Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (8,412)

Search Parameters:
Keywords = storage temperature

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 3035 KiB  
Article
Study of Taconis-Based Cryogenic Thermoacoustic Engine with Hydrogen and Helium
by Matthew P. Shenton, Jacob W. Leachman and Konstantin I. Matveev
Energies 2025, 18(15), 4114; https://doi.org/10.3390/en18154114 (registering DOI) - 2 Aug 2025
Abstract
Taconis oscillations represent spontaneous excitation of acoustic modes in tubes with large temperature gradients in cryogenic systems. In this study, Taconis oscillations in hydrogen and helium systems are enhanced with a porous material resulting in a standing-wave thermoacoustic engine. A theoretical model is [...] Read more.
Taconis oscillations represent spontaneous excitation of acoustic modes in tubes with large temperature gradients in cryogenic systems. In this study, Taconis oscillations in hydrogen and helium systems are enhanced with a porous material resulting in a standing-wave thermoacoustic engine. A theoretical model is developed using the thermoacoustic software DeltaEC, version v6.4b2.7, to predict system performance, and an experimental apparatus is constructed for engine characterization. The low-amplitude thermoacoustic model predicts the pressure amplitude, frequency, and temperature gradient required for excitation of the standing-wave system. Experimental measurements, including the onset temperature ratio, acoustic pressure amplitudes, and frequencies, are recorded for different stack materials and geometries. The findings indicate that, independent of stack, hydrogen systems excite at smaller temperature differentials than helium (because of different properties such as lower viscosity for hydrogen), and the stack geometry and material affect the onset temperature ratio. However, pressure amplitude in the excited states varies minimally. Initial measurements are also conducted in a cooling setup with an added regenerator. The configuration with stainless-steel mesh screens produces a small cryogenic refrigeration effect with a decrease in temperature of about 1 K. The reported characterization of a Taconis-based thermoacoustic engine can be useful for the development of novel thermal management systems for cryogenic storage vessels, including refrigeration and pressurization. Full article
(This article belongs to the Section A5: Hydrogen Energy)
Show Figures

Figure 1

15 pages, 1806 KiB  
Article
Drought and Shrub Encroachment Accelerate Peatland Carbon Loss Under Climate Warming
by Fan Lu, Boli Yi, Jun-Xiao Ma, Si-Nan Wang, Yu-Jie Feng, Kai Qin, Qiansi Tu and Zhao-Jun Bu
Plants 2025, 14(15), 2387; https://doi.org/10.3390/plants14152387 (registering DOI) - 2 Aug 2025
Abstract
Peatlands store substantial amounts of carbon (C) in the form of peat, but are increasingly threatened by drought and shrub encroachment under climate warming. However, how peat decomposition and its temperature sensitivity (Q10) vary with depth and plant litter input [...] Read more.
Peatlands store substantial amounts of carbon (C) in the form of peat, but are increasingly threatened by drought and shrub encroachment under climate warming. However, how peat decomposition and its temperature sensitivity (Q10) vary with depth and plant litter input under these stressors remains poorly understood. We incubated peat from two depths with different degrees of decomposition, either alone or incubated with Sphagnum divinum shoots or Betula ovalifolia leaves, under five temperature levels and two moisture conditions in growth chambers. We found that drought and Betula addition increased CO2 emissions in both peat layers, while Sphagnum affected only shallow peat. Deep peat alone or with Betula exhibited higher Q10 than pure shallow peat. Drought increased the Q10 of both depths’ peat, but this effect disappeared with fresh litter addition. The CO2 production rate showed a positive but marginal correlation with microbial biomass carbon, and it displayed a rather similar responsive trend to warming as the microbial metabolism quotient. These results indicate that both deep and dry peat are more sensitive to warming, highlighting the importance of keeping deep peat buried and waterlogged to conserve existing carbon storage. Additionally, they further emphasize the necessity of Sphagnum moss recovery following vascular plant encroachment in restoring carbon sink function in peatlands. Full article
(This article belongs to the Section Plant–Soil Interactions)
Show Figures

Figure 1

11 pages, 3000 KiB  
Article
Comparative Study of the Bulk and Foil Zinc Anodic Behavior Kinetics in Oxalic Acid Aqueous Solutions
by Vanya Lilova, Emil Lilov, Stephan Kozhukharov, Georgi Avdeev and Christian Girginov
Materials 2025, 18(15), 3635; https://doi.org/10.3390/ma18153635 (registering DOI) - 1 Aug 2025
Abstract
The anodic behavior of zinc electrodes is important for energy storage, corrosion protection, electrochemical processing, and other practical applications. This study investigates the anodic galvanostatic polarization of zinc foil and bulk electrodes in aqueous oxalic acid solutions, revealing significant differences in their electrochemical [...] Read more.
The anodic behavior of zinc electrodes is important for energy storage, corrosion protection, electrochemical processing, and other practical applications. This study investigates the anodic galvanostatic polarization of zinc foil and bulk electrodes in aqueous oxalic acid solutions, revealing significant differences in their electrochemical behavior, particularly in induction period durations. The induction period’s duration depended on electrolyte concentration, current density, and temperature. Notably, the temperature dependence of the kinetics exhibited contrasting trends: the induction period for foil electrodes increased with temperature, while that of bulk electrodes decreased. Chemical analysis and polishing treatment comparisons showed no significant differences between the foil and bulk electrodes. However, Scanning Electron Microscopy (SEM) observations of samples anodized at different temperatures, combined with Inductively Coupled Plasma–Optical Emission Spectroscopy (ICP-OES) analysis of dissolved electrode material, provided insights into the distinct anodic behaviors. X-ray Diffraction (XRD) studies further confirmed these findings, revealing a crystallographic orientation dependence of the anodic behavior. These results provide detailed information about the electrochemical properties of zinc electrodes, with implications for optimizing their performance in various applications. Full article
Show Figures

Figure 1

16 pages, 24404 KiB  
Article
Oxidation of HfB2-HfO2-SiC Ceramics Modified with Ti2AlC Under Subsonic Dissociated Airflow
by Elizaveta P. Simonenko, Aleksey V. Chaplygin, Nikolay P. Simonenko, Ilya V. Lukomskii, Semen S. Galkin, Anton S. Lysenkov, Ilya A. Nagornov, Artem S. Mokrushin, Tatiana L. Simonenko, Anatoly F. Kolesnikov and Nikolay T. Kuznetsov
Corros. Mater. Degrad. 2025, 6(3), 35; https://doi.org/10.3390/cmd6030035 (registering DOI) - 1 Aug 2025
Viewed by 36
Abstract
Ultrahigh-temperature ceramic composites based on hafnium diboride have a wide range of applications, including as components for high-speed aircraft and energy generation and storage devices. Consequently, developing methodologies for their fabrication and studying their properties are of paramount importance, in particular in using [...] Read more.
Ultrahigh-temperature ceramic composites based on hafnium diboride have a wide range of applications, including as components for high-speed aircraft and energy generation and storage devices. Consequently, developing methodologies for their fabrication and studying their properties are of paramount importance, in particular in using them as an electrode material for energy storage devices with increased oxidation resistance. This study investigates the behavior of ceramic composites based on the HfB2-HfO2-SiC system, obtained using 15 vol% Ti2AlC MAX-phase as a sintering component, under the influence of subsonic flow of dissociated air. It was determined that incorporating the modifying component (Ti2AlC) altered the composition of the silicate melt formed on the surface during ceramic oxidation. This modification led to the observation of a protective antioxidant function. Consequently, liquation was observed in the silicate melt layer, resulting in the formation of spherical phase inhomogeneities in its volume with increased content of titanium, aluminum, and hafnium. It is hypothesized that the increase in the high-temperature viscosity of this melt prevents it from being carried away in the form of drops, even at a surface temperature of ~1900–2000 °C. Despite the established temperature, there is no sharp increase in its values above 2400–2500 °C. This is due to the evaporation of silicate melt from the surface. In addition, the electrochemical behavior of the obtained material in a liquid electrolyte medium (KOH, 3 mol/L) was examined, and it was shown that according to the value of electrical conductivity and specific capacitance, it is a promising electrode material for supercapacitors. Full article
Show Figures

Figure 1

17 pages, 1522 KiB  
Article
Characterization of Solid Particulates to Be Used as Storage as Well as Heat Transfer Medium in Concentrated Solar Power Systems
by Rageh Saeed, Syed Noman Danish, Shaker Alaqel, Nader S. Saleh, Eldwin Djajadiwinata, Hany Al-Ansary, Abdelrahman El-Leathy, Abdulelah Alswaiyd, Zeyad Al-Suhaibani, Zeyad Almutairi and Sheldon Jeter
Appl. Sci. 2025, 15(15), 8566; https://doi.org/10.3390/app15158566 (registering DOI) - 1 Aug 2025
Viewed by 43
Abstract
Using solid particulates as a heat transfer medium for concentrated solar power (CSP) systems has many advantages, positioning them as a superior option compared with conventional heat transfer media such as steam, oil, air, and molten salt. However, a critical imperative lies in [...] Read more.
Using solid particulates as a heat transfer medium for concentrated solar power (CSP) systems has many advantages, positioning them as a superior option compared with conventional heat transfer media such as steam, oil, air, and molten salt. However, a critical imperative lies in the comprehensive evaluation of the properties of potential solid particulates intended for utilization under such extreme thermal conditions. This paper undertakes an exhaustive examination of both ambient and high-temperature thermophysical properties of four naturally occurring particulate materials, Riyadh white sand, Riyadh red sand, Saudi olivine sand, and US olivine sand, and one well-known engineered particulate material. The parameters under scrutiny encompass loose bulk density, tapped bulk density, real density, sintering temperature, and thermal conductivity. The results reveal that the theoretical density decreases with the increase in temperature. The bulk density of solid particulates depends strongly on the particulate size distribution, as well as on the compaction. The tapped bulk density was found to be larger than the loose density for all particulates, as expected. The sintering test proved that Riyadh white sand is sintered at the highest temperature and pressure, 1300 °C and 50 MPa, respectively. US olivine sand was solidified at 800 °C and melted at higher temperatures. This proves that US olivine sand is not suitable to be used as a thermal energy storage and heat transfer medium in high-temperature particle-based CSP systems. The experimental results of thermal diffusivity/conductivity reveal that, for all particulates, both properties decrease with the increase in temperature, and results up to 475.5 °C are reported. Full article
(This article belongs to the Section Applied Thermal Engineering)
Show Figures

Figure 1

32 pages, 1970 KiB  
Review
A Review of New Technologies in the Design and Application of Wind Turbine Generators
by Pawel Prajzendanc and Christian Kreischer
Energies 2025, 18(15), 4082; https://doi.org/10.3390/en18154082 (registering DOI) - 1 Aug 2025
Viewed by 51
Abstract
The growing global demand for electricity, driven by the development of electromobility, data centers, and smart technologies, necessitates innovative approaches to energy generation. Wind power, as a clean and renewable energy source, plays a pivotal role in the global transition towards low-carbon power [...] Read more.
The growing global demand for electricity, driven by the development of electromobility, data centers, and smart technologies, necessitates innovative approaches to energy generation. Wind power, as a clean and renewable energy source, plays a pivotal role in the global transition towards low-carbon power systems. This paper presents a comprehensive review of generator technologies used in wind turbine applications, ranging from conventional synchronous and asynchronous machines to advanced concepts such as low-speed direct-drive (DD) generators, axial-flux topologies, and superconducting generators utilizing low-temperature superconductors (LTS) and high-temperature superconductors (HTS). The advantages and limitations of each design are discussed in the context of efficiency, weight, reliability, scalability, and suitability for offshore deployment. Special attention is given to HTS-based generator systems, which offer superior power density and reduced losses, along with challenges related to cryogenic cooling and materials engineering. Furthermore, the paper analyzes selected modern generator designs to provide references for enhancing the performance of grid-synchronized hybrid microgrids integrating solar PV, wind, battery energy storage, and HTS-enhanced generators. This review serves as a valuable resource for researchers and engineers developing next-generation wind energy technologies with improved efficiency and integration potential. Full article
(This article belongs to the Special Issue Advancements in Marine Renewable Energy and Hybridization Prospects)
Show Figures

Figure 1

18 pages, 4185 KiB  
Article
Morphology-Based Evaluation of Pollen Fertility and Storage Characteristics in Male Actinidia arguta Germplasm
by Hongyan Qin, Shutian Fan, Ying Zhao, Peilei Xu, Xiuling Chen, Jiaqi Li, Yiming Yang, Yanli Wang, Yue Wang, Changyu Li, Yingxue Liu, Baoxiang Zhang and Wenpeng Lu
Plants 2025, 14(15), 2366; https://doi.org/10.3390/plants14152366 - 1 Aug 2025
Viewed by 121
Abstract
Actinidia arguta is a dioecious plant, and the selection of superior male germplasm is crucial for ensuring effective pollination of female cultivars, maximizing their economic traits, and achieving high-quality yields. This study evaluated 30 male germplasms for pollen quantity, germination capacity, storage characteristics, [...] Read more.
Actinidia arguta is a dioecious plant, and the selection of superior male germplasm is crucial for ensuring effective pollination of female cultivars, maximizing their economic traits, and achieving high-quality yields. This study evaluated 30 male germplasms for pollen quantity, germination capacity, storage characteristics, and ultrastructural features. Results revealed significant variation in pollen germination rates (1.56–96.57%) among germplasms, with ‘Lvwang’, ‘TL20083’, and ‘TG06023’ performing best (all >90% germination). The storage characteristics study demonstrated that −80 °C is the optimal temperature for long-term pollen storage in A. arguta. Significant variations were observed in storage tolerance among different germplasms. Among them, Lvwang exhibited the best performance, maintaining a germination rate of 97.40% after 12 months of storage at −80 °C with no significant difference from the initial value, followed by TT07063. Pollen morphology was closely correlated with fertility. High-fertility pollen grains typically exhibited standard prolate or ultra-prolate shapes, featuring a tri-lobed polar view and an elliptical equatorial view, with neat germination furrows and clean surfaces. In contrast, low-fertility pollen grains frequently appeared shrunken and deformed, with widened germination furrows and visible exudates. Based on these findings, the following recommendations are proposed: ① Prioritize the use of germplasms with pollen germination rates >80% as pollinizers; ② Establish a rapid screening system based on pollen morphological characteristics. This study provides important scientific basis for both male germplasm selection and efficient cultivation practices in A. arguta (kiwiberry). Full article
(This article belongs to the Section Plant Development and Morphogenesis)
Show Figures

Figure 1

19 pages, 3532 KiB  
Article
Machine Learning Prediction of CO2 Diffusion in Brine: Model Development and Salinity Influence Under Reservoir Conditions
by Qaiser Khan, Peyman Pourafshary, Fahimeh Hadavimoghaddam and Reza Khoramian
Appl. Sci. 2025, 15(15), 8536; https://doi.org/10.3390/app15158536 (registering DOI) - 31 Jul 2025
Viewed by 98
Abstract
The diffusion coefficient (DC) of CO2 in brine is a key parameter in geological carbon sequestration and CO2-Enhanced Oil Recovery (EOR), as it governs mass transfer efficiency and storage capacity. This study employs three machine learning (ML) models—Random Forest (RF), [...] Read more.
The diffusion coefficient (DC) of CO2 in brine is a key parameter in geological carbon sequestration and CO2-Enhanced Oil Recovery (EOR), as it governs mass transfer efficiency and storage capacity. This study employs three machine learning (ML) models—Random Forest (RF), Gradient Boost Regressor (GBR), and Extreme Gradient Boosting (XGBoost)—to predict DC based on pressure, temperature, and salinity. The dataset, comprising 176 data points, spans pressures from 0.10 to 30.00 MPa, temperatures from 286.15 to 398.00 K, salinities from 0.00 to 6.76 mol/L, and DC values from 0.13 to 4.50 × 10−9 m2/s. The data was split into 80% for training and 20% for testing to ensure reliable model evaluation. Model performance was assessed using R2, RMSE, and MAE. The RF model demonstrated the best performance, with an R2 of 0.95, an RMSE of 0.03, and an MAE of 0.11 on the test set, indicating high predictive accuracy and generalization capability. In comparison, GBR achieved an R2 of 0.925, and XGBoost achieved an R2 of 0.91 on the test set. Feature importance analysis consistently identified temperature as the most influential factor, followed by salinity and pressure. This study highlights the potential of ML models for predicting CO2 diffusion in brine, providing a robust, data-driven framework for optimizing CO2-EOR processes and carbon storage strategies. The findings underscore the critical role of temperature in diffusion behavior, offering valuable insights for future modeling and operational applications. Full article
Show Figures

Figure 1

15 pages, 522 KiB  
Article
High Humidity Storage Close to Saturation Reduces Kiwifruit Postharvest Rots and Maintains Quality
by Fabio Buonsenso, Simona Prencipe, Silvia Valente, Giulia Remolif, Jean de Barbeyrac, Alberto Sardo and Davide Spadaro
Horticulturae 2025, 11(8), 883; https://doi.org/10.3390/horticulturae11080883 (registering DOI) - 31 Jul 2025
Viewed by 148
Abstract
Postharvest storage of kiwifruit requires the implementation of precise environmental conditions to maintain fruit quality and reduce decay. In this research, conducted over two years, we examined whether the storage conditions, characterized by low temperature (1 ± 1 °C) and ultra-high relative humidity [...] Read more.
Postharvest storage of kiwifruit requires the implementation of precise environmental conditions to maintain fruit quality and reduce decay. In this research, conducted over two years, we examined whether the storage conditions, characterized by low temperature (1 ± 1 °C) and ultra-high relative humidity (higher than 99%, close to saturation), generated by the Xedavap® machine from Xeda International, were effective in maintaining the fruit quality and reducing postharvest rots compared to standard storage conditions, characterized by involved low temperature (1 ± 1 °C) and high relative humidity (98%). Kiwifruits preserved under the experimental conditions exhibited a significantly lower rot incidence after 60 days of storage, with the treated fruits showing 4.48% rot compared to 23.03% under the standard conditions in the first year, using inoculated fruits, and 6.30% versus 9.20% in the second year using naturally infected fruits, respectively. After shelf life (second year only), rot incidence remained significantly lower in the treated fruits (12.80%) compared to the control (42.30%). Additionally, quality analyses showed better parameters when using the Xedavap® system over standard methods. The ripening process was effectively slowed down, as indicated by changes in the total soluble solids, firmness, and titratable acidity compared to the control. These results highlight the potential of ultra-high relative humidity conditions to reduce postharvest rot, extend the shelf life, and enhance the marketability of kiwifruit, presenting a promising and innovative solution for the horticultural industry. Full article
Show Figures

Graphical abstract

24 pages, 1087 KiB  
Review
After-Treatment Technologies for Emissions of Low-Carbon Fuel Internal Combustion Engines: Current Status and Prospects
by Najunzhe Jin, Wuqiang Long, Chunyang Xie and Hua Tian
Energies 2025, 18(15), 4063; https://doi.org/10.3390/en18154063 (registering DOI) - 31 Jul 2025
Viewed by 241
Abstract
In response to increasingly stringent emission regulations, low-carbon fuels have received significant attention as sustainable energy sources for internal combustion engines. This study investigates four representative low-carbon fuels, methane, methanol, hydrogen, and ammonia, by systematically summarizing their combustion characteristics and emission profiles, along [...] Read more.
In response to increasingly stringent emission regulations, low-carbon fuels have received significant attention as sustainable energy sources for internal combustion engines. This study investigates four representative low-carbon fuels, methane, methanol, hydrogen, and ammonia, by systematically summarizing their combustion characteristics and emission profiles, along with a review of existing after-treatment technologies tailored to each fuel type. For methane engines, unburned hydrocarbon (UHC) produced during low-temperature combustion exhibits poor oxidation reactivity, necessitating integration of oxidation strategies such as diesel oxidation catalyst (DOC), particulate oxidation catalyst (POC), ozone-assisted oxidation, and zoned catalyst coatings to improve purification efficiency. Methanol combustion under low-temperature conditions tends to produce formaldehyde and other UHCs. Due to the lack of dedicated after-treatment systems, pollutant control currently relies on general-purpose catalysts such as three-way catalyst (TWC), DOC, and POC. Although hydrogen combustion is carbon-free, its high combustion temperature often leads to elevated nitrogen oxide (NOx) emissions, requiring a combination of optimized hydrogen supply strategies and selective catalytic reduction (SCR)-based denitrification systems. Similarly, while ammonia offers carbon-free combustion and benefits from easier storage and transportation, its practical application is hindered by several challenges, including low ignitability, high toxicity, and notable NOx emissions compared to conventional fuels. Current exhaust treatment for ammonia-fueled engines primarily depends on SCR, selective catalytic reduction-coated diesel particulate filter (SDPF). Emerging NOx purification technologies, such as integrated NOx reduction via hydrogen or ammonia fuel utilization, still face challenges of stability and narrow effective temperatures. Full article
(This article belongs to the Special Issue Engine Combustion Characteristics, Performance, and Emission)
Show Figures

Figure 1

21 pages, 2015 KiB  
Article
Enhancing Fucoxanthin Pickering Emulsion Stability and Encapsulation with Seaweed Cellulose Nanofibrils Using High-Pressure Homogenization
by Ying Tuo, Mingrui Wang, Yiwei Yu, Yixiao Li, Xingyuan Hu, Long Wu, Zongpei Zhang, Hui Zhou and Xiang Li
Mar. Drugs 2025, 23(8), 311; https://doi.org/10.3390/md23080311 - 30 Jul 2025
Viewed by 138
Abstract
Poor solubility and bioavailability have limited the application of fucoxanthin in drug and functional food processing. In order to encapsulate fucoxanthin in delivery systems, in this study, cellulose was isolated from industrial brown algae residues and high-pressure homogenized into cellulose nanofibrils (CNFs). Then, [...] Read more.
Poor solubility and bioavailability have limited the application of fucoxanthin in drug and functional food processing. In order to encapsulate fucoxanthin in delivery systems, in this study, cellulose was isolated from industrial brown algae residues and high-pressure homogenized into cellulose nanofibrils (CNFs). Then, fucoxanthin was encapsulated into the Pickering emulsion stabilized by the CNFs. The effect of high-pressure homogenization on the characteristics of cellulose and the stability of fucoxanthin emulsion was evaluated. The results indicated that CNFs prepared at 105 MPa had a diameter of 87 nm and exhibited high zeta potential and thermal stability. Encapsulation efficiency peaked at 70.8% with 1.0 mg/mL fucoxanthin, and after three freeze–thaw cycles the encapsulation efficiency was higher than 60%. The DPPH scavenging activity after 12 days’ storage at 4 °C was still 42%. Furthermore, the Pickering emulsion with 1.0 mg/mL fucoxanthin showed high stability and antioxidant activity under different pH values, salinity, temperature, and UV light exposure duration. The CNFs effectively protected fucoxanthin from degradation, offering a novel delivery system for marine bioactive compounds. To the best of our knowledge, this is the first study on the fucoxanthin delivery system of Pickering emulsion stabilized by the CNFs. Such emulsion might benefit the encapsulation and release of bioactive components in marine drugs. Full article
(This article belongs to the Special Issue Marine Carotenoids: Properties, Health Benefits, and Applications)
Show Figures

Figure 1

17 pages, 1501 KiB  
Article
Topology-Optimized Latent Heat Battery: Benchmarking Against a High-Performance Geometry
by Arsham Mortazavi, Matteo Morciano, Pietro Asinari and Eliodoro Chiavazzo
Energies 2025, 18(15), 4054; https://doi.org/10.3390/en18154054 - 30 Jul 2025
Viewed by 218
Abstract
This study presents a topology optimization approach to enhance the discharging performance of a latent heat thermal energy storage (LHTES) system using paraffin wax as the phase-change material (PCM) and a high-conductivity aluminium structure. Solidification is primarily governed by conduction, and the average [...] Read more.
This study presents a topology optimization approach to enhance the discharging performance of a latent heat thermal energy storage (LHTES) system using paraffin wax as the phase-change material (PCM) and a high-conductivity aluminium structure. Solidification is primarily governed by conduction, and the average heat transfer rate during this process is significantly lower than during melting; therefore, the optimization focused on the discharge phase. In a previous study, a novel LHTES device based on a Cartesian lattice was investigated experimentally and numerically. The validated numerical model from that study was adopted as the reference and used in a 2D topology optimization study based on the Solid Isotropic Material with Penalization (SIMP) method. The objective was to promote more uniform temperature distribution and reduce discharging time while maintaining the same aluminium volume fraction as in the reference device. Topology optimization produced a branched fin design, which was then extruded into a 3D model for comparison with the reference geometry. The optimized design resulted in improved temperature uniformity and a faster solidification process. Specifically, the time required to solidify 90% of the PCM was reduced by 12.3%, while the time to release 90% of the latent heat during the solidification process improved by 7.6%. Full article
Show Figures

Figure 1

10 pages, 216 KiB  
Article
Migration of Phthalates and Bisphenol A from Polyethylene Terephthalate Bottles into Beer During Storage at Controlled Temperatures
by Krešimir Mastanjević, Brankica Kartalović, Dragan Kovačević, Vinko Krstanović and Kristina Habschied
Foods 2025, 14(15), 2689; https://doi.org/10.3390/foods14152689 - 30 Jul 2025
Viewed by 215
Abstract
PET (polyethylene terephthalate) bottles contain different chemicals that can act as endocrine disruptors. Phthalates and bisphenol A can be found in various foods and beverages packaged in PET packaging or aluminum cans. For some phthalates, the European Union has established specified tolerable daily [...] Read more.
PET (polyethylene terephthalate) bottles contain different chemicals that can act as endocrine disruptors. Phthalates and bisphenol A can be found in various foods and beverages packaged in PET packaging or aluminum cans. For some phthalates, the European Union has established specified tolerable daily intakes for humans. This study aimed to establish the changes, types of phthalates (dimethyl phthalate, diethyl phthalate, diisobutyl phthalate, dibutyl phthalate, bis(2-ethylhexyl) phthalate, di-n-octyl phthalate), and bisphenol A concentrations in beer packaged in PET bottles and stored at two temperatures (4 °C and 20 °C) for four months. Beers were obtained from a local brewery after packaging into PET bottles and stored at the designated temperatures. GC-MS analysis was performed to determine phthalates and bisphenol A. Obtained data show that beers packaged in PET bottles can contain significant amounts of bisphenol A, and that their concentration increases with storage time. Phthalates were also identified in the samples, with the highest concentration of bis(2-ethylhexyl) phthalate found in the sample kept at 20 °C after 1 month of storage, sample P5; this concentration was 164.814 µg/L. BPA was recorded with the highest concentration in sample P11, which underwent 4 months of storage at a temperature of 20 °C. Full article
25 pages, 4184 KiB  
Article
Effects of Partial Freezing and Superchilling Storage on the Quality of Beef: A Kinetic Modelling Approach
by Anjelina William Mwakosya, Graciela Alvarez and Fatou Toutie Ndoye
Foods 2025, 14(15), 2687; https://doi.org/10.3390/foods14152687 - 30 Jul 2025
Viewed by 144
Abstract
The current study explores the changes in beef quality following partial freezing and during superchilled storage, alongside chilled storage comparisons. Kinetic models were developed to predict changes in colour difference (∆E), thiobarbituric acid−reactive substances (TBARS), total volatile basic nitrogen (TVB−N), drip loss and [...] Read more.
The current study explores the changes in beef quality following partial freezing and during superchilled storage, alongside chilled storage comparisons. Kinetic models were developed to predict changes in colour difference (∆E), thiobarbituric acid−reactive substances (TBARS), total volatile basic nitrogen (TVB−N), drip loss and firmness. Beef samples were partially frozen in an air blast freezer at −30 °C for 9 min prior to storage at −5 °C, −4 °C, −2.8 °C, −1.8 °C. Chilled beef samples were directly stored at 2 °C and 6 °C without partial freezing. All samples were stored for 21 days. The lightness (L*), redness (a*), yellowness (b*) and colour difference (∆E) were significantly lower in superchilled storage samples compared to chilled storage samples. The pH of beef samples increased gradually over time (p < 0.05). TBARS, TVB−N and drip loss increased while firmness decreased with the increase in storage time in both storage conditions (p < 0.05). Overall, beef quality was affected by both storage duration and temperature. Firmness followed the first order kinetic model; drip loss, TVB−N, TBARS and colour difference (∆E) fitted the zero−order kinetic model. Temperature dependence was adequately modelled using Arrhenius−type equation with the activation energy values of 110.111, 52.870, 68.553, 119.480, 47.301 kJ/mol for drip loss, firmness, TBARS, TVB−N and colour difference (∆E), respectively. The models demonstrated strong predictive performance, with RMSE and MAPE values within ±10%. The developed kinetic models successfully predicted quality changes within the −5 °C to 6 °C temperature range. Full article
(This article belongs to the Section Food Engineering and Technology)
Show Figures

Figure 1

18 pages, 2433 KiB  
Article
Effect of Preharvest Aluminum-Coated Paper Bagging on Postharvest Quality, Storability, and Browning Behavior of ‘Afrata Volou’ Quince
by Triantafyllia Georgoudaki, Persefoni Maletsika and George D. Nanos
Horticulturae 2025, 11(8), 881; https://doi.org/10.3390/horticulturae11080881 - 30 Jul 2025
Viewed by 232
Abstract
As consumer preferences tend toward safer, chemical residue-free, and nutritionally rich fruits, preharvest bagging has gained attention as a sustainable method for improving fruit quality and protecting produce from environmental and biological stressors and pesticide residues. This study assessed the impact of preharvest [...] Read more.
As consumer preferences tend toward safer, chemical residue-free, and nutritionally rich fruits, preharvest bagging has gained attention as a sustainable method for improving fruit quality and protecting produce from environmental and biological stressors and pesticide residues. This study assessed the impact of preharvest bagging using paper bags with inner aluminum coating on the physicochemical traits, storability, and browning susceptibility after cutting or bruising of ‘Afrata Volou’ quince (Cydonia oblonga Mill.) fruit grown in central Greece. Fruits were either bagged or left unbagged approximately 60 days before harvest, and evaluations were conducted at harvest and after three months of cold storage, plus two days of shelf-life. Fruit bagging reduced the quince’s flesh temperature on the tree crown. Bagging had minor effects on fruit and nutritional quality, except for more yellow skin and higher titratable acidity (TA). Also, at harvest, bagging did not significantly affect fruit flesh browning after cutting or bruising. After three months of storage, unbagged and bagged quince fruit developed more yellow skin color, without significant alterations in most quality characteristics and nutritional value, but increased total tannin content (TTC). After three months of storage, the quince flesh color determined immediately after cutting or bruising was brighter and more yellowish compared to that at harvest, due to continuation of fruit ripening, but it darkened faster with time after cutting or skin removal. Therefore, fruit bagging appears to be a sustainable practice for improving the aesthetic and some chemical quality characteristics of quince, particularly after storage, without negative impacts on other characteristics such as texture and phenolic content. Full article
(This article belongs to the Special Issue Advances in Tree Crop Cultivation and Fruit Quality Assessment)
Show Figures

Figure 1

Back to TopTop