A Screening Assay for Bile Acid-Transforming Microorganisms Using Engineered Bacterial Biosensors
Abstract
1. Introduction
2. Materials and Methods
2.1. Strains and Plasmids
2.2. Reagents
2.3. Biosensor Characterization
2.4. BSH Activity Quantification
2.5. Data Processing
2.6. Mathematical Modeling
2.6.1. Dynamic Model of BA Deconjugation
2.6.2. A Simulation Model to Study the Impact of Biosensor Unspecificity
2.7. Statistical Analyses
3. Results
3.1. Biosensor Selection and Characterization
3.2. Definition of the Biosensor-Based Assay
3.3. BSH Activity Characterization in Recombinant Strains
3.4. BSH Activity Detection in a Probiotic Strain
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| BSH | Bile salt hydrolase |
| BA | Bile acid |
| CA | Cholic acid |
| TCA | Taurocholic acid |
| GCA | Glycocholic acid |
| CDCA | Chenodeoxycholic acid |
| TCDCA | Taurochenodeoxycholic acid |
| GCDCA | Glycochenodeoxycholic acid |
| OD | Optical density |
| GFP | Green fluorescent protein |
| ODE | Ordinary differential equation |
| HPLC | High-performance liquid chromatography |
| TLC | Thin-layer chromatography |
References
- Di Gregorio, M.C.; Cautela, J.; Galantini, L. Physiology and physical chemistry of bile acids. Int. J. Mol. Sci. 2021, 22, 1780. [Google Scholar] [CrossRef]
- Fleishman, J.S.; Kumar, S. Bile acid metabolism and signaling in health and disease: Molecular mechanisms and therapeutic targets. Signal Transduct. Target. Ther. 2024, 9, 97. [Google Scholar] [CrossRef]
- Zheng, D.; Liwinski, T.; Elinav, E. Interaction between microbiota and immunity in health and Disease. Cell Res. 2020, 30, 492–506. [Google Scholar] [CrossRef]
- Collins, S.L.; Stine, J.G.; Bisanz, J.E.; Okafor, C.D.; Patterson, A.D. Bile acids and the gut microbiota: Metabolic interactions and impacts on disease. Nat. Rev. Microbiol. 2023, 21, 236–247. [Google Scholar] [CrossRef]
- Falany, C.N.; Johnson, M.R.; Barnes, S.; Diasio, R.B. Glycine and taurine conjugation of bile acids by a single enzyme. J. Biol. Chem. 1994, 269, 19375–19379. [Google Scholar] [CrossRef]
- Northfield, T.C.; McColl, I. Postprandial concentrations of free and conjugated bile acids down the length of the normal human small intestine. Gut 1973, 14, 513–518. [Google Scholar] [CrossRef] [PubMed]
- Foley, M.H.; O’Flaherty, S.; Barrangou, R.; Theriot, C.M. Bile salt hydrolases: Gatekeepers of bile acid metabolism and host-microbiome crosstalk in the gastrointestinal tract. PLoS Pathog. 2019, 15, e1007581. [Google Scholar] [CrossRef] [PubMed]
- Harris, S.C.; Devendran, S.; Alves, J.M.P.; Mythen, S.M.; Hylemon, P.B.; Ridlon, J.M. Identification of a gene encoding a flavoprotein involved in bile acid metabolism by the human gut bacterium Clostridium scindens ATCC 35704. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 2018, 1863, 276–283. [Google Scholar] [CrossRef] [PubMed]
- Wise, J.L.; Cummings, B.P. The 7-α-dehydroxylation pathway: An integral component of gut bacterial bile acid metabolism and potential therapeutic target. Front. Microbiol. 2023, 13, 1093420. [Google Scholar] [CrossRef]
- Funabashi, M.; Grove, T.L.; Wang, M.; Varma, Y.; McFadden, M.E.; Brown, L.C.; Guo, C.; Higginbottom, S.; Almo, S.C.; Fischbach, M.A. A metabolic pathway for bile acid dehydroxylation by the gut microbiome. Nature 2020, 582, 566–570. [Google Scholar] [CrossRef]
- Dong, Z.; Yang, S.; Tang, C.; Li, D.; Kan, Y.; Yao, L. New insights into microbial bile salt hydrolases: From physiological roles to potential applications. Front. Microbiol. 2025, 16, 1513541. [Google Scholar] [CrossRef]
- Hernández-Gómez, J.G.; López-Bonilla, A.; Trejo-Tapia, G.; Ávila-Reyes, S.V.; Jiménez-Aparicio, A.R.; Hernández-Sánchez, H. In vitro bile salt hydrolase (BSH) activity screening of different probiotic microorganisms. Foods 2021, 10, 674. [Google Scholar] [CrossRef]
- Theriot, C.M.; Bowman, A.A.; Young, V.B. Antibiotic-induced alterations of the gut microbiota alter secondary bile acid production and allow for Clostridium difficile spore germination and outgrowth in the large intestine. mSphere 2016, 1, 10–1128. [Google Scholar] [CrossRef]
- Sorg, J.A.; Sonenshein, A.L. Bile salts and glycine as cogerminants for Clostridium difficile spores. J. Bacteriol. 2008, 190, 2505–2512. [Google Scholar] [CrossRef] [PubMed]
- Alenezi, T.; Alrubaye, B.; Fu, Y.; Shrestha, J.; Algehani, S.; Wang, H.; Liyanage, R.; Sun, X. Recombinant bile salt hydrolase enhances the inhibition efficiency of taurodeoxycholic acid against Clostridium perfringens virulence. Pathogens 2024, 13, 464. [Google Scholar] [CrossRef]
- Koh, E.; Hwang, I.Y.; Lee, H.L.; De Sotto, R.; Lee, J.W.J.; Lee, Y.S.; March, J.C.; Chang, M.W. Engineering probiotics to inhibit Clostridioides difficile infection by dynamic regulation of intestinal metabolism. Nat. Commun. 2022, 13, 3834. [Google Scholar] [CrossRef]
- Hamilton, J.P.; Xie, G.; Raufman, J.P.; Hogan, S.; Griffin, T.L.; Packard, C.A.; Chatfield, D.A.; Hagey, L.R.; Steinbach, J.H.; Hofmann, A.F. Human cecal bile acids: Concentration and spectrum. Am. J. Physiol. Gastrointest. Liver Physiol. 2007, 293, G256–G263. [Google Scholar] [CrossRef]
- Dieterle, M.G.; Rao, K.; Young, V.B. Novel therapies and preventative strategies for primary and recurrent Clostridium difficile infections. Ann. N. Y. Acad. Sci. 2019, 1435, 110–138. [Google Scholar] [CrossRef] [PubMed]
- Guo, C.F.; Zhang, L.W.; Han, X.; Li, J.Y.; Du, M.; Yi, H.X.; Feng, Z.; Zhang, Y.C.; Xu, X.R. A sensitive method for qualitative screening of bile salt hydrolase-active lactobacilli based on thin-layer chromatography. J. Dairy Sci. 2011, 94, 1732–1737. [Google Scholar] [CrossRef] [PubMed]
- Oh, H.K.; Lee, J.Y.; Lim, S.J.; Kim, M.J.; Kim, G.B.; Kim, J.H.; Hong, S.K.; Kang, D.K. Molecular cloning and characterization of a bile salt hydrolase from Lactobacillus acidophilus PF01. J. Microbiol. Biotechnol. 2008, 18, 449–456. [Google Scholar]
- Ahn, Y.T.; Kim, G.B.; Lim, K.S.; Baek, Y.J.; Kim, H.U. Deconjugation of bile salts by Lactobacillus acidophilus isolates. Int. Dairy J. 2003, 13, 303–311. [Google Scholar] [CrossRef]
- Knarreborg, A.; Engberg, R.M.; Jensen, S.K.; Jensen, B.B. Quantitative determination of bile salt hydrolase activity in bacteria isolated from the small intestine of chickens. Appl. Environ. Microbiol. 2002, 68, 6425–6428. [Google Scholar] [CrossRef]
- Tanaka, H.; Hashiba, H.; Kok, J.; Mierau, I. Bile salt hydrolase of Bifidobacterium longum—Biochemical and genetic characterization. Appl. Environ. Microbiol. 2000, 66, 2502–2512. [Google Scholar] [CrossRef]
- Tanaka, H.; Doesburg, W.; Iwasaki, T.; Mierau, I. Screening of lactic acid bacteria for bile salt hydrolase activity. J. Dairy Sci. 1999, 82, 2530–2535. [Google Scholar] [CrossRef]
- Khodakivskyi, P.V.; Lauber, C.L.; Yevtodiyenko, A.; Bazhin, A.A.; Bruce, S.; Ringel-Kulka, T.; Ringel, Y.; Bétrisey, B.; Torres, J.; Hu, J.; et al. Noninvasive imaging and quantification of bile salt hydrolase activity: From bacteria to humans. Sci. Adv. 2021, 7, eaaz9857. [Google Scholar] [CrossRef]
- Han, L.; Xu, R.; Conwell, A.N.; Takahashi, S.; Parasar, B.; Chang, P.V. Bile salt hydrolase activity-based probes for monitoring gut microbial bile acid metabolism. ChemBioChem 2024, 25, e202300821. [Google Scholar] [CrossRef] [PubMed]
- Brandvold, K.R.; Weaver, J.M.; Whidbey, C.; Wright, A.T. A continuous fluorescence assay for simple quantification of bile salt hydrolase activity in the gut microbiome. Sci. Rep. 2019, 9, 1359. [Google Scholar] [CrossRef] [PubMed]
- Del Valle, I.; Fulk, E.M.; Kalvapalle, P.; Silberg, J.J.; Masiello, C.A.; Stadler, L.B. Translating new synthetic biology advances for biosensing into the Earth and environmental sciences. Front. Microbiol. 2021, 11, 618373. [Google Scholar] [CrossRef] [PubMed]
- Bereza-Malcolm, L.T.; Mann, G.; Franks, A.E. Environmental sensing of heavy metals through whole-cell microbial biosensors: A synthetic biology approach. ACS Synth. Biol. 2015, 4, 535–546. [Google Scholar] [CrossRef]
- Hicks, M.; Bachmann, T.T.; Wang, B. Synthetic biology enables programmable cell-based biosensors. ChemPhysChem 2020, 21, 131–141. [Google Scholar] [CrossRef]
- French, C.E.; de Mora, K.; Joshi, N.; Elfick, A.; Haseloff, J.; Ajioka, J. Synthetic Biology and the Art of Biosensor Design. In The Science and Applications of Synthetic and Systems Biology: Workshop Summary; National Academies Press: Washington, DC, USA, 2011. Available online: https://www.ncbi.nlm.nih.gov/books/NBK84465/ (accessed on 21 October 2025).
- Daunert, S.; Barrett, G.; Feliciano, J.S.; Shetty, R.S.; Shrestha, S.; Smith-Spencer, W. Genetically engineered whole-cell sensing systems: Coupling biological recognition with reporter genes. Chem. Rev. 2000, 100, 2705–2738. [Google Scholar] [CrossRef] [PubMed]
- Beabout, K.; Ehrenworth Breedon, A.M.; Blum, S.M.; Miklos, A.E.; Lux, M.W.; Chávez, J.L.; Goodson, M.S. Detection of bile acids in complex matrices using a transcription factor-based biosensor. ACS Biomater. Sci. Eng. 2023, 9, 5151–5162. [Google Scholar] [CrossRef] [PubMed]
- Chang, H.-J.; Zúñiga, A.; Conejero, I.; Voyvodic, P.L.; Gracy, J.; Fajardo-Ruiz, E.; Cohen-Gonsaud, M.; Cambray, G.; Pageaux, G.-P.; Meszaros, M.; et al. Programmable receptors enable bacterial biosensors to detect pathological biomarkers in clinical samples. Nat. Commun. 2021, 12, 5216. [Google Scholar] [CrossRef] [PubMed]
- Taketani, M.; Zhang, J.; Zhang, S.; Triassi, A.J.; Huang, Y.-J.; Griffith, L.G.; Voigt, C.A. Genetic circuit design automation for the gut resident species Bacteroides thetaiotaomicron. Nat. Biotechnol. 2020, 38, 962–969. [Google Scholar] [CrossRef]
- Lei, H.T.; Shen, Z.; Surana, P.; Routh, M.D.; Su, C.C.; Zhang, Q.; Yu, E.W. Crystal structures of CmeR–bile acid complexes from Campylobacter jejuni. Protein Sci. 2011, 20, 712–723. [Google Scholar] [CrossRef]
- Chang, H.J.; Mayonove, P.; Zavala, A.; De Visch, A.; Minard, P.; Cohen-Gonsaud, M.; Bonnet, J. A modular receptor platform to expand the sensing repertoire of bacteria. ACS Synth. Biol. 2018, 7, 166–175. [Google Scholar] [CrossRef]
- Zúñiga, A.; Muñoz-Guamuro, G.; Boivineau, L.; Mayonove, P.; Conejero, I.; Pageaux, G.-P.; Altwegg, R.; Bonnet, J. A rapid and standardized workflow for functional assessment of bacterial biosensors in fecal samples. Front. Bioeng. Biotechnol. 2022, 10, 859600. [Google Scholar] [CrossRef]
- Chae, J.P.; Valeriano, V.D.; Kim, G.-B.; Kang, D.-K. Molecular cloning, characterization and comparison of bile salt hydrolases from Lactobacillus johnsonii PF01. J. Appl. Microbiol. 2013, 114, 121–133. [Google Scholar] [CrossRef]
- Nasr, M.A.; Timmins, L.R.; Martin, V.J.J.; Kwan, D.H. A versatile transcription factor biosensor system responsive to multiple aromatic and indole inducers. ACS Synth. Biol. 2022, 11, 1692–1698. [Google Scholar] [CrossRef]
- Rossger, K.; Charpin-El-Hamri, G.; Fussenegger, M. Bile acid-controlled transgene expression in mammalian cells and mice. Metab. Eng. 2014, 21, 81–90. [Google Scholar] [CrossRef]
- Lin, J.; Akiba, M.; Sahin, O.; Zhang, Q. CmeR functions as a transcriptional repressor for the multidrug efflux pump CmeABC in Campylobacter jejuni. Antimicrob. Agents Chemother. 2005, 49, 1067–1075. [Google Scholar] [CrossRef]
- Politi, N.; Pasotti, L.; Zucca, S.; Casanova, M.; Micoli, G.; Cusella De Angelis, M.G.; Magni, P. Half-life measurements of chemical inducers for recombinant gene expression. J. Biol. Eng. 2014, 8, 5. [Google Scholar] [CrossRef] [PubMed]
- Pasotti, L.; Bellato, M.; Politi, N.; Casanova, M.; Zucca, S.; Cusella De Angelis, M.G.; Magni, P. A synthetic close-loop controller circuit for the regulation of an extracellular molecule by engineered bacteria. IEEE Trans. Biomed. Circuits Syst. 2019, 13, 248–258. [Google Scholar] [CrossRef] [PubMed]
- Usai, F.; Loi, G.; Scocozza, F.; Bellato, M.; Castagliuolo, I.; Conti, M.; Pasotti, L. Design and biofabrication of bacterial living materials with robust and multiplexed biosensing capabilities. Mater. Today Bio 2022, 18, 100526. [Google Scholar] [CrossRef] [PubMed]
- Fritz, G.; Koller, C.; Burdack, K.; Tetsch, L.; Haneburger, I.; Jung, K.; Gerland, U. Induction kinetics of a conditional pH stress response system in Escherichia coli. J. Mol. Biol. 2009, 393, 272–286. [Google Scholar] [CrossRef]
- Rozhkova, I.V.; Yurova, E.A.; Leonova, V.A. Evaluation of the amino acid composition and content of organic acids of complex postbiotic substances obtained on the basis of metabolites of probiotic bacteria Lacticaseibacillus paracasei ABK and Lactobacillus helveticus H9. Fermentation 2023, 9, 460. [Google Scholar] [CrossRef]
- Vertzoni, M.; Archontaki, H.; Reppas, C. Determination of intralumenal individual bile acids by HPLC with charged aerosol detection. J. Lipid Res. 2008, 49, 2690–2695. [Google Scholar] [CrossRef]






| Name | Host | Plasmids | Scope | Reference |
|---|---|---|---|---|
| NC | TOP10 | - | Host strain, negative control in BSH assays | Invitrogen |
| Tcp-EMeRALD | DH10b | P5-tcpH-P9-cadC-tcpP-Pcad-GFP | Source of biosensor plasmid | [34] |
| TcpSens | TOP10 | P5-tcpH-P9-cadC-tcpP-Pcad-GFP and BBa_J107125-pUC19 1 | Biosensor strain | This study |
| EC-BSH-B | BLR(DE3) | pET-BSH-B | E. coli with BSH-B from L. johnsonii PF01 | [20] |
| EC-BSH-C | BLR(DE3) | pET-BSH-C | E. coli with BSH-C from L. johnsonii PF01 | [39] |
| LGG | L. rhamnosus GG | - | Probiotic strain with BSH | Menarini Group |
| N | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| Δmin (%) | 54.4 | 20.6 | 14.3 | 11.6 | 10.0 | 9.0 | 8.2 |
| Method | Main Advantages | Main Disadvantages |
|---|---|---|
| Agar plate assay | Cheap and easy to carry out | Semi-quantitative; poor sensitivity; requires long incubation time (48–72 h) |
| TLC | Sensitive; could be automated via high-performance TLC with moderate throughput | Semi-quantitative; manual procedures required; low-throughput |
| HPLC | Accurately detects several bile acids; compatible with complex matrices | Low-throughput data generation |
| Ninhydrin assay | High-throughput (compatible with multiwell format) | Incompatible with complex matrices; sensitive to contaminations that lead to false positives |
| Probe-based assays | Sensitive and compatible with complex samples | Requires the synthesis of specific reagents; possible changes in deconjugation dynamics between probes and natural BAs |
| Method designed in this work | User-friendly and cheap; compatible with high-throughput setups | Only tested on samples from live cultures, not on in vitro reactions; matrix effects detected on calibration curves |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dallera, D.; Pastorelli, D.; Bellato, M.; Frusteri Chiacchiera, A.; Usai, F.; Cusella De Angelis, M.G.; Brun, P.; Magni, P.; Pasotti, L. A Screening Assay for Bile Acid-Transforming Microorganisms Using Engineered Bacterial Biosensors. Biosensors 2025, 15, 716. https://doi.org/10.3390/bios15110716
Dallera D, Pastorelli D, Bellato M, Frusteri Chiacchiera A, Usai F, Cusella De Angelis MG, Brun P, Magni P, Pasotti L. A Screening Assay for Bile Acid-Transforming Microorganisms Using Engineered Bacterial Biosensors. Biosensors. 2025; 15(11):716. https://doi.org/10.3390/bios15110716
Chicago/Turabian StyleDallera, Debora, Daniele Pastorelli, Massimo Bellato, Angelica Frusteri Chiacchiera, Francesca Usai, Maria Gabriella Cusella De Angelis, Paola Brun, Paolo Magni, and Lorenzo Pasotti. 2025. "A Screening Assay for Bile Acid-Transforming Microorganisms Using Engineered Bacterial Biosensors" Biosensors 15, no. 11: 716. https://doi.org/10.3390/bios15110716
APA StyleDallera, D., Pastorelli, D., Bellato, M., Frusteri Chiacchiera, A., Usai, F., Cusella De Angelis, M. G., Brun, P., Magni, P., & Pasotti, L. (2025). A Screening Assay for Bile Acid-Transforming Microorganisms Using Engineered Bacterial Biosensors. Biosensors, 15(11), 716. https://doi.org/10.3390/bios15110716

