Nataša Poklar Ulrih and Ilja Gasan Osojnik Črnivec
Gels 2025, 11(11), 875; https://doi.org/10.3390/gels11110875 - 1 Nov 2025
Viewed by 241
Abstract
Incorporating cyclodextrins (CDs) into ionically crosslinked polysaccharide matrices offers a promising strategy for developing well-defined, safe-by-design and biocompatible carrier systems with tunable rheological properties. In this study, β-cyclodextrin (β-CD) was functionalized with citric acid (CDC) and maleic anhydride (CDM) using [...] Read more.
Incorporating cyclodextrins (CDs) into ionically crosslinked polysaccharide matrices offers a promising strategy for developing well-defined, safe-by-design and biocompatible carrier systems with tunable rheological properties. In this study, β-cyclodextrin (β-CD) was functionalized with citric acid (CDC) and maleic anhydride (CDM) using solvent-free synthesis to improve compatibility with alginate hydrogels. The modified CDs were characterized by FTIR, 1H NMR, DLS, zeta potential, and MS, confirming successful esterification (4.0 and 3.4 –OH substitution for CDC and CDM, respectively) and stable aqueous dispersion. Rheological measurements showed that native CD accelerated gelation (within approximately 30 s), while CDC and CDM delayed crosslinking (by 2 to 13 min) and reduced gel strength, narrowing the linear viscoelastic range to 0.015–0.089% strain due to competition between polycarboxylated CDs and alginate chains for Ca2+ ions. Vibrational prilling produced alginate microbeads with diameters of 800–1000 µm and a simultaneous increase in size and CD concentration. Hydrogels demonstrated high CD retention (>80% after 28 h) and slightly greater release of CDC and CDM than native CD. Overall, solvent-free modification of CDs with citric and maleic acids provides a sustainable approach to tailoring the gelation kinetics, viscoelasticity, and release behavior of alginate-based hydrogels, offering a versatile, food- and health-compliant platform for controlled delivery of bioactive compounds. Full article
(This article belongs to the Special Issue Gel-Related Materials: Challenges and Opportunities (2nd Edition))
Show Figures

Graphical abstract

33 pages, 22059 KB  
Review
Resistive Sensing in Soft Robotic Grippers: A Comprehensive Review of Strain, Tactile, and Ionic Sensors
by Donya Mostaghniyazdi and Shahab Edin Nodehi
Electronics 2025, 14(21), 4290; https://doi.org/10.3390/electronics14214290 - 31 Oct 2025
Viewed by 588
Abstract
Soft robotic grippers have emerged as crucial tools for safe and adaptive manipulation of delicate and different objects, enabled by their compliant structures. These grippers need embedded sensing that offers proprioceptive and exteroceptive feedback in order to function consistently. Resistive sensing is unique [...] Read more.
Soft robotic grippers have emerged as crucial tools for safe and adaptive manipulation of delicate and different objects, enabled by their compliant structures. These grippers need embedded sensing that offers proprioceptive and exteroceptive feedback in order to function consistently. Resistive sensing is unique among transduction processes since it is easy to use, scalable, and compatible with deformable materials. The three main classes of resistive sensors used in soft robotic grippers are systematically examined in this review: ionic sensors, which are emerging multimodal devices that can capture both mechanical and environmental cues; tactile sensors, which detect contact, pressure distribution, and slip; and strain sensors, which monitor deformation and actuation states. Their methods of operation, material systems, fabrication techniques, performance metrics, and integration plans are all compared in the survey. The results show that sensitivity, linearity, durability, and scalability are all trade-offs across sensor categories, with ionic sensors showing promise as a new development for multipurpose soft grippers. There is also a discussion of difficulties, including hysteresis, long-term stability, and signal processing complexity. In order to move resistive sensing from lab prototypes to reliable, practical applications in domains like healthcare, food handling, and human–robot collaboration, the review concludes that developments in hybrid material systems, additive manufacturing, and AI-enhanced signal interpretation will be crucial. Full article
Show Figures

Figure 1

20 pages, 2506 KB  
Article
A Screening Assay for Bile Acid-Transforming Microorganisms Using Engineered Bacterial Biosensors
by Debora Dallera, Daniele Pastorelli, Massimo Bellato, Angelica Frusteri Chiacchiera, Francesca Usai, Maria Gabriella Cusella De Angelis, Paola Brun, Paolo Magni and Lorenzo Pasotti
Biosensors 2025, 15(11), 716; https://doi.org/10.3390/bios15110716 - 29 Oct 2025
Viewed by 401
Abstract
Bile salt hydrolase (BSH) enables microbial-mediated deconjugation of bile acids (BAs) in the gastrointestinal tract. BSH enzymes initiate bile acid metabolism by catalyzing the first, essential deconjugation step. Due to the strict connection between dysregulations of the BA pool and human or animal [...] Read more.
Bile salt hydrolase (BSH) enables microbial-mediated deconjugation of bile acids (BAs) in the gastrointestinal tract. BSH enzymes initiate bile acid metabolism by catalyzing the first, essential deconjugation step. Due to the strict connection between dysregulations of the BA pool and human or animal diseases, identification and characterization of strains with BSH activity are relevant for both healthcare and agroindustry. However, current methods are expensive, poorly sensitive, or require complex procedures. Here, a BSH screening assay for cultivated microbes is proposed, based on a bacterial biosensor that reports the concentration of different BA types via fluorescence. Although the biosensor is broadly responsive to various bile acids, the assay was designed to guarantee specificity by testing individual primary BAs within controlled concentration ranges. The assay was evaluated on two recombinant Escherichia coli strains bearing BSH genes from Lactobacillus johnsonii PF01 and a BSH-positive probiotic strain (Lactobacillus rhamnosus GG). Data showed a consistent activity pattern with previous assays on these enzymes. A crucial aspect addressed was the matrix effect, i.e., the impact of the growth media of the BSH-containing strains on biosensor output. This assay is expected to be a reproducible and accessible option, compatible with automated protocols. Full article
Show Figures

Figure 1

13 pages, 2914 KB  
Article
Efficient Bioreduction of Cr(VI) by a Halotolerant Acinetobacter sp. ZQ-1 in High-Salt Environments: Performance and Metabolomic Mechanism
by Lei Yu, Qi Zhou and Jing Liang
Processes 2025, 13(11), 3423; https://doi.org/10.3390/pr13113423 - 24 Oct 2025
Viewed by 395
Abstract
Bioreduction is an effective method to reduce Cr(VI) for bioremediation. In this study, a hexavalent chromium-reducing bacterium with salt tolerant abilities, Acinetobacter ZQ-1, was isolated, which could efficiently reduce Cr(VI) under a wide range of pH (6.0–9.0), temperatures (28–42 °C) and coexisting heavy [...] Read more.
Bioreduction is an effective method to reduce Cr(VI) for bioremediation. In this study, a hexavalent chromium-reducing bacterium with salt tolerant abilities, Acinetobacter ZQ-1, was isolated, which could efficiently reduce Cr(VI) under a wide range of pH (6.0–9.0), temperatures (28–42 °C) and coexisting heavy metals (Mn2+, Pb2+ and Fe3+). It is worth mentioning that the strain ZQ-1 could reduce Cr(VI) containing 15% (w/v) NaCl, showing strong salt tolerance. Under optimal culture conditions, strain ZQ-1 was able to completely reduce 50 mg/L of Cr(VI) in 24 h. The metabolic data of ZQ-1 showed that salt stress significantly altered the composition of metabolites, in which the accumulation of compatible solutes such as Arginine, Leucine, Lysine and Proline contributed to the alleviation of high salt stress for strain ZQ-1. Meanwhile, the increased content of alginate and betaine also helped to maintain the normal function of strain ZQ-1 in a high-salt environment. This is of great significance for the development, utilization and mechanism of action of salt-tolerant hexavalent chromium-reducing bacteria in the future. Full article
(This article belongs to the Section Chemical Processes and Systems)
Show Figures

Figure 1

14 pages, 7300 KB  
Article
Study of Thermal Effects on Large-Span Ring-Shaped Steel Structures
by Wei Huang, Xianglei Meng, Wenjie Xu, Mengzhao Mei, Xin Yao, Fubin Chen, Minghao Jin, Chuanqiang Yu and Xin Kuang
Buildings 2025, 15(21), 3822; https://doi.org/10.3390/buildings15213822 - 23 Oct 2025
Viewed by 236
Abstract
To investigate the thermal effects of solar radiation on annular steel structures with non-uniform spans, this study implemented a methodology combining numerical simulation and monitoring. Electronic strain gauges and temperature monitoring points were installed at mid-span of three lifting segments (TS1–3) of “Sky [...] Read more.
To investigate the thermal effects of solar radiation on annular steel structures with non-uniform spans, this study implemented a methodology combining numerical simulation and monitoring. Electronic strain gauges and temperature monitoring points were installed at mid-span of three lifting segments (TS1–3) of “Sky Hall” project to simultaneously record thermal stress and temperature data. The data of temperature was imported into Midas-GEN, where structural thermal stresses were computationally generated through a simplified non-uniform temperature field model. Comparatively analysis showed the following: (1) Thermal stress shows a strong linear correlation with temperature increase, with a Pearson correlation coefficient of r = 0.989; (2) Constraint intensity is a critical factor affecting the magnitude of thermal stress in annular structures—TS3 with lower constraint density exhibits better deformation compatibility, leading to effective stress dissipation (stress increase of 6 MPa per 1 °C rise), while TS1 under strong constraint conditions shows limited deformation capacity, resulting in significantly intensified stress concentration (with 18 MPa increase per 1 °C rise); (3) The variation trends of simulation and monitoring results are highly consistent, though significant deviations exist in some members (the peak monitored stress was 2.31 times the simulated value) due to factors such as structural geometry, material properties, member dimensions, constraint conditions, and the simplified non-uniform temperature field model; (4) According to the most unfavorable combination specified in the Standard for Design of Steel Structures (GB 50017-2017), the design stress value is 203.5 MPa, which is quite less than the yield stress, thus meeting the safety requirement. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

14 pages, 3262 KB  
Article
Advancing Duodenoscope Reprocessing with Alginate-Coated Calcium Peroxide Nanoparticles
by Adrian Fifere, Cristian-Dragos Varganici, Elena-Laura Ursu, Tudor Pinteala, Vasile Sandru, Ioana-Andreea Turin-Moleavin, Irina Rosca and Gheorghe G. Balan
Life 2025, 15(11), 1643; https://doi.org/10.3390/life15111643 - 22 Oct 2025
Viewed by 343
Abstract
Background/Objectives: Although significant advances in duodenoscope reprocessing have been introduced since mid-2010s—including enhanced cleaning protocols, disposable distal endcaps, and the introduction of fully single-use duodenoscopes—residual contamination and infection risks remain unresolved. Moreover, repeated reprocessing may cause cumulative damage to the polymer surfaces, elevator [...] Read more.
Background/Objectives: Although significant advances in duodenoscope reprocessing have been introduced since mid-2010s—including enhanced cleaning protocols, disposable distal endcaps, and the introduction of fully single-use duodenoscopes—residual contamination and infection risks remain unresolved. Moreover, repeated reprocessing may cause cumulative damage to the polymer surfaces, elevator mechanisms, and internal channels of the duodenoscopes, making them more susceptible to residual contamination. To minimize the duodenoscope polymer degradation caused by intensive use and reprocessing, new alternatives are urgently needed. In this context, calcium peroxide nanoparticles coated with sodium alginate (CaO2–Alg NPs), synthesized by our group, were tested for the first time as a disinfectant capable of combating nosocomial pathogens while reducing device deterioration associated with repeated investigations and reprocessing. Methods: The disinfectant properties of the CaO2–Alg NPs were evaluated under biomimetic conditions using reference bacterial strains commonly associated with nosocomial infections. In addition, the compatibility of the nanoparticles with the polymeric duodenoscope coatings was assessed after simulated intensive use. The external polymer coating was structurally and morphologically characterized by Fourier Transform Infrared Spectroscopy (FTIR), Differential Scanning Calorimetry (DSC), Atomic Force Microscopy (AFM), and Scanning Electron Microscopy (SEM). Results: The nanoparticles exhibited important antimicrobial activity against the reference bacterial strains Staphylococcus aureus, Escherichia coli, Enterococcus faecalis, and Klebsiella pneumoniae after only 20 min of incubation. Intensive exposure to the CaO2–Alg NPs did not cause additional structural or morphological damage to the duodenoscope’s external polymers and did not alter their anti-adhesive properties. Conclusions: The CaO2–Alg NPs appear to be a safe and effective disinfectant for the duodenoscope reprocessing, offering both antimicrobial efficacy and material compatibility. Full article
(This article belongs to the Special Issue Emerging Applications of Nanobiotechnology in Medicine and Health)
Show Figures

Figure 1

13 pages, 512 KB  
Article
Synergistic Effects of Beauveria bassiana and Insecticides for Integrated Management of Bactrocera dorsalis (Hendel) (Diptera: Tephritidae)
by Xiaole Wang, Yunfei Li, Yuping Zha, Yubin Tian, Jing Wang, Hanbing Li, Zhihui Zhu and Wanlun Cai
Insects 2025, 16(10), 1067; https://doi.org/10.3390/insects16101067 - 19 Oct 2025
Viewed by 593
Abstract
Bactrocera dorsalis (Hendel) (Diptera: Tephritidae) is a significant agricultural pest that causes substantial economic losses globally. While chemical insecticides are commonly used for its management, increasing resistance and environmental concerns underscore the need for alternative control strategies. This study evaluated the potential of [...] Read more.
Bactrocera dorsalis (Hendel) (Diptera: Tephritidae) is a significant agricultural pest that causes substantial economic losses globally. While chemical insecticides are commonly used for its management, increasing resistance and environmental concerns underscore the need for alternative control strategies. This study evaluated the potential of integrating the entomopathogenic fungus Beauveria bassiana strain Bb-33 (Hypocreales: Clavicipitaceae) with reduced doses of chemical insecticides for sustainable B. dorsalis management. The compatibility of B. bassiana Bb-33 with six commonly used insecticides—spinosad, emamectin benzoate, avermectin, thiamethoxam, beta-cypermethrin, and imidacloprid—was assessed. Among them, emamectin benzoate exhibited the least inhibitory effects on spore germination, mycelial growth, and sporulation of B. bassiana. Laboratory bioassays demonstrated synergistic interactions between B. bassiana Bb-33 and emamectin benzoate, particularly when the ratio of emamectin benzoate to B. bassiana exceeded 4:1, as indicated by co-toxicity coefficients greater than 100. However, greenhouse trials revealed that the combined formulation had lower efficacy in reducing B. dorsalis adult populations and pupal emergence rates compared to emamectin benzoate alone, though it was more effective than B. bassiana Bb-33 applied independently. Importantly, this composite formula reduces pesticide usage, which highlights its potential to mitigate environmental impacts. This study underscores the promise of integrating B. bassiana Bb-33 with reduced doses of emamectin benzoate as a viable strategy for managing B. dorsalis. Despite its current limitations in greenhouse trials, further optimization of formulation stability and application methods could enhance its field performance, offering an effective and environmentally friendly alternative to conventional chemical control methods. Full article
(This article belongs to the Section Insect Pest and Vector Management)
Show Figures

Graphical abstract

23 pages, 7965 KB  
Article
Rational Approach for Evaluating Fire Resistance of Prestressed Concrete Beams Strengthened with Fiber-Reinforced Polymers
by Venkatesh Kodur, Tejeswar Rayala and Hee Sun Kim
Polymers 2025, 17(20), 2773; https://doi.org/10.3390/polym17202773 - 16 Oct 2025
Viewed by 331
Abstract
A rational approach is proposed for evaluating the fire resistance of fiber-reinforced polymers (FRP)-strengthened prestressed concrete (PC) beams. This approach expands on conventional fire design principles for PC beams, while incorporating the effects of FRP reinforcement and fire insulation into strength calculations under [...] Read more.
A rational approach is proposed for evaluating the fire resistance of fiber-reinforced polymers (FRP)-strengthened prestressed concrete (PC) beams. This approach expands on conventional fire design principles for PC beams, while incorporating the effects of FRP reinforcement and fire insulation into strength calculations under fire exposure. Simplified equations are utilized to evaluate the cross-sectional temperature distribution in fire-exposed FRP-strengthened PC beams, considering both insulated and uninsulated scenarios. These cross-sectional temperature profiles are then utilized to evaluate the reductions in the strengths of concrete, steel, and FRP based on their temperature-dependent mechanical properties. The moment capacity of the FRP-strengthened PC beams is determined at various fire exposure durations by applying force equilibrium and strain compatibility principles, assuming a full bond with no relative slip between the FRP and the concrete interface under fire exposure. The critical strength limit state is applied at each time interval to determine the failure state of the FRP-strengthened PC beam, with the final time to failure considered to be the fire resistance of the beam. The proposed approach is validated by comparing its results with available test data from FRP-strengthened reinforced concrete (RC) beams. The validated model is applied to evaluate critical parameters governing the fire resistance of FRP-strengthened PC beam. The results show that, without fire insulation, FRP-strengthened PC beams undergo a significant reduction in moment capacity early into fire exposure and fail within 75 min due to the rapid strength degradation of both the CFRP and the prestressing steel. In contrast, the application of 25 mm thick fire insulation allows these beams to retain a substantial portion of their load-bearing capacity for up to 3 h of fire exposure. Full article
(This article belongs to the Section Polymer Composites and Nanocomposites)
Show Figures

Figure 1

17 pages, 2289 KB  
Article
Thermally Induced Intramolecular Diels–Alder Reaction of Furan-Tethered Methylenecyclopropanes
by Qi-Yun Huang, Xin-Tao Gu, Yin Wei and Min Shi
Molecules 2025, 30(20), 4105; https://doi.org/10.3390/molecules30204105 - 16 Oct 2025
Viewed by 395
Abstract
The substantial ring strain and activated double bonds render methylenecyclopropanes (MCPs) potential substrates for Diels–Alder (DA) reactions. In this work, we present a thermally induced intramolecular Diels–Alder (IMDA) reaction utilizing furan-tethered MCPs. The reactions were carried out smoothly with respect to a wide [...] Read more.
The substantial ring strain and activated double bonds render methylenecyclopropanes (MCPs) potential substrates for Diels–Alder (DA) reactions. In this work, we present a thermally induced intramolecular Diels–Alder (IMDA) reaction utilizing furan-tethered MCPs. The reactions were carried out smoothly with respect to a wide variety of substrates with good functional group compatibility, affording the desired products in moderate to excellent yields. The synthetic utility of these products was successfully demonstrated. Mechanistic studies involving radical scavenger control experiments and density functional theory (DFT) calculations revealed a concerted mechanism involving an asynchronous one-step pathway. Full article
(This article belongs to the Special Issue Applied Innovative Insights in Selective Organic Hetero-Synthesis)
Show Figures

Graphical abstract

15 pages, 3399 KB  
Article
Comparative Symbiotic Effects of Mycorrhizal Fungal Strains from Different Hosts on Seed Germination and Seedling Growth in Dendrobium officinale
by Jian-Yu He, Xiao-Yan Xie, Zhuo-Qi Liang, Jian-Xia Zhang, Shu Liu and Xiao-Lan Zhao
J. Fungi 2025, 11(10), 737; https://doi.org/10.3390/jof11100737 - 14 Oct 2025
Viewed by 703
Abstract
Compatible fungal partners of orchids can significantly enhance seed germination and increase seedling establishment under both in vitro and in situ conditions. This study isolated 14 Tulasnella isolates from five-year-old potted plants of three D. officinale cultivars. Three phylogenetically representative strains (Dca122, Dca222, [...] Read more.
Compatible fungal partners of orchids can significantly enhance seed germination and increase seedling establishment under both in vitro and in situ conditions. This study isolated 14 Tulasnella isolates from five-year-old potted plants of three D. officinale cultivars. Three phylogenetically representative strains (Dca122, Dca222, and Dca113) and two additional orchid mycorrhizal fungus (OMFs, ML01 and Pi) were selected to evaluate their effects on D. officinale seed germination and seedling development in vitro, and subsequent seedling growth under greenhouse conditions. All five OMFs supported seed germination and seedling development in vitro. Notably, Dca113, Pi, and ML01 exhibited the most pronounced effects, producing protocorms 3–4 times larger in volume than controls. By day 25, 37.54%, 37.34%, and 42.6% of protocorms developed cotyledons with these isolates, respectively. Furthermore, after 120 days, ML01 and Dca113 treatments yielded 35.6% and 30.68% autotrophic seedlings with fully differentiated roots. Under greenhouse, ML01, Pi, and Dca122 significantly enhanced fresh weight accumulation, plant height, and stem node number in potted seedlings. In contrast, Dca222 primarily stimulated sprouting tillers and adventitious root formation. Our results demonstrate that the mycorrhizal effectiveness of OMFs from different hosts varies significantly in D. officinale. ML01 and Dca113 are ideal candidates for reintroduction programs due to their strong promotion of seed germination and rapid formation of rooted seedlings. ML01 proved the most effective OMF for enhancing growth in potted seedlings, while Dca222 demonstrated potential for co-inoculation strategies. Full article
(This article belongs to the Section Fungi in Agriculture and Biotechnology)
Show Figures

Figure 1

15 pages, 4613 KB  
Article
Hydrogen Does Not Embrittle Materials Themselves but Inhibits the Work Hardening of Materials
by Toshio Ogata
Processes 2025, 13(10), 3236; https://doi.org/10.3390/pr13103236 - 11 Oct 2025
Viewed by 434
Abstract
High-pressure hydrogen compatibility evaluations of alloys using hollow specimens were performed in accordance with ISO 7039. Hollow tensile specimens containing high-pressure hydrogen gas in a small-diameter hole along the axis can also be used to evaluate the influence of hydrogen gas without using [...] Read more.
High-pressure hydrogen compatibility evaluations of alloys using hollow specimens were performed in accordance with ISO 7039. Hollow tensile specimens containing high-pressure hydrogen gas in a small-diameter hole along the axis can also be used to evaluate the influence of hydrogen gas without using high-pressure vessels. This method is not only simpler and less costly than the conventional approach, but it can also evaluate the instantaneous change in the environmental gas at specimen break. The following findings were obtained from slow-strain-rate tensile (SSRT) tests in a high-pressure hydrogen gas environment using hollow specimens of austenitic stainless steels: (1) the work hardening of the specimen in the SSRT tests stopped several minutes before the crack reached the outer surface owing to the influence of hydrogen; (2) the work hardening of the specimen resumed immediately after the hydrogen gas was released; (3) the crack growth took several minutes to reach the specimen’s surface; and (4) the fracture surface was not a cleavage fracture. These results indicate that materials are still ductile after exposure to the high-pressure hydrogen environment. This can be explained by the fact that hydrogen does not embrittle the material itself but inhibits the work hardening of the material. This phenomenon can be explained by the behavior of chemical bonds among atoms, and more discussion on strength from the perspective of chemical bonds is expected. Full article
(This article belongs to the Section Materials Processes)
Show Figures

Figure 1

Back to TopTop