Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (154)

Search Parameters:
Keywords = stiff clay

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 13962 KB  
Article
Axial Compression and Uplift Performance of Continuous Helix Screw Piles
by Ahmed Mneina, Mohamed Hesham El Naggar and Osama Drbe
Buildings 2025, 15(19), 3620; https://doi.org/10.3390/buildings15193620 - 9 Oct 2025
Viewed by 214
Abstract
This study investigates the axial performance of continuous helix screw piles compared to helical piles through full-scale compression and tension load testing in layered soils. Twenty-three piles were installed and tested. The results demonstrate that screw piles can achieve considerable axial capacity with [...] Read more.
This study investigates the axial performance of continuous helix screw piles compared to helical piles through full-scale compression and tension load testing in layered soils. Twenty-three piles were installed and tested. The results demonstrate that screw piles can achieve considerable axial capacity with lower installation torque than helical piles, particularly under tensile loading. The capacity-torque relationship for screw piles was more consistent across both compression and tension, likely due to reduced soil disturbance from the smaller helix projection. Strain gauge measurements indicated that screw piles act primarily as friction piles with the threaded shaft carrying most of the load, especially in stiff clay. On the other hand, the smooth portion of the pile shaft contributed only marginally to resistance in compression and none in tension. The calculated capacity based on theoretical equations aligned well with field results in compression, with screw piles best represented by cylindrical shear failure in sand and a combination of cylindrical shear and individual bearing failure in clay. However, there is greater variability between calculated and measured uplift capacity, possibly due to soil disturbance effects. Additionally, the commonly used helix spacing ratio (S/D) was found to be less applicable to screw piles in predicting failure mode due to their smaller shaft-to-helix diameter difference. Full article
(This article belongs to the Special Issue Research on Sustainable Materials in Building and Construction)
Show Figures

Figure 1

18 pages, 5916 KB  
Article
Settlement Relevant Load Combinations and Force Redistribution in Structural Design
by Christian Wallner, Jakob Resch and Dirk Schlicke
Buildings 2025, 15(19), 3596; https://doi.org/10.3390/buildings15193596 - 7 Oct 2025
Viewed by 227
Abstract
Settlement-relevant load combinations play a critical role in the serviceability design of buildings, particularly for structures on soils with time-dependent deformation behavior. While permanent loads must be fully considered, the contribution of variable actions depends on their duration relative to soil response. This [...] Read more.
Settlement-relevant load combinations play a critical role in the serviceability design of buildings, particularly for structures on soils with time-dependent deformation behavior. While permanent loads must be fully considered, the contribution of variable actions depends on their duration relative to soil response. This study investigates suitable settlement-relevant load combinations and their influence on the restrained load redistribution within buildings, based on parametric finite element analyses of wall-type and frame-type structures on sand, silt, and clay using PLAXIS 3D (Version 2024.3). Results show that structural stiffness significantly affects force redistribution due to settlements: stiffer structures exhibit greater redistribution, while soft soils generate higher absolute restraining forces but are less sensitive to load combinations. Based on these findings, the reduced characteristic load combination (including αn) is recommended for coarse-grained, drained soils, as it balances safety and realistic deformation. For fine-grained, low-permeability soils, the quasi-permanent combination should be applied to capture long-term consolidation effects. Short-term load variations after consolidation have negligible impact and should be addressed through safety factors rather than separate settlement analyses. These recommendations provide a clear and practical framework for selecting settlement-relevant load combinations, enhancing reliability and efficiency in structural design. Full article
(This article belongs to the Special Issue Soil–Structure Interactions for Civil Infrastructure)
Show Figures

Figure 1

16 pages, 3465 KB  
Article
Effects of Microscopic Properties and Calibration on the Mechanical Behavior of Cohesive Soil-Rock Mixtures Based on Discrete Element Method
by Yong Huang, Min Deng, Fei Yao, Wei Luo and Lianheng Zhao
Appl. Sci. 2025, 15(19), 10529; https://doi.org/10.3390/app151910529 - 29 Sep 2025
Viewed by 214
Abstract
Selecting a reasonable mesoscopic contact model and corresponding contact parameters is a key problem in discrete element simulation. In order to characterize the mesoscopic contact characteristics between particles in cohesive soil–rock mixture (CSRM), a set of laboratory consolidated and undrained triaxial tests were [...] Read more.
Selecting a reasonable mesoscopic contact model and corresponding contact parameters is a key problem in discrete element simulation. In order to characterize the mesoscopic contact characteristics between particles in cohesive soil–rock mixture (CSRM), a set of laboratory consolidated and undrained triaxial tests were conducted on remolded samples of clay and CSRM collected in situ. Based on the experiments, 2D discrete element models of clay and CSRM were established, respectively. Considering the difference in the mechanical characteristics between soil particles and between soil and rock particles, different types of contact model were applied. The effects of the contact stiffness, bond strength, and friction coefficient between soil particles and between soil and rock particles on the stress–strain curves of both clay and CSRM numerical samples were sequentially studied by parameter sensitivity analysis. Results show that the contact stiffness and friction coefficient between soil particles affect the initial tangent modulus, the peak stress and the post-peak residual stress of the clay sample, while the bonding strength only affects its peak stress and residual stress. However, the mesoscopic contact parameters between soil and rock particles have little effect on the initial tangent modulus of CSRM sample but have a certain impact on the development of stress in the plastic stage, among which the influences of normal bonding strength and friction coefficient between soil and rock particles are more obvious. Finally, according to the comparison between the laboratory test results and the corresponding numerical simulation results in both clay and CSRM samples, mesoscopic contact parameters in CSRM were calibrated. Full article
(This article belongs to the Special Issue Mechanical Behaviour of Unsaturated Soil)
Show Figures

Figure 1

24 pages, 11795 KB  
Article
Effects of Sodium Chloride in Soil Stabilization: Improving the Behavior of Clay Deposits in Northern Cartagena, Colombia
by Jair Arrieta Baldovino, Jesús David Torres Parra and Yamid E. Nuñez de la Rosa
Sustainability 2025, 17(19), 8715; https://doi.org/10.3390/su17198715 - 28 Sep 2025
Viewed by 291
Abstract
This research evaluates the stabilization of a clay collected from the northern expansion zone of Cartagena de Indias, Colombia. Laboratory analyses, including particle size distribution, Atterberg limits, compaction, specific gravity, and XRF/XRD, classified the soil as a highly plastic clay (CH) with moderate [...] Read more.
This research evaluates the stabilization of a clay collected from the northern expansion zone of Cartagena de Indias, Colombia. Laboratory analyses, including particle size distribution, Atterberg limits, compaction, specific gravity, and XRF/XRD, classified the soil as a highly plastic clay (CH) with moderate dispersivity, as confirmed by pinhole and crumb tests. The soil was treated with 3–9% lime, with and without the addition of NaCl (0% and 2%), and tested for unconfined compressive strength (qu), small-strain stiffness (Go), and microstructural properties under curing periods of 14 and 28 days at two compaction densities. Results showed that lime significantly improved mechanical behavior, while the inclusion of NaCl further enhanced qu (up to 185%) and Go (up to 3-fold), particularly at higher lime contents and curing times. Regression models demonstrated that both qu and Go follow power-type relationships with the porosity-to-lime index, with consistent exponents (−4.75 and −5.23, respectively) and high coefficients of determination (R2 > 0.79). Normalization of the data yielded master curves with R2 values above 0.90, confirming the robustness of the porosity-to-lime framework as a predictive tool. The Go/qu ratio obtained (3737.4) falls within the range reported for cemented geomaterials, reinforcing its relevance for comparative analysis. SEM observations revealed the transition from a porous, weakly aggregated structure to a dense matrix filled with C–S–H and C–A–H gels, corroborating the macro–micro correlation. Overall, the combined use of lime and NaCl effectively converts dispersive clays into non-dispersive, mechanically improved geomaterials, providing a practical and sustainable approach for stabilizing problematic coastal soils in tropical environments. Full article
Show Figures

Figure 1

23 pages, 4205 KB  
Article
The Effects of Waste Tire Materials and Aerated Concrete Additives for Innovative Soil Stabilization
by Harun Devlet and Ertuğrul Ordu
Buildings 2025, 15(19), 3488; https://doi.org/10.3390/buildings15193488 - 26 Sep 2025
Viewed by 371
Abstract
Soil stabilization is a key process in geotechnical engineering, particularly for expansive clay soils that exhibit low strength and high volume-change potential. This study examines the use of waste tire powder (WTP) and autoclaved aerated concrete powder (ACP) as sustainable soil additives to [...] Read more.
Soil stabilization is a key process in geotechnical engineering, particularly for expansive clay soils that exhibit low strength and high volume-change potential. This study examines the use of waste tire powder (WTP) and autoclaved aerated concrete powder (ACP) as sustainable soil additives to improve mechanical performance while promoting sustainable waste recycling. Clayey soils from the Çorlu/Tekirdağ region were blended with varying proportions of WTP and ACP, and their properties were evaluated through Standard Proctor compaction, unconfined compressive strength (UCS), and California bearing ratio (CBR) tests. The results showed that UCS increased from 3.7 MPa to 4.5 MPa with 5% ACP, while CBR values rose from 21.3% to 29.8% with 17% ACP addition. Incorporating 2% WTP enhanced elasticity and reduced brittleness, although higher WTP contents (4%) lowered cohesion and strength. The optimum formulation, 2% WTP + 5% ACP, produced balanced improvements in strength, stiffness, and deformation resistance. The novelty of this research lies in establishing a hybrid stabilization mechanism that combines the elastic contribution of WTP with the pozzolanic bonding of ACP. Beyond technical improvements, recycling these industrial by-products mitigates environmental pollution, reduces disposal costs, and provides economic benefits. Thus, this study advances both the scientific understanding and practical application of sustainable soil stabilization. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

23 pages, 7629 KB  
Article
Mechanical Properties and Energy Evolution Characteristics of Crushed Quartz Sandstone After Grouting Reinforcement
by Shaofeng Wang, Jianlong Shi, Zilong Zhou and Jinbiao Wu
Appl. Sci. 2025, 15(18), 10217; https://doi.org/10.3390/app151810217 - 19 Sep 2025
Viewed by 337
Abstract
Grouting-reinforced crushed rock is widely used for stability control in tunneling and deep mining, yet the coupled influence of particle size, curing time, grouting pressure, and clay content on post-grouting mechanical behavior remains insufficiently quantified. This study investigates the uniaxial compressive response and [...] Read more.
Grouting-reinforced crushed rock is widely used for stability control in tunneling and deep mining, yet the coupled influence of particle size, curing time, grouting pressure, and clay content on post-grouting mechanical behavior remains insufficiently quantified. This study investigates the uniaxial compressive response and energy-evolution characteristics of grouting-reinforced crushed quartz sandstone under a multi-factor experimental program. Using a custom test setup and standardized loading protocol, stress–strain responses were recorded and decomposed into elastic-strain energy and dissipated energy to interpret the failure evolution. Results reveal systematic trends and interactions among the four factors in terms of strength, stiffness, and energy evolution, demonstrating that energy-based indices provide a robust lens for interpreting failure processes in grouting-reinforced crushed rock. These findings offer practical insights for optimizing grouting parameters for construction and post-grouting stability assessment in underground engineering. Full article
Show Figures

Figure 1

23 pages, 5542 KB  
Article
Laboratory Investigation on Shear Modulus and Damping Properties of Port Soft Clay Improved by Dynamic Compaction
by Chenyu Hou, Yonglai Zheng, Pengyu Zhu, Zhengxie Zhang, Xin Lan, Wenguang Liang and Fengling Jia
Appl. Sci. 2025, 15(17), 9421; https://doi.org/10.3390/app15179421 - 27 Aug 2025
Viewed by 681
Abstract
Dynamic compaction has been widely applied to reinforce soft soils in port areas due to its high efficiency and cost-effectiveness. However, a comprehensive understanding of the deformation mechanisms and stiffness evolution of treated soils under static and dynamic loading remains limited. This study [...] Read more.
Dynamic compaction has been widely applied to reinforce soft soils in port areas due to its high efficiency and cost-effectiveness. However, a comprehensive understanding of the deformation mechanisms and stiffness evolution of treated soils under static and dynamic loading remains limited. This study integrated one-dimensional consolidation tests, resonant column tests, and bender element tests to systematically investigate the mechanical behavior of soft clay before and after dynamic compaction under varying stress levels and loading frequencies. The results show that dynamic compaction significantly enhances the compression modulus and consolidation stability of soft clay while reducing the settlement rate during primary consolidation. The shear modulus exhibits nonlinear degradation with increasing strain, whereas the damping ratio increases rapidly before reaching a plateau, indicating typical strain-dependent behavior. A three-parameter model and a second-order polynomial model effectively characterize the degradation of the shear modulus and the evolution of the damping behavior, respectively. Moreover, the strong consistency between the resonant column and bender element test results enables continuous characterization of the shear stiffness across small- to intermediate-strain ranges. These findings provide theoretical insight and practical guidance for modeling the dynamic response of soft clay and evaluating the effectiveness of dynamic compaction as a ground improvement technique. Full article
(This article belongs to the Special Issue Technical Advances in Hydraulic Structure)
Show Figures

Figure 1

17 pages, 2616 KB  
Article
Investigation of the Dynamic Characterization of Traditional and Modern Building Materials Using an Impact Excitation Test
by Anil Ozdemir
Buildings 2025, 15(15), 2682; https://doi.org/10.3390/buildings15152682 - 30 Jul 2025
Viewed by 481
Abstract
This study presents a comprehensive non-destructive evaluation of a broad range of construction materials using the impulse excitation of vibration (IEV) technique. Tested specimens included low- and normal-strength concrete, fiber-reinforced concrete (with basalt, polypropylene, and glass fibers), lime mortars (NHL-2 and -3.5), plaster, [...] Read more.
This study presents a comprehensive non-destructive evaluation of a broad range of construction materials using the impulse excitation of vibration (IEV) technique. Tested specimens included low- and normal-strength concrete, fiber-reinforced concrete (with basalt, polypropylene, and glass fibers), lime mortars (NHL-2 and -3.5), plaster, and clay bricks (light and dark). Compressive and flexural strength tests complemented dynamic resonance testing on the same samples to ensure full mechanical characterization. Flexural and torsional resonance frequencies were used to calculate dynamic elastic modulus, shear modulus, and Poisson’s ratio. Strong correlations were observed between dynamic elastic modulus and shear modulus, supporting the compatibility of dynamic results with the classical elasticity theory. Flexural frequencies were more sensitive to material differences than torsional ones. Fiber additives, particularly basalt and polypropylene, significantly improved dynamic stiffness, increasing the dynamic elastic modulus/compressive strength ratio by up to 23%. In contrast, normal-strength concrete exhibited limited stiffness improvement despite higher strength. These findings highlight the reliability of IEV in mechanical properties across diverse material types and provide comparative reference data for concrete and masonry applications. Full article
(This article belongs to the Special Issue Advanced Studies in Structure Materials—2nd Edition)
Show Figures

Figure 1

22 pages, 5215 KB  
Article
Analysis and Modeling of Elastic and Electrical Response Characteristics of Tight Sandstone in the Kuqa Foreland Basin of the Tarim Basin
by Juanli Cui, Kui Xiang, Xiaolong Tong, Yanling Shi, Zuzhi Hu and Liangjun Yan
Minerals 2025, 15(7), 764; https://doi.org/10.3390/min15070764 - 21 Jul 2025
Viewed by 356
Abstract
This study addresses the limitations of conventional evaluation methods caused by low porosity, strong heterogeneity, and complex pore structures in tight sandstone reservoirs. Through integrated rock physics experiments and multi-physical field modeling, the research systematically investigates the coupled response mechanisms between electrical and [...] Read more.
This study addresses the limitations of conventional evaluation methods caused by low porosity, strong heterogeneity, and complex pore structures in tight sandstone reservoirs. Through integrated rock physics experiments and multi-physical field modeling, the research systematically investigates the coupled response mechanisms between electrical and elastic parameters. The experimental approach includes pore structure characterization, quantitative mineral composition analysis, resistivity and polarizability measurements under various saturation conditions, P- and S-wave velocity testing, and scanning electron microscopy (SEM) imaging. The key findings show that increasing porosity leads to significant reductions in resistivity and elastic wave velocities, while also increasing surface conductivity. Specifically, clay minerals enhance surface conductivity through interfacial polarization effects and decrease rock stiffness, which exacerbates wave velocity attenuation. Furthermore, resistivity exhibits a nonlinear negative correlation with water saturation, with sharp increases at low saturation levels due to the disruption of conductive pathways. By integrating the Modified Generalized Effective Medium Theory of Induced Polarization (MGEMTIP) and Kuster–Toksöz models, this study establishes quantitative relationships between porosity, saturation, and electrical/elastic parameters, and constructs cross-plot templates that correlate elastic wave velocities with resistivity and surface conductivity. These analyses reveal that high-porosity, high-saturation zones are characterized by lower resistivity and wave velocities, coupled with significantly higher surface conductivity. The proposed methodology significantly improves the accuracy of reservoir evaluation and enhances fluid identification capabilities, providing a solid theoretical foundation for the efficient exploration and development of tight sandstone reservoirs. Full article
(This article belongs to the Special Issue Electromagnetic Inversion for Deep Ore Explorations)
Show Figures

Figure 1

17 pages, 3127 KB  
Article
The Impact of Pile Diameter on the Performance of Single Piles: A Kinematic Analysis Based on the TBEC 2018 Guidelines
by Mehmet Hayrullah Akyıldız, Mehmet Salih Keskin, Senem Yılmaz Çetin, Sabahattin Kaplan and Gültekin Aktaş
Buildings 2025, 15(14), 2540; https://doi.org/10.3390/buildings15142540 - 19 Jul 2025
Viewed by 438
Abstract
This study investigates the effect of pile diameter on the seismic performance of single piles using the kinematic interaction framework outlined in Method III of the Turkish Building Earthquake Code TBEC-2018. Pile diameters of 65 cm, 80 cm, and 100 cm were analyzed [...] Read more.
This study investigates the effect of pile diameter on the seismic performance of single piles using the kinematic interaction framework outlined in Method III of the Turkish Building Earthquake Code TBEC-2018. Pile diameters of 65 cm, 80 cm, and 100 cm were analyzed under four different soil profiles—soft clay, stiff clay, very loose sand-A, and very loose sand-B. The methodology integrated nonlinear spring modeling (P-y, T-z, Q-z) for soil behavior, one-dimensional site response analysis using DEEPSOIL, and structural analysis with SAP2000. The simulation results showed that increasing the pile diameter led to a significant rise in internal forces: the maximum bending moment increased up to 4.0 times, and the maximum shear force increased 4.5 times from the smallest to the largest pile diameter. Horizontal displacements remained nearly constant, whereas vertical displacements decreased by almost 50%, indicating improved pile–soil stiffness interaction. The depth of the maximum moment shifted according to the soil stiffness, and stress concentrations were observed at the interfaces of stratified layers. The findings underline the importance of considering pile geometry and soil layering in seismic design. This study provides quantitative insights into the trade-off between displacement control and force demand in seismic pile design, contributing to safer foundation strategies in earthquake-prone regions. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

15 pages, 3145 KB  
Article
Probabilistic Prediction of Spudcan Bearing Capacity in Stiff-over-Soft Clay Based on Bayes’ Theorem
by Zhaoyu Sun, Pan Gao, Yanling Gao, Jianze Bi and Qiang Gao
J. Mar. Sci. Eng. 2025, 13(7), 1344; https://doi.org/10.3390/jmse13071344 - 14 Jul 2025
Viewed by 375
Abstract
During offshore operations of jack-up platforms, the spudcan may experience sudden punch-through failure when penetrating from an overlying stiff clay layer into the underlying soft clay, posing significant risks to platform safety. Conventional punch-through prediction methods, which rely on predetermined soil parameters, exhibit [...] Read more.
During offshore operations of jack-up platforms, the spudcan may experience sudden punch-through failure when penetrating from an overlying stiff clay layer into the underlying soft clay, posing significant risks to platform safety. Conventional punch-through prediction methods, which rely on predetermined soil parameters, exhibit limited accuracy as they fail to account for uncertainties in seabed stratigraphy and soil properties. To address this limitation, based on a database of centrifuge model tests, a probabilistic prediction framework for the peak resistance and corresponding depth is developed by integrating empirical prediction formulas based on Bayes’ theorem. The proposed Bayesian methodology effectively refines prediction accuracy by quantifying uncertainties in soil parameters, spudcan geometry, and computational models. Specifically, it establishes prior probability distributions of peak resistance and depth through Monte Carlo simulations, then updates these distributions in real time using field monitoring data during spudcan penetration. The results demonstrate that both the recommended method specified in ISO 19905-1 and an existing deterministic model tend to yield conservative estimates. This approach can significantly improve the predicted accuracy of the peak resistance compared with deterministic methods. Additionally, it shows that the most probable failure zone converges toward the actual punch-through point as more monitoring data is incorporated. The enhanced prediction capability provides critical decision support for mitigating punch-through potential during offshore jack-up operations, thereby advancing the safety and reliability of marine engineering practices. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

21 pages, 4581 KB  
Article
Deformation Response and Load Transfer Mechanism of Collar Monopile Foundations in Saturated Cohesive Soils
by Zhuang Liu, Lunliang Duan, Yankun Zhang, Linhong Shen and Pei Yuan
Buildings 2025, 15(14), 2392; https://doi.org/10.3390/buildings15142392 - 8 Jul 2025
Viewed by 450
Abstract
Collar monopile foundation is a new type of offshore wind power foundation. This paper explores the horizontal bearing performance of collar monopile foundation in saturated cohesive soil through a combination of physical experiments and numerical simulations. After analyzing the deformation characteristics of the [...] Read more.
Collar monopile foundation is a new type of offshore wind power foundation. This paper explores the horizontal bearing performance of collar monopile foundation in saturated cohesive soil through a combination of physical experiments and numerical simulations. After analyzing the deformation characteristics of the pile–soil system under horizontal load through static load tests, horizontal cyclic loading tests were conducted at different cycles to study the cumulative deformation law of the collar monopile. Based on a stiffness degradation model for soft clay, a USDFLD subroutine was developed in Fortran and embedded in ABAQUS. Coupled with the Mohr–Coulomb criterion, it was used to simulate the deformation behavior of the collar monopile under horizontal cyclic loading. The numerical model employed the same geometric dimensions and boundary conditions as the physical test, and the simulated cumulative pile–head displacement under 4000 load cycles showed good agreement with the experimental results, thereby verifying the rationality and reliability of the proposed simulation method. Through numerical simulation, the distribution characteristics of bending moment and the shear force of collar monopile foundation were studied, and the influence of pile shaft and collar on the horizontal bearing capacity of collar monopile foundation at different loading stages was analyzed. The results show that as the horizontal load increases, cracks gradually appear at the bottom of the collar and in the surrounding soil. The soil disturbance caused by the sliding and rotation of the collar will gradually increase, leading to plastic failure of the surrounding soil and reducing the bearing capacity. The excess pore water pressure in shallow soil increases rapidly in the early cycle and then gradually decreases with the formation of drainage channels. Deep soil may experience negative pore pressure, indicating the presence of a suction effect. This paper can provide theoretical support for the design optimization and performance evaluation of collar monopile foundations in offshore wind power engineering applications. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

21 pages, 3863 KB  
Article
Zeta Potential as a Key Indicator of Network Structure and Rheological Behavior in Smectite Clay Dispersions
by Hiroshi Kimura, Haruka Tanabe and Susumu Shinoki
Fluids 2025, 10(7), 178; https://doi.org/10.3390/fluids10070178 - 6 Jul 2025
Cited by 1 | Viewed by 758
Abstract
Smectite clay minerals are known to readily form thixotropic physical gels in aqueous media, even at low volume fractions. Although the rheological properties of these gels are closely related to the microstructure of the network, the influence of the clay’s physicochemical characteristics remains [...] Read more.
Smectite clay minerals are known to readily form thixotropic physical gels in aqueous media, even at low volume fractions. Although the rheological properties of these gels are closely related to the microstructure of the network, the influence of the clay’s physicochemical characteristics remains insufficiently understood. In this study, we systematically investigated the relationships between particle size, cation exchange capacity, and zeta potential, and the rheological behavior of aqueous dispersions of four synthetic smectites. After thorough deionization, dispersions were prepared at controlled NaCl concentrations. We found that the zeta potential strongly correlates with the fineness of the network structure and governs macroscopic rheological responses such as viscosity, yield stress, and gelation behavior. Even under identical conditions, gel transparency and structural coarseness varied significantly among clay types. Furthermore, the storage modulus was influenced not only by network density but also by the intrinsic stiffness of the clay branches. These findings demonstrate that zeta potential serves as a unified indicator of structure and function in smectite dispersions and offer useful insights for gel design in colloidal and soft matter systems. Full article
Show Figures

Figure 1

18 pages, 8142 KB  
Article
Influence of Principal Stress Orientation on Cyclic Degradation of Soft Clay Under Storm Wave Loading
by Chengcong Hu, Feng Gao, Biao Huang, Peipei Li, Zheng Hu and Kun Pan
J. Mar. Sci. Eng. 2025, 13(7), 1227; https://doi.org/10.3390/jmse13071227 - 26 Jun 2025
Viewed by 516
Abstract
Coastal marine soft clays subjected to long-term storm wave loading often exhibit inclined initial principal stress orientation (α0) and subsequent cyclic principal stress rotation (PSR). These stress states critically influence soil mechanical behavior and failure mechanisms, threatening offshore structural stability. [...] Read more.
Coastal marine soft clays subjected to long-term storm wave loading often exhibit inclined initial principal stress orientation (α0) and subsequent cyclic principal stress rotation (PSR). These stress states critically influence soil mechanical behavior and failure mechanisms, threatening offshore structural stability. This study employs hollow cylinder apparatus testing to investigate the undrained cyclic loading behavior of reconstituted soft clay under controlled α0 and PSR conditions, simulating storm wave-induced stress paths. Results demonstrate that α0 governs permanent pore pressure and vertical strain accumulation with distinct mechanisms, e.g., a tension-dominated response with gradual pore pressure rise at α0 < 45° transitions to a compression-driven rapid strain accumulation at α0 > 45°. Rotational loading with PSR significantly intensifies permanent strain accumulation and stiffness degradation rates, exacerbating soil’s anisotropic behavior. Furthermore, the stiffness degradation index tends to uniquely correlate with the permanent axial or shear strain, which can be quantified by an exponential relationship that is independent of α0 and PSR, providing a unified framework for normalizing stiffness evolution across diverse loading paths. These findings advance the understanding of storm wave-induced degradation behavior of soft clay and establish predictive tools for optimizing marine foundation design under cyclic loading. Full article
(This article belongs to the Section Coastal Engineering)
Show Figures

Figure 1

20 pages, 8370 KB  
Article
Lateral Performance of Monopile Foundations for Offshore Wind Turbines in Clay Soils: A Finite Element Investigation
by Yazeed A. Alsharedah
J. Mar. Sci. Eng. 2025, 13(7), 1222; https://doi.org/10.3390/jmse13071222 - 25 Jun 2025
Viewed by 965
Abstract
The continued upscaling of offshore wind turbines (OWTs) necessitates the development of foundation systems capable of sustaining increased lateral loads. As monopiles remain the most widely used foundation type for OWTs, a detailed investigation into their lateral behavior and soil flow under operational [...] Read more.
The continued upscaling of offshore wind turbines (OWTs) necessitates the development of foundation systems capable of sustaining increased lateral loads. As monopiles remain the most widely used foundation type for OWTs, a detailed investigation into their lateral behavior and soil flow under operational loading is warranted. This study utilized a nonlinear three-dimensional finite element model (FEM) to assess the lateral performance of monopiles supporting a 5 MW turbine in clayey soils. The results revealed that the lateral capacity and deformation behavior are governed primarily by soil shear strength and the monopile’s length-to-diameter ratio (L/D). In softer soils, increasing the L/D ratio led to notable enhancements in lateral resistance, up to fivefold, as well as significant reductions in pile head displacement and rotation. In contrasts, monopiles in stiff clay exhibited distinct failure patterns and less sensitivity to L/D variations. Soil deformation patterns at the ultimate state varied depending on stiffness, indicating distinct failure mechanisms in soft and stiff clays. These findings highlight the importance of incorporating realistic soil behavior and geometric influences in monopile foundation design for large OWTs. Full article
(This article belongs to the Special Issue Offshore Renewable Energy, Second Edition)
Show Figures

Figure 1

Back to TopTop