Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (23)

Search Parameters:
Keywords = stepped-frequency continuous wave (SFCW)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 5335 KiB  
Article
Surface Reflection Suppression Method for Air-Coupled SFCW GPR Systems
by Primož Smogavec and Dušan Gleich
Remote Sens. 2025, 17(10), 1668; https://doi.org/10.3390/rs17101668 - 9 May 2025
Viewed by 607
Abstract
Air-coupled ground penetrating radar (GPR) systems are widely used for subsurface imaging in demining, geological surveys, and infrastructure assessment applications. However, strong surface reflections can introduce interference, leading to receiver saturation and reducing the clarity of subsurface features. This paper presents a novel [...] Read more.
Air-coupled ground penetrating radar (GPR) systems are widely used for subsurface imaging in demining, geological surveys, and infrastructure assessment applications. However, strong surface reflections can introduce interference, leading to receiver saturation and reducing the clarity of subsurface features. This paper presents a novel surface reflection suppression algorithm for stepped-frequency continuous wave (SFCW) GPR systems. The proposed method estimates the surface reflection component and applies phase-compensated subtraction at the receiver site, effectively suppressing background reflections. A modular SFCW radar system was developed and tested in a laboratory setup simulating a low-altitude airborne deployment to validate the proposed approach. B-scan and time-domain analyses demonstrate significant suppression of surface reflections, improving the visibility of subsurface targets. Unlike previous static echo cancellation methods, the proposed method performs on-board pre-downconversion removal of surface clutter that compensates for varying ground distance, which is a unique contribution of this work. Full article
Show Figures

Figure 1

25 pages, 13122 KiB  
Article
Comparative Study of GPR Acquisition Methods for Shallow Buried Object Detection
by Primož Smogavec, Blaž Pongrac, Andrej Sarjaš, Venceslav Kafedziski, Nabojša Dončov and Dušan Gleich
Remote Sens. 2024, 16(21), 3931; https://doi.org/10.3390/rs16213931 - 22 Oct 2024
Viewed by 1819
Abstract
This paper investigates the use of ground-penetrating radar (GPR) technology for detecting shallow buried objects, utilizing an air-coupled stepped frequency continuous wave (SFCW) radar system that operates within a 2 GHz bandwidth starting at 500 MHz. Different GPR data acquisition methods for air-coupled [...] Read more.
This paper investigates the use of ground-penetrating radar (GPR) technology for detecting shallow buried objects, utilizing an air-coupled stepped frequency continuous wave (SFCW) radar system that operates within a 2 GHz bandwidth starting at 500 MHz. Different GPR data acquisition methods for air-coupled systems are compared, specifically down-looking, side-looking, and circular acquisition strategies, employing the back projection algorithm to provide focusing of the acquired GPR data. Experimental results showed that the GPR can penetrate up to 0.6 m below the surface in a down-looking mode. The developed radar and the back projection focusing algorithm were used to acquire data in the side-looking and circular mode, providing focused images with a resolution of 0.1 m and detecting subsurface objects up to 0.3 m below the surface. The proposed approach transforms B-scans of the GPR-based data into 2D images. The provided approach has significant potential for advancing shallow object detection capabilities by transforming hyperbola-based features into point-like features. Full article
Show Figures

Figure 1

19 pages, 27087 KiB  
Article
Bridge Monitoring Strategies for Sustainable Development with Microwave Radar Interferometry
by Lilong Zou, Weike Feng, Olimpia Masci, Giovanni Nico, Amir M. Alani and Motoyuki Sato
Sustainability 2024, 16(7), 2607; https://doi.org/10.3390/su16072607 - 22 Mar 2024
Cited by 7 | Viewed by 2123
Abstract
The potential of a coherent microwave radar for infrastructure health monitoring has been investigated over the past decade. Microwave radar measuring based on interferometry processing is a non-invasive technique that can measure the line-of-sight (LOS) displacements of large infrastructure with sub-millimeter precision and [...] Read more.
The potential of a coherent microwave radar for infrastructure health monitoring has been investigated over the past decade. Microwave radar measuring based on interferometry processing is a non-invasive technique that can measure the line-of-sight (LOS) displacements of large infrastructure with sub-millimeter precision and provide the corresponding frequency spectrum. It has the capability to estimate infrastructure vibration simultaneously and remotely with high accuracy and repeatability, which serves the long-term serviceability of bridge structures within the context of the long-term sustainability of civil engineering infrastructure management. In this paper, we present three types of microwave radar systems employed to monitor the displacement of bridges in Japan and Italy. A technique that fuses polarimetric analysis and the interferometry technique for bridge monitoring is proposed. Monitoring results achieved with full polarimetric real aperture radar (RAR), step-frequency continuous-wave (SFCW)-based linear synthetic aperture, and multi-input multi-output (MIMO) array sensors are also presented. The results reveal bridge dynamic responses under different loading conditions, including wind, vehicular traffic, and passing trains, and show that microwave sensor interferometry can be utilized to monitor the dynamics of bridge structures with unprecedented spatial and temporal resolution. This paper demonstrates that microwave sensor interferometry with efficient, cost-effective, and non-destructive properties is a serious contender to employment as a sustainable infrastructure monitoring technology serving the sustainable development agenda. Full article
Show Figures

Figure 1

17 pages, 34224 KiB  
Technical Note
Directional and High-Gain Ultra-Wideband Bow-Tie Antenna for Ground-Penetrating Radar Applications
by Shuai Pi, Tianhao Wang and Jun Lin
Remote Sens. 2023, 15(14), 3522; https://doi.org/10.3390/rs15143522 - 12 Jul 2023
Cited by 10 | Viewed by 5950
Abstract
Bow-tie antennas are utilized extensively in ground-penetrating radar (GPR) systems. In order to achieve sufficient penetration depth and resolution, the bow-tie antennas for GPR applications require low operating frequency, high gain, and excellent broadband. A novel ultra-wideband (UWB) bow-tie antenna with gain enhancement [...] Read more.
Bow-tie antennas are utilized extensively in ground-penetrating radar (GPR) systems. In order to achieve sufficient penetration depth and resolution, the bow-tie antennas for GPR applications require low operating frequency, high gain, and excellent broadband. A novel ultra-wideband (UWB) bow-tie antenna with gain enhancement for GPR applications is proposed in this paper. First, a UWB bow-tie antenna with resistive loading is designed. The metal reflector and metamaterial loading make the bow-tie antenna directional, and loading the same metamaterial on the front side of the antenna further improves directional gain. After testing, the lowest frequency of the fabricated antenna is 317 MHz, the relative bandwidth is 98.6%, the peak gain in the frequency range is 9.3 dBi, and the size is only 0.38 λ at the lowest frequency. The proposed compact antenna takes both gain and bandwidth into consideration. Finally, in order to further verify the effectiveness of the proposed antenna in the GPR system, a stepped frequency continuous wave ground-penetrating radar (SFCW-GPR) system was built. The experimental results show that the designed antenna is suitable for the GPR system of deep penetration and high-resolution detection, which is beneficial to the imaging of underground structures. Full article
Show Figures

Figure 1

20 pages, 16640 KiB  
Article
Frequency Comb-Based Ground-Penetrating Bioradar: System Implementation and Signal Processing
by Di Shi, Gunnar Gidion, Taimur Aftab, Leonhard M. Reindl and Stefan J. Rupitsch
Sensors 2023, 23(3), 1335; https://doi.org/10.3390/s23031335 - 25 Jan 2023
Cited by 3 | Viewed by 2983
Abstract
Radars can be used as sensors to detect the breathing of victims trapped under layers of building materials in catastrophes like earthquakes or gas explosions. In this contribution, we present the implementation of a novel frequency comb continuous wave (FCCW) bioradar module using [...] Read more.
Radars can be used as sensors to detect the breathing of victims trapped under layers of building materials in catastrophes like earthquakes or gas explosions. In this contribution, we present the implementation of a novel frequency comb continuous wave (FCCW) bioradar module using a commercial software-defined radio (SDR). The FCCW radar transmits multiple equally spaced frequency components simultaneously. The data acquisition of the received combs is frequency domain-based. Hence, it does not require synchronization between the transmit and receive channels, as time domain-based broadband radars, such as ultra wideband (UWB) pulse radar and frequency-modulated CW (FMCW) radar, do. Since a frequency comb has an instantaneous wide bandwidth, the effective scan rate is much higher than that of a step frequency CW (SFCW) radar. This FCCW radar is particularly suitable for small motion detection. Using inverse fast Fourier transform (IFFT), we can decompose the received frequency comb into different ranges and remove ghost signals and interference of further range intervals. The frequency comb we use in this report has a bandwidth of only 60 MHz, resulting in a range resolution of up to 2.5 m, much larger than respiration-induced chest wall motions. However, we demonstrate that in the centimeter range, motions can be detected and evaluated by processing the received comb signals. We want to integrate the bioradar into an unmanned aircraft system for fast and safe search and rescue operations. As a trade-off between ground penetrability and the size and weight of the antenna and the radar module, we use 1.3 GHz as the center frequency. Field measurements show that the proposed FCCW bioradar can detect an alive person through different nonmetallic building materials. Full article
(This article belongs to the Special Issue RADAR Sensors and Digital Signal Processing)
Show Figures

Figure 1

11 pages, 4419 KiB  
Article
A Joint Design of Radar Sensing, Wireless Power Transfer, and Communication Based on Reconfigurable Software Defined Radio
by Zhouyi Wu, Yasser Qaragoez, Vladimir Volskiy, Jiangtao Huangfu, Lixin Ran and Dominique Schreurs
Electronics 2022, 11(23), 4050; https://doi.org/10.3390/electronics11234050 - 6 Dec 2022
Cited by 1 | Viewed by 3360
Abstract
This paper proposes a compact three-mode base station capable of performing radar sensing, communication, and wireless power transfer (WPT) in collaboration with indoor sensor networks. With regard to the wireless sensor node, the base station transmits two-tone signals in the downlink to support [...] Read more.
This paper proposes a compact three-mode base station capable of performing radar sensing, communication, and wireless power transfer (WPT) in collaboration with indoor sensor networks. With regard to the wireless sensor node, the base station transmits two-tone signals in the downlink to support its operation and provides two-way communication. The sensor node sends uplink information through backscattering using the third order intermodulation (IM3) product of the rectification. In the radar mode, a single-tone continuous wave (CW) is used to monitor if there is a moving target in the static environment. If a speed is detected, the transmit signal to the node is stopped, while the single-tone CW excitation will continue until the speed of the target is zero, and then the base station transmits a stepped frequency continuous wave (SFCW) signal to measure the distance of the target. The repeat between the two radar waveforms continues until the target is undetectable within the detection range. The software defined radio PlutoSDR is adopted as the base station. The system can wirelessly supply power and bi-directionally communicate with a CO2 sensor node 2 m away. It gives a range resolution of 2.5 cm and a minimum detectable speed of 0.25 m/s in the radar mode. Full article
Show Figures

Figure 1

18 pages, 9277 KiB  
Article
Application of Continuous Wavelet Transform and Artificial Naural Network for Automatic Radar Signal Recognition
by Marta Walenczykowska and Adam Kawalec
Sensors 2022, 22(19), 7434; https://doi.org/10.3390/s22197434 - 30 Sep 2022
Cited by 19 | Viewed by 3447
Abstract
This article aims to propose an algorithm for the automatic recognition of selected radar signals. The algorithm can find application in areas such as Electronic Warfare (EW), where automatic recognition of the type of intra-pulse modulation or the type of emitter operation mode [...] Read more.
This article aims to propose an algorithm for the automatic recognition of selected radar signals. The algorithm can find application in areas such as Electronic Warfare (EW), where automatic recognition of the type of intra-pulse modulation or the type of emitter operation mode can aid the decision-making process. The simulations carried out included the analysis of the classification possibilities of linear frequency modulated pulsed waveform (LFMPW), stepped frequency modulated pulsed waveform (SFMPW), phase coded pulsed waveform (PCPW), rectangular pulsed waveforms (RPW), frequency modulated continuous wave (FMCW), continuous wave (CW), Stepped Frequency Continuous Wave SFCW) and Phase Coded Continuous Waveform (PCCW). The algorithm proposed in this paper is based on the use of continuous wavelet transform (CWT) coefficients and higher-order statistics (HOS) in the feature determination of selected signals. The Principal Component Analysis (PCA) method was used for dimensionality reduction. An artificial neural network was then used as a classifier. Simulation studies took into account the presence of noise interference with signal-to-noise ratio (SNR) in the range from −5 to 10 dB. Finally, the obtained classification efficiency is presented in the form of a confusion matrix. The simulation results show a high recognition test accuracy, above 99% with a signal-to-noise ratio greater than 0 dB. The article also deals with the selection of the type and parameters of the wavelet. The authors also point to the problems encountered during the research and examples of how to solve them. Full article
(This article belongs to the Collection Navigation Systems and Sensors)
Show Figures

Figure 1

19 pages, 2198 KiB  
Article
Stepped-Frequency Continuous-Wave Signal Processing Method for Human Detection Using Radars for Sensing Rooms through the Wall
by Roman Kozlov, Konstantin Gavrilov, Timofey Shevgunov and Vladimir Kirdyashkin
Inventions 2022, 7(3), 79; https://doi.org/10.3390/inventions7030079 - 5 Sep 2022
Cited by 15 | Viewed by 5702
Abstract
The problem of detecting moving and stationary people in a room with a specialized radar system sensing through the wall is considered in the paper. The high-range resolution of the system is achieved by effective processing of reflected ultra-wideband stepped-frequency continuous-wave signals (SFCW). [...] Read more.
The problem of detecting moving and stationary people in a room with a specialized radar system sensing through the wall is considered in the paper. The high-range resolution of the system is achieved by effective processing of reflected ultra-wideband stepped-frequency continuous-wave signals (SFCW). The paper presents a new method which is based on normalization of complex-valued samples of the received SFCW signals and extends traditional processing steps including quadrature-phase demodulation, sampling and inverse discrete Fourier transform. The proposed method is aimed at improving the performance of the interperiodic difference and variance of sample algorithms which are briefly described in relation to the SFCW radar system. The computer modeling showed that the introduced normalization mitigates the background noise and merely decreases the artifacts commonly appearing in radar images due to the non-uniform amplitude-frequency characteristics of the radar circuits. The described algorithms were implemented in a software part of the real-time working prototype of the radar system designed and assembled at the University research center. The results of field experiments confirmed the advantage of the proposed method in typical scenarios and showed the increase of the signal-to-noise ratio to 5 dB compared to traditional radar algorithm-processing SFCW signals. Full article
(This article belongs to the Collection Feature Innovation Papers)
Show Figures

Figure 1

23 pages, 10064 KiB  
Article
First SIMO Harmonic Radar Based on the SFCW Concept and the HR Transfer Function
by Holger Heuermann, Thomas Harzheim and Tobias Cronenbroeck
Remote Sens. 2021, 13(24), 5088; https://doi.org/10.3390/rs13245088 - 15 Dec 2021
Cited by 3 | Viewed by 3851
Abstract
This paper presents a new SIMO radar system based on a harmonic radar (HR) stepped frequency continuous wave (SFCW) architecture. Simple tags that can be electronically individually activated and deactivated via a DC control voltage were developed and combined to form an MO [...] Read more.
This paper presents a new SIMO radar system based on a harmonic radar (HR) stepped frequency continuous wave (SFCW) architecture. Simple tags that can be electronically individually activated and deactivated via a DC control voltage were developed and combined to form an MO array field. This HR operates in the entire 2.45 GHz ISM band for transmitting the illumination signal and receives at twice the stimulus frequency and bandwidth centered around 4.9 GHz. This paper presents the development, the basic theory of a HR system for the characterization of objects placed into the propagation path in-between the radar and the reflectors (similar to a free-space measurement with a network analyzer) as well as first measurements performed by the system. Further detailed measurement series will be made available later on to other researchers to develop AI and machine learning based signal processing routines or synthetic aperture radar algorithms for imaging, object recognition, and feature extraction. For this purpose, the necessary information is published in this paper. It is explained in detail why this SIMO-HR can be an attractive solution augmenting or replacing existing systems for radar measurements in production technology for material under test measurements and as a simplified MIMO system. The novel HR transfer function, which is a basis for researchers and developers for material characterization or imaging algorithms, is introduced and metrologically verified in a well traceable coaxial setup. Full article
(This article belongs to the Special Issue Nonlinear Junction Detection and Harmonic Radar)
Show Figures

Graphical abstract

20 pages, 1986 KiB  
Article
Continuous Human Activity Recognition through Parallelism LSTM with Multi-Frequency Spectrograms
by Congzhang Ding, Yong Jia, Guolong Cui, Chuan Chen, Xiaoling Zhong and Yong Guo
Remote Sens. 2021, 13(21), 4264; https://doi.org/10.3390/rs13214264 - 23 Oct 2021
Cited by 18 | Viewed by 3559
Abstract
According to the real-living environment, radar-based human activity recognition (HAR) is dedicated to recognizing and classifying a sequence of activities rather than individual activities, thereby drawing more attention in practical applications of security surveillance, health care and human–computer interactions. This paper proposes a [...] Read more.
According to the real-living environment, radar-based human activity recognition (HAR) is dedicated to recognizing and classifying a sequence of activities rather than individual activities, thereby drawing more attention in practical applications of security surveillance, health care and human–computer interactions. This paper proposes a parallelism long short-term memory (LSTM) framework with the input of multi-frequency spectrograms to implement continuous HAR. Specifically, frequency-division short-time Fourier transformation (STFT) is performed on the data stream of continuous activities collected by a stepped-frequency continuous-wave (SFCW) radar, generating spectrograms of multiple frequencies which introduce different scattering properties and frequency resolutions. In the designed parallelism LSTM framework, multiple parallel LSTM sub-networks are trained separately to extract different temporal features from the spectrogram of each frequency and produce corresponding classification probabilities. At the decision level, the probabilities of activity classification from these sub-networks are fused by addition as the recognition output. To validate the proposed method, an experimental data set is collected by using an SFCW radar to monitor 11 participants who continuously perform six activities in sequence with three different transitions and random durations. The validation results demonstrate that the average accuracies of the designed parallelism unidirectional LSTM (Uni-LSTM) and bidirectional LSTM (Bi-LSTM) based on five frequency spectrograms are 85.41% and 96.15%, respectively, outperforming traditional Uni-LSTM and Bi-LSTM networks with only a single-frequency spectrogram by 5.35% and 6.33% at least. Additionally, the recognition accuracy of the parallelism LSTM network reveals an upward trend as the number of multi-frequency spectrograms (namely the number of LSTM subnetworks) increases, and tends to be stable when the number reaches 4. Full article
(This article belongs to the Special Issue Radar Signal Processing and System Design for Urban Health)
Show Figures

Graphical abstract

16 pages, 3136 KiB  
Article
SFCW Radar with an Integrated Static Target Echo Cancellation System
by Danijel Šipoš and Dušan Gleich
Sensors 2021, 21(17), 5829; https://doi.org/10.3390/s21175829 - 30 Aug 2021
Cited by 9 | Viewed by 5462
Abstract
Continuous Wave (CW) radars systems, especially air-coupled Ground-Penetrating Radar (GPR) or Through-Wall Imaging Radar (TWIR) systems, echo signals reflected from a stationary target with high energy, which may cause receiver saturation. Another effect caused by reflection of stationary targets is noticeable as background [...] Read more.
Continuous Wave (CW) radars systems, especially air-coupled Ground-Penetrating Radar (GPR) or Through-Wall Imaging Radar (TWIR) systems, echo signals reflected from a stationary target with high energy, which may cause receiver saturation. Another effect caused by reflection of stationary targets is noticeable as background within a radargram. Nowadays, radar systems use automatic gain control to prevent receiver saturation. This paper proposes a method to remove stationary targets automatically from the received signal. The method was designed for a radar system with a moving platform, with an assumption that the distance between the surface and target is constant. The design is proposed of an SFCW radar with an integrated system for real-time multiple static target Echo Cancellation (EC). The proposed EC system removes the static target using active Integrated Circuit (IC) components, which generate the corresponding EC signal for each frequency step of the SFCW radar and sum it with the received echo signal. This has the main advantage of removing even multiple echoes at any distance, and excludes the need for a high-dynamic-range receiver. Additionally, the proposed system has minimal impact on the radar size and power consumption. Besides static target removal, the antenna coupling can be removed if the signal appears to be constant. The operating frequency was selected between 500 MHz and 2.5 GHz, due to the limitation of the used electronic components. The experimental results show that the simulated target’s echo using a cable with a known length could be suppressed to up to 38 dB. Experimental results using a moving radar platform and the real environment scenario with static and dynamic targets, show that the proposed EC system could achieve up to 20 dB attenuation of the static target. The system does not affect any other target of interest, which can even move at any distance during the measurement. Therefore, this could be a promising method for further compact implementation into SFCW radars, or any other radar type that generates CW single frequencies. Full article
(This article belongs to the Special Issue Microwave Sensors and Radar Techniques)
Show Figures

Figure 1

21 pages, 3706 KiB  
Article
Through-Wall Multi-Subject Localization and Vital Signs Monitoring Using UWB MIMO Imaging Radar
by Zhi Li, Tian Jin, Yongpeng Dai and Yongkun Song
Remote Sens. 2021, 13(15), 2905; https://doi.org/10.3390/rs13152905 - 23 Jul 2021
Cited by 57 | Viewed by 7454
Abstract
Radar-based non-contact vital signs monitoring has great value in through-wall detection applications. This paper presents the theoretical and experimental study of through-wall respiration and heartbeat pattern extraction from multiple subjects. To detect the vital signs of multiple subjects, we employ a low-frequency ultra-wideband [...] Read more.
Radar-based non-contact vital signs monitoring has great value in through-wall detection applications. This paper presents the theoretical and experimental study of through-wall respiration and heartbeat pattern extraction from multiple subjects. To detect the vital signs of multiple subjects, we employ a low-frequency ultra-wideband (UWB) multiple-input multiple-output (MIMO) imaging radar and derive the relationship between radar images and vibrations caused by human cardiopulmonary movements. The derivation indicates that MIMO radar imaging with the stepped-frequency continuous-wave (SFCW) improves the signal-to-noise ratio (SNR) critically by the factor of radar channel number times frequency number compared with continuous-wave (CW) Doppler radars. We also apply the three-dimensional (3-D) higher-order cumulant (HOC) to locate multiple subjects and extract the phase sequence of the radar images as the vital signs signal. To monitor the cardiopulmonary activities, we further exploit the VMD algorithm with a proposed grouping criterion to adaptively separate the respiration and heartbeat patterns. A series of experiments have validated the localization and detection of multiple subjects behind a wall. The VMD algorithm is suitable for separating the weaker heartbeat pattern from the stronger respiration pattern by the grouping criterion. Moreover, the continuous monitoring of heart rate (HR) by the MIMO radar in real scenarios shows a strong consistency with the reference electrocardiogram (ECG). Full article
(This article belongs to the Special Issue Radar Signal Processing and System Design for Urban Health)
Show Figures

Graphical abstract

23 pages, 9090 KiB  
Article
Analysis of the Snow Water Equivalent at the AEMet-Formigal Field Laboratory (Spanish Pyrenees) During the 2019/2020 Winter Season Using a Stepped-Frequency Continuous Wave Radar (SFCW)
by Rafael Alonso, José María García del Pozo, Samuel T. Buisán and José Adolfo Álvarez
Remote Sens. 2021, 13(4), 616; https://doi.org/10.3390/rs13040616 - 9 Feb 2021
Cited by 8 | Viewed by 3469
Abstract
Snow makes a great contribution to the hydrological cycle in cold regions. The parameter to characterize available the water from the snow cover is the well-known snow water equivalent (SWE). This paper presents a near-surface-based radar for determining the SWE from the measured [...] Read more.
Snow makes a great contribution to the hydrological cycle in cold regions. The parameter to characterize available the water from the snow cover is the well-known snow water equivalent (SWE). This paper presents a near-surface-based radar for determining the SWE from the measured complex spectral reflectance of the snowpack. The method is based in a stepped-frequency continuous wave radar (SFCW), implemented in a coherent software defined radio (SDR), in the range from 150 MHz to 6 GHz. An electromagnetic model to solve the electromagnetic reflectance of a snowpack, including the frequency and wetness dependence of the complex relative dielectric permittivity of snow layers, is shown. Using the previous model, an approximated method to calculate the SWE is proposed. The results are presented and compared with those provided by a cosmic-ray neutron SWE gauge over the 2019–2020 winter in the experimental AEMet Formigal-Sarrios test site. This experimental field is located in the Spanish Pyrenees at an elevation of 1800 m a.s.l. The results suggest the viability of the approximate method. Finally, the feasibility of an auxiliary snow height measurement sensor based on a 120 GHz frequency modulated continuous wave (FMCW) radar sensor, is shown. Full article
(This article belongs to the Special Issue Advanced Techniques for Ground Penetrating Radar Imaging)
Show Figures

Graphical abstract

17 pages, 1756 KiB  
Article
A Local Oscillator Phase Compensation Technique for Ultra-Wideband Stepped-Frequency Continuous Wave Radar Based on a Low-Cost Software-Defined Radio
by Kazunori Takahashi and Takashi Miwa
Sensors 2021, 21(3), 780; https://doi.org/10.3390/s21030780 - 24 Jan 2021
Cited by 2 | Viewed by 3590
Abstract
The paper discusses a way to configure a stepped-frequency continuous wave (SFCW) radar using a low-cost software-defined radio (SDR). The most of high-end SDRs offer multiple transmitter (TX) and receiver (RX) channels, one of which can be used as the reference channel for [...] Read more.
The paper discusses a way to configure a stepped-frequency continuous wave (SFCW) radar using a low-cost software-defined radio (SDR). The most of high-end SDRs offer multiple transmitter (TX) and receiver (RX) channels, one of which can be used as the reference channel for compensating the initial phases of TX and RX local oscillator (LO) signals. It is same as how commercial vector network analyzers (VNAs) compensate for the LO initial phase. These SDRs can thus acquire phase-coherent in-phase and quadrature (I/Q) data without additional components and an SFCW radar can be easily configured. On the other hand, low-cost SDRs typically have only one transmitter and receiver. Therefore, the LO initial phase has to be compensated and the phases of the received I/Q signals have to be retrieved, preferably without employing an additional receiver and components to retain the system low-cost and simple. The present paper illustrates that the difference between the phases of TX and RX LO signals varies when the LO frequency is changed because of the timing of the commencement of the mixing. The paper then proposes a technique to compensate for the LO initial phases using the internal RF loopback of the transceiver chip and to reconstruct a pulse, which requires two streaming: one for the device under test (DUT) channel and the other for the internal RF loopback channel. The effect of the LO initial phase and the proposed method for the compensation are demonstrated by experiments at a single frequency and sweeping frequency, respectively. The results show that the proposed method can compensate for the LO initial phases and ultra-wideband (UWB) pulses can be reconstructed correctly from the data sampled by a low-cost SDR. Full article
(This article belongs to the Section Electronic Sensors)
Show Figures

Figure 1

18 pages, 16045 KiB  
Article
A Lightweight and Low-Power UAV-Borne Ground Penetrating Radar Design for Landmine Detection
by Danijel Šipoš and Dušan Gleich
Sensors 2020, 20(8), 2234; https://doi.org/10.3390/s20082234 - 15 Apr 2020
Cited by 85 | Viewed by 13936
Abstract
This paper presents the development of a lightweight and low-power Ground Penetrating Radar (GPR) to detect buried landmines in harsh terrain, using an Unmanned Aerial Vehicle (UAV). Despite the fact that GPR airborne systems have been already used for a while, there has [...] Read more.
This paper presents the development of a lightweight and low-power Ground Penetrating Radar (GPR) to detect buried landmines in harsh terrain, using an Unmanned Aerial Vehicle (UAV). Despite the fact that GPR airborne systems have been already used for a while, there has yet been no focus on the UAV autonomy, which depends on the payload itself. Therefore, the contribution of this work is the introduction of a lightweight and low-power consumption GPR system, which is based on the Stepped Frequency Continuous Wave (SFCW) radar principle. The Radio Frequency (RF) transceiver represents an improved implementation of the super-heterodyne architecture, which currently offers higher sensitivity. This is achieved by combining analog and digital processing techniques. The experimental results showed that the developed system can detect both metallic and plastic buried targets. Target detection with a scanning height up to about 0.5 m shows good applicability in an unstructured, harsh environment, which is typical of mined terrain. The proposed system still needs some improvements for a fully operational system regarding different aspects of scanning speeds and soil properties such as moisture content. Full article
(This article belongs to the Section Remote Sensors)
Show Figures

Figure 1

Back to TopTop