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Abstract: Radar-based non-contact vital signs monitoring has great value in through-wall detection
applications. This paper presents the theoretical and experimental study of through-wall respiration
and heartbeat pattern extraction from multiple subjects. To detect the vital signs of multiple sub-
jects, we employ a low-frequency ultra-wideband (UWB) multiple-input multiple-output (MIMO)
imaging radar and derive the relationship between radar images and vibrations caused by human
cardiopulmonary movements. The derivation indicates that MIMO radar imaging with the stepped-
frequency continuous-wave (SFCW) improves the signal-to-noise ratio (SNR) critically by the factor
of radar channel number times frequency number compared with continuous-wave (CW) Doppler
radars. We also apply the three-dimensional (3-D) higher-order cumulant (HOC) to locate multiple
subjects and extract the phase sequence of the radar images as the vital signs signal. To monitor
the cardiopulmonary activities, we further exploit the VMD algorithm with a proposed grouping
criterion to adaptively separate the respiration and heartbeat patterns. A series of experiments have
validated the localization and detection of multiple subjects behind a wall. The VMD algorithm is
suitable for separating the weaker heartbeat pattern from the stronger respiration pattern by the
grouping criterion. Moreover, the continuous monitoring of heart rate (HR) by the MIMO radar in
real scenarios shows a strong consistency with the reference electrocardiogram (ECG).

Keywords: multi-subject localization; vital signs detection; respiration and heartbeat patterns;
through-wall radar imaging; VMD

1. Introduction

Through-wall vital signs detection and recognition are emergent technologies in
post-disaster rescue, public security, and anti-terrorism reconnaissance. There are several
different kinds of non-contact vital signs detection technologies. Optical sensors can not
provide information behind walls and shelters. Ultrasound attenuates rapidly in air and
obstacles [1]. However, through-wall radars, especially ultra-wideband (UWB) through-
wall radars, have been proved to be suitable for penetration detection [2,3]. Through-wall
radar utilizes the echoes of body vibrations induced by cardiopulmonary activities to obtain
hidden vital signs information. It has the advantages of non-line-of-sight, non-contact, and
long-distance.

In the past decades, radar-based non-contact detection of vital signs has drawn lots
of attention. There are numerous studies about the detection of vital signs by continuous-
wave (CW) Doppler radar, impulse radio ultra-wideband (IR-UWB) radar, and frequency-
modulated continuous-wave (FMCW) radar [4]. CW Doppler radar can monitor the breath-
ing and heartbeat of a single person, but it can not measure the location of the subject [5–8].
IR-UWB and FMCW radars exploit UWB signals to measure the range of targets, but lots of
studies mainly focus on an individual subject to avoid interference issues [9–16]. However,
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it is quite common for multiple subjects detection in real applications. Algorithms em-
ploy blind source separation (BSS) [17], variational mode decomposition (VMD) [18], and
heartbeat harmonics [19] can separate the distinguishable respiration or heartbeat signal
of different subjects. However, these methods can not assign vital signs to each related
subject, which needs localization and detection simultaneously [20]. High-resolution range
profiles help to measure the vital signs of multiple persons [21–23], but it may fail for
targets at the same distance. To acquire resolutions in other directions, some researchers
have attempted to take advantage of multiple channel radar technology. Xiong et al. [24]
developed a single-input multiple-output (SIMO) continuous wave radar system based
on adaptive digital beamforming technology to concurrently detect multiple breaths at
unknown locations. In addition to SIMO radar, MIMO radar also utilizes the advantages of
multi-channel technology over single-channel radar, and it has become one of the current
cutting-edge research topics in vital signs detection [11]. Shang et al. [25] established a
2× 2 IR-UWB distributed MIMO radar prototype to locate multiple human targets by
imaging, and estimated their respiratory rate (RR) and heartbeat rate (HR) by averaging
the spectrum of the four channels. Yet this method estimated the vital signs from each
channel without taking advantage of coherent processing of multiple channels. As the
experiments using 24 GHz, 77 GHz [26], and 120 GHz [27] mmWave MIMO radars have
shown, MIMO imaging followed by change detection has the potential to detect vital signs
of multiple subjects. Although radars working at such frequency bands have a higher
sensitivity for micro-motion detection, they are not suitable for through-wall detection.
In general, the effectual penetration band of concrete and brick walls should not exceed
3 GHz [28]. Some research has tried to measure the RR behind a wall [29–33], but the chest
movement estimation algorithms cannot capture heartbeats accurately.

Not only the RR and HR, but also the respiration and heartbeat intensities are signifi-
cant features of the respiration and heartbeat activities. So it will be beneficial to achieve
respiration and heartbeat patterns for further feature extraction and recognition. However,
it is still a challenge to identify both of them for improved vital signs monitoring. For radar-
based non-contact detection, the achieved vital signs signal is the superposition of both
respiration and heartbeat patterns. As the respiratory vibration measured by radar is much
stronger than the heartbeat, how to separate the respiration signal from the heartbeat signal
becomes a problem of detecting weak signals from strong ones. In [34], the single-input
single-output (SISO) radar signals are processed by the classical linear filtering algorithm,
which aims to separate the respiration and heartbeat components while maintaining the
signal integrity. However, the respiration spectra have potential interference on heartbeat
components in the FFT-based ideal bandpass filter. The respiration harmonics affect the ac-
curacy of HR measurement, even resulting in significant estimation errors in fast breathing
cases. Table 1 lists the main properties of reported papers for vital signs monitoring using
electromagnetic radar techniques.

In this paper, we employ a through-wall MIMO imaging radar transmitting UWB
stepped-frequency continuous-wave (SFCW) to detect and localize multiple stationary
subjects, and apply the VMD algorithm with a grouping criterion to adaptively separate
the respiration and heartbeat patterns. The main contributions are as follows:

• We derive the relationship between vital signs signal and radar image in theory.
It is proved that the thorax movement caused by respiration and heartbeat is linear
with the phase of the radar image. The signal-to-noise ratio (SNR) of the extracted
vital signs signal is improved by the factor of radar channel number times frequency
number compared with CW Doppler radars;

• We develop a processing scheme for through-wall multi-subject localization and vital
signs separation. To localize multiple subjects through the wall, we introduce the
higher-order cumulant (HOC) for 3-D radar imaging. The HOC-based localization
significantly enhances the human body by suppressing the background clutter;

• We apply the VMD algorithm with a new grouping criterion to adaptively separate
the respiration and heartbeat patterns by combining the decomposed intrinsic mode
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functions (IMFs) and the residual. The grouping criterion exploits the center frequency
of each mode to separate the heartbeat pattern from the respiration harmonics.

Table 1. A research review of vital signs monitoring with electromagnetic radars.

Configuration Waveform Frequency
(GHz)

No. of
Subjects

Detection
Range (m)

Through-
Wall Measured Parameters

SISO [8] CW 24.17 1 0.2 - Breathing and heart
sound waveforms

SISO [14] CW 5.8 1 0.5 - Heart sound
waveforms and HR

SISO [35] IR-UWB 1.5–4.5 1 0.8 - RR and HR
SISO [19] IR-UWB 6.54–8.04 2 2 - RR and HR

SISO [31] IR-UWB 0.4 1 3–12 Yes Range detection, RR
and HR

SISO [12] FMCW 5.46–7.25 3 1–8 Yes RR and HR

SISO [21] FMCW 24–24.25 2 1.3–3 - Range detection, RR
and HR

SISO [23] FMCW 7.3–8.05 2 2.6–5.4 - Range detection, RR
and HR

SISO [34] FMCW 114–130 2 1.2–1.6 -

Range detection,
respiration pattern,
heartbeat pattern, RR
and HR

SIMO (1T × 8R) [24] CW 5.8 3 2 -
Angle detection,
respiration waveform
and RR

SIMO (1T × 4R) [33] CW 2.49 2 1.68–1.87 Yes
Angle detection,
respiration waveform
and RR

MIMO (2T × 2R) [25] IR-UWB 0.7–7 2 0.4–1.5 - 2-D Localization, RR
and HR

MIMO (2T × 8R) [27] FMCW 115–123 2 1.8–2.3 - 3-D Localization, RR
and HR

MIMO (10T × 10R)
[This work] SFCW 1.75–2.25 3 2.0–2.5 Yes

3-D Localization,
respiration pattern,
heartbeat pattern, RR
and HR

We organize the rest of this paper as follows. First, we deduce the relationship between
the vital signs signal and the radar images. Then we depict the multi-subject detection
and localization procedure and apply the VMD algorithm to separate respiration and
heartbeat patterns. The third section shows the experimental results of different scenarios
for both line-of-sight and through-wall detections. Then in the next section, we discuss the
experimental results. At last, we conclude this research.

2. Materials and Methods
2.1. System Model

Radar-based vital signs detection takes advantage of micro-motion detection technol-
ogy. The radar system receives echoes scattered from human bodies. The echoes contain
motion information of inhalations and exhalations of the lungs, as well as contractions and
relaxations of the heart. For typical through-wall radar, the penetration depth into human
tissue is less than 10 mm [36]. Consequently, only surface movements of the thorax can
be detected. Typical chest wall displacement induced by respiration ranges from 4 mm to
12 mm [37], while the one due to heartbeat lies between 0.2 mm to 0.5 mm [38]. As a result,
the displacement of the chest wall identified as the vital signs signal is the superposition of
the respiration pattern rr(t) and the heartbeat pattern rh(t):
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r(t) = rr(t) + rh(t) (1)

During radar detection, the position where the transmitted microwave hits the human
body varies slightly due to the breathing and heartbeat activities. Thus, the radar receives
a series of waveforms with different delays. Then the waveforms are further processed to
obtain images of the chest wall at different moments. Radar images are different from one
shot to the other when the subjects are alive, so change detection of the image sequence
is appropriate for extracting the vital signs. The image here can be one-dimensional (1-D,
also called range profile), two-dimensional (2-D), or even three-dimensional (3-D). By
exploiting the SFCW UWB radar with a 2-D MIMO array, we can reconstruct 3-D images by
frequency-domain back-projection (BP) algorithm. Figure 1 shows the schematic diagram
of vital signs detection by MIMO radar imaging. Subjects are within the radiation range of
the MIMO radar. The MIMO array transmits and receives electromagnetic waves to form
images of the vital body and the background. Due to the chest vibrations, the voxels of the
body are slightly different from adjacent images. So we can process the image sequence to
monitor vital signs.

Z

Y

MIMO Radar

Displacement

X

Figure 1. Schematic diagram of vital signs detection by MIMO radar imaging.

Using the 2-D UWB MIMO radar, we execute several measurements consecutively
to form 3-D radar images. Then we obtain a series of four-dimensional (4-D) images
in the space-time domain. The first three dimensions represent the X, Y, Z coordinates
with the origin at the center of the MIMO array, and the fourth dimension represents the
time. For the 4-D complex image, the voxel at xq = (xq, yq, zq) can be reconstructed by
frequency-domain BP as

I(xq, t) =
L

∑
l=1

NT

∑
m=1

NR

∑
n=1

Smn( fl) exp (j2π flτqmn) (2)

where the time delay τqmn is also called the “fast time” delay and t is called the “slow
time”. L is the number of stepped frequencies and fc is the center frequency. NT is the
number of transmitting elements and NR is the number of receiving elements. Smn( fl) is the
received signal transmitted by the mth transmitting element located at xm = (xm, ym, zm)
and received by the nth receiving element located at xn = (xn, yn, zn) with the lth stepped
frequency fl .

For an ideal point target located at xp = (xp, yp, zp), the received signal can be
expressed as Smn( fl) = σ(xp) exp(−j2π fl Rpmn/C) where σ(xp) is the reflectivity of the
target, C is the velocity of the electromagnetic wave, and Rpmn is the round trip distance
from the mth transmitting element to the target and the target to the nth receiving element.
So Equation (2) can be written as

I(xq, t) =
L

∑
l=1

NT

∑
m=1

NR

∑
n=1

σ(xp) exp(−j2π fl Rpmn/C) exp (j2π flτqmn)

=
L

∑
l=1

NT

∑
m=1

NR

∑
n=1

σ(xp) exp
(
−jγl(Rpmn − R̂qmn)

) (3)
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where Rqmn = Cτqmn is the round trip distance of the voxel q and γl = 2π fl/C is the
wave number.

For the voxel where the thorax exists, there is xp =
xq + r(t), where r(t) = (rx(t), ry(t), rz(t)) and ||r(t)|| = r(t)is the displacement of the
chest wall. Since the displacement caused by cardiopulmonary activities is far less than the
radar distance, it is obvious that ||r||2 � ||xq||2. Thus, for the human subject facing to the
radar array, Equation (3) can be approximated as

I(xq, t) =
L

∑
l=1

NT

∑
m=1

NR

∑
n=1

σ(xp) exp
(
−jγl

(
< xq − xm, r(t) >
||xq − xm||2

+
< xq − xn, r(t) >
||xq − xn||2

))

≈ NT NR

L

∑
l=1

σ(xp) exp(−j4π flr(t)/C)

(4)

where the approximation exists because of the small angle between the vibration and
the illumination.

Then the summation vanishes as

I(xq, t) = NT NRσ(xp) exp(−j4π fcr(t)/C)
sin(2πL∆ f r(t)/C)
sin(2π∆ f r(t)/C)

(5)

Because 2π∆ f r(t)/C is very small for typical through-wall radar parameters, we can
simplify the denominator of the last term by small angle approximation:

I(xq, t) ≈ LNT NRσ(xp) exp(−j4π fcr(t)/C)
sin(2πL∆ f r(t)/C)

2πL∆ f r(t)/C

= LNT NRσ(xp) exp(−j4π fcr(t)/C)sinc(2πL∆ f r(t)/C)
(6)

Similarly, the sinc function is approximately equal to 1 for 2πL∆ f r(t)/C ≈ 0. Then
the voxel where the chest wall exists can be derived as

I(xq, t) ≈ LNT NRσ(xp) exp(−j4π fcr(t)/C)
= LNT NRσ(xp) exp(−j4π fc(rr(t) + rh(t))/C)

(7)

There are some advantages, as we can see from Equation (7). Compared with CW
Doppler radars, the image by SFCW MIMO has a gain of LNT NR on amplitude because
of the coherent accumulation. As a result, the SNR improves by LNT NR for additive
noise. Additionally, MIMO radar imaging eliminates the background clutter on the targets
by spatial resolutions. According to the radar and array theories, CW Doppler radars
do not have any spatial resolution, so the echoes entirely mix the scatterings of targets
and backgrounds. SISO UWB radars can distinguish echoes of the targets at different
distances because they have a range resolution. However, MIMO radars have spatial
resolutions related to their array topology. So we can achieve radar images with targets
and backgrounds apart.

From Equation (7), the chest wall displacement is proportion to the phase of the
image voxel:

r(t) = −Phase
(

I(xq, t)
)
· C

4π fc
(8)

Since the phase of the voxel is linear to the vital signs signal rr(t) + rh(t), this phase-
based method avoids interference from the harmonic and intermodulation components.
These components can be calculated by Bessel expansion of Equation (7). Because of the
non-linear property of the exponential function, the expansion has lots of higher harmonics
and mutual harmonics of rr(t) and rh(t). The non-linearity makes the detection much more
complex. However, the extracted vital signs signal based on phase is a linear combination
of the respiration and heartbeat patterns, so it is convenient for further signal processing.
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Compared with intensity-based change detection, the vital signs signal extracted by
phase information provides the amplitude of thorax displacement. The displacement
indicates the intensity of respiration and heartbeat, which shows the vital signs states for
daily monitoring and post-quake rescue.

Generally, to obtain the unwrapped phase, we can apply arctangent demodulation
(AD) or differentiate and cross multiply (DACM). Here we do not need to calibrate the
direct current (DC) offset induced by background clutter, so it overcomes the problem of
phase correction, which is significant but not easy to be accurate for CW Doppler radars
[35]. In this paper we extract the unwrapped phase according to the extended DACM [39]:

Phase
(

I(xq, t)
)
=
∫ R(t)Ṁ(t)− Ṙ(t)M(t)

R(t)2 + M(t)2 dt (9)

where R(t) and M(t) are the real and imaginary components of I(xq, t), i.e., R(t) =
Real[I(xq, t)], M(t) = Imag[I(xq, t)]. Ṙ(t) and Ṁ(t) represent the derivative of R(t) and
M(t), respectively. In practice, Equation (9) can be calculated in digital domain.

It is noteworthy that the imaging process is slightly different when the wall exists.
For common walls, such as break walls and wooden walls, through-wall attenuation is
usually less than 5 dB for electromagnetic waves with frequency less than 3 GHz [28,40],
and the wall can be equivalent to a low-pass filter with flat response, so the distortion
effect of the wall can be ignored [41]. Figure 2 shows the propagation path for a pair of
transmitting and receiving channel in the through-wall case. According to the equivalent
propagation model of an electromagnetic wave in the air-wall-air medium [42], the “fast
time” delay in Equation (2) increases by an amount related to the wall thickness dw and the
relative permittivity εw. Knowing the wall parameters, we can compensate the delay in
Equation (3) by adding an extra distance:

∆R̂ = dw

(√
εw − sin2 θmq − cos θmq +

√
εw − sin2 θqn − cos θqn

)
(10)

to R̂qmn, where θmq is the incident angle on the air–wall interface from the mth transmitting
element to the target point q and θqn is the incident angle on the air–wall interface from the
target point q to the nth receiving element. The incident angle is very small for MIMO radar
through-wall imaging scenes, so we can approximately compensate the offset distance for
multiple channels by an identical value:

∆R̂ ≈ 2dw(
√

εw − 1) (11)

As a result, the targets behind the wall are corrected to their true positions by an iden-
tical compensation for all the imaging voxels, which significantly relieves the computation
burden in searching for the incident angles.

θmq

θqn

dwWall

Air

Air

q

RnTm

Figure 2. Propagation path for through-wall detection.



Remote Sens. 2021, 13, 2905 7 of 21

2.2. Scheme and Method

This section presents a method to locate and separate vital signs using a UWB MIMO
radar. Figure 3 shows the flowchart. First, 3-D imaging is performed sequentially by the BP
algorithm, and the HOC of each voxel is calculated to enhance the human targets. Then we
utilize the constant false alarm rate (CFAR) to locate multiple subjects. For each detected
subject, we extract its phase as the vital signs signal by the extended DACM. Finally, we
apply the VMD algorithm with the proposed grouping criterion to separate the respiration
and heartbeat patterns. By this method, the positions of multiple subjects can be localized
in 3-D space, and the respiration and heartbeat patterns can be extracted and correctly
assigned to each individual.

4-D imaging

Raw MIMO echoes 

acquisition

Enhancement by 3-D HOC

Localization by CFAR 

detection

Phase extraction

 VMD

IMFs grouping

Respiration 

pattern

Heartbeat 

pattern

Figure 3. Flowchart of the proposed method.

2.2.1. Multiple Subjects Detection and Localization

In the processing flow, we calculate the HOC of the radar images to detect vibrations
of the chest wall. The fourth-order cumulant is proper for change detection, which has the
potential of suppressing Gaussian noise. This statistic of the image voxel is defined as:

C4,Ixq
(τ1, τ2, τ3) = cum{I(xq, t), I(xq, t + τ1), I(xq, t + τ2), I(xq, t + τ3)} (12)

where the cum function is defined in [43]. For simplicity, we define the fourth-order
cumulant of zero-lag C4,Ixq

(0, 0, 0) as the radar image cumulant Hoc(xq). The fourth-order
cumulant is not 0 where there exists a human body, while in the background area with
Gaussian noise it is 0 in theory.

In practice, the fourth-order cumulant at zero lag C40 can be calculated efficiently in
terms of moments:

C40 = M40 − 3M2
20 (13)

where M40 is the fourth-order moment and M20 is the second-order moment for zero-mean
variables. On the other hand, it can be expressed in terms of excess kurtosis and variance:

C40 = κν2 (14)

where κ = M40/M2
20 − 3 is the excess kurtosis and ν = M20 is also known as the variance.

Equation (14) shows that the fourth-order cumulant of zero-lag takes advantages of both
statistics. Compared with the variance-based localization [2,44], the HOC-based method
suppresses the Gaussian noise whose excess kurtosis is equal to 0. Compared with the
kurtosis-based localization [45], it is much more robust by multiplying the variance. As
a result, the localization based on HOC further improves the SNR, which is especially
suitable for low SNR cases, such as radar vital signs detection.

By applying CFAR [46] to the radar image cumulant, we can locate the thoraxes. For a
given false alarm probability Pf a, the adaptive threshold is
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Γ(xq) = (P−1/Nc
f a − 1) ∑

xq∈Ω
Hoc(xq) (15)

where Ω and Nc are the region and number of the reference elements, respectively. To
avoid nearby interference, we can specify the nearby elements as protection elements. Then
the outer elements are determined as the reference elements. Once obtaining the adaptive
threshold, we compare it with each voxel. If the voxel value exceeds the threshold, there
exists a target. Otherwise, there is no target. Traversing the 3-D image with a sliding
window, we detect the human body occupying a connected region. Then we select the
maximum element in each region to extract the vital signs.

Now, the positions of multiple subjects are determined, and the vital signs signals can
be extracted by the extended DACM and correctly assigned to the respective individual.

2.2.2. Respiration and Heartbeat Patterns Separation

Once each vital signs signal is extracted, we separate the respiration and heartbeat
components by the VMD algorithm. The VMD algorithm decomposes the input signal to
its IMFs by solving a variational problem [47]. IMFs are amplitude-modulated-frequency-
modulated (AM-FM) signals with limited bandwidth. For the input vital signs signal,
the IMFs are components of respiration and heartbeat patterns. We group the IMFs and
the residual to two sets according to the center frequency of each IMF. According to the
empirical knowledge of human cardiopulmonary physiology, the heartbeat components are
higher than 0.8 Hz, while the respiration components are usually lower than 0.8 Hz, except
for some higher harmonics. Thus, the set with higher frequency IMFs (not respiration
harmonics) and the residual reconstructs the heartbeat pattern. The other set reconstructs
the respiration pattern. The residual is considered because it consists of higher frequency
features of the heartbeat signal. Although we can calculate the HR without the residual, the
decomposed IMFs only capture the lower frequency components of the heartbeat signal.
However, as we have improved the SNR significantly by MIMO imaging, the noise in
the extracted vital signs signal is suppressed, so the residual still contains lots of cardiac
information, which contributes to reconstructing the heartbeat pattern.

According to the VMD algorithm, the vital signs signal is decomposed as

r(t) =
K

∑
k=1

IMFk(t) + res(t) (16)

where IMFk(t) is the kth IMF, K is the total number of modes, and res(t) is the residual.
According to the empirical RR (0.1 Hz to 0.8 Hz), the IMFs with center frequency ωk equal
to or lower than 0.8 Hz and higher than 0.1 Hz belong to the respiration pattern. We define
this IMF set as L := {k|0.1 < ωk ≤ 0.8}. Here we removes the IMFs lower than 0.1 Hz
as the DC component. Additionally, IMFs with center frequency higher than 0.8 Hz are
defined as the setH := {k|ωk > 0.8}. Then respiration harmonics higher than 0.8 Hz can
be expressed as G := H∩ {k|ωk = (i + 2)ωg, i ∈ N, g ∈ L}, where i is usually less than 3.
So the respiration pattern is combined as

rr(t) = ∑
k∈L∪G

IMFk(t) (17)

The heartbeat pattern is reconstructed as

rh(t) = ∑
k∈H\G

IMFk(t) + res(t) (18)

As a result, we separate the vital signs signal to its respiration and heartbeat patterns
by VMD with the grouping criterion.
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2.3. Experiments

To verify the proposed method and study the performance of the algorithm, we
performed a series of experiments in real scenarios. The experiments include line-of-
sight and through-wall detections of multiple subjects. Figure 4 illustrates the schematic
diagram of the experiments including radar-based and contact-sensor-based vital signs
measurements. The line-of-sight detection is similar to the through-wall detection but with
no obstacles between the radar and the subjects. Figure 5 presents the real through-wall
experiment scenario with the measurement equipment.

X

Z

Y

Syncronization
Laptop

Contact 

sensor

MIMO 

Radar

Wall

Figure 4. Schematic diagram of through-wall multi-subject vital signs measurement.

Contact vital signs sensor

MIMO radar

Laptop

Brick wall

Subj. 1

Subj. 2
Subj. 3

(a)

ELITE STM32F103

ADS1292R

Electrodes

(b)

Figure 5. (a) Experiment scenario of through-wall vital signs detection. (b) Photograph of the contact
vital signs sensor.

2.3.1. Measurement Equipment and Parameters

In this section, the vital signs monitoring system used in the experiments is introduced.
As shown in Figure 5a, the vital signs monitoring system consists of a through-wall MIMO
radar prototype, a contact vital signs sensor, and a laptop for signal processing. The
MIMO radar prototype is a portable all-solid-state radar, which packages 10 transmitting
elements and 10 receiving elements in a 90 cm × 20 cm × 70 cm box. Figure 6 depicts
the block diagram of the MIMO radar system. The MIMO array has 10 × 10 = 100
virtual array elements corresponding to 100 transmitting and receiving channels. All the
channels successively send and receive SFCW signals to create radar images. Thereby, 4-D
information can be obtained with 3-D spatial positions and 1-D time indexes. The duration
for one scan is 50 ms so the measurements run with a frame rate of 20 Hz. Table 2 lists the
key parameters of the MIMO radar prototype.
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10ch switch

10ch switch

Rx1

Rx2

Rx10
A/D

Control

Source

Tx1

Tx2

Tx10

MIMO array

PA

90°

FPGA

LNA

Figure 6. Block diagram of the MIMO radar system.

The contact vital signs sensor provides reference signals, such as ECG and respiration
signals, which are the gold standards for respiration and heartbeat measurements. It
consists of a biological potential measurement chip (ADS1298R, Texas Instruments) module
and an embedded circuit board (ELITE STM32F103, ALIENTEK). ADS1298R is used for
recording ECG and respiration impedance. The embedded circuit board is used for data
acquisition. Figure 5b shows the contact vital signs sensor together with three electrodes.
In the experiments, the subject under test wears the three-lead electrodes linking to the
contact sensor. The connected laptop deals with both the non-contact radar data and the
contact sensor data. Meanwhile, it synchronizes the data with time stamps.

Table 2. Key parameters of the MIMO radar prototype.

Parameters Value

transmitting wave mode SFCW
center frequency 2 GHz

bandwidth 500 MHz
frequency step 4 MHz

power of transmitted signal 20 dBm
frame rate 20 Hz

antenna element number 10 Tx, 10 Rx
array size 0.8 m× 0.6 m

antenna element gain 5 dB to 6 dB
beam width of each antenna element (3 dB) 88°to90°

2.3.2. Measurements Setup and Scenarios

We carried out two different kinds of experiments to verify the proposed method:
(1) line-of-sight multi-subject measurements; and (2) through-wall multi-subject measure-
ments. All the experiments were implemented in an indoor office building. In each
experiment, the radar was installed on a tripod and placed vertically. The MIMO array
faced toward the human targets, and its center was 1.0 m above the ground. Three male
adults were tested. Subject 1 is 27 years old and 1.75 m tall with a weight of 73 kg. Subject
2 is 25 years old and 1.71 m tall with a weight of 60 kg. Subject 3 is 32 years old and 1.78 m
tall with a weight of 65 kg.

In the scene without a wall between the radar and the subjects, we executed the
multi-subject measurements. Three human subjects sat side by side toward the radar. The
distance between every two subjects was 0.5 m, and the distance between each subject and
the radar was 2.5 m. One of the subjects wore the contact respiration and heartbeat sensor.
The laptop recorded the radar data and the contact data concurrently.

In the case of through-wall measurements, the MIMO radar was placed 0.2 m in
front of the wall, and the three subjects sat side by side facing toward the radar. The
distance between every two subjects was 0.5 m, and the distance between each subject
and the wall was 1.8 m. Figure 5a shows the experimental scenario of the through-wall
multi-subject vital signs measurements. The wall is made of bricks with a thickness of
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12 cm and a relative permittivity of 5.1. The through-wall attenuation is less than 5 dB for
electromagnetic waves with frequencies lower than 3 GHz. To avoid the interference of
random body motion, the persons under test in all experiments sat steadily in resting states.

3. Results

We checked three groups of experimental results. The first group shows the multi-
subjects localization results in both line-of-sight and through-wall cases. The second group
displays the separation results of respiration and heartbeat patterns. Then the third group
assesses the monitoring performance in both cases.

3.1. Detection and Localization Results

With high resolutions in azimuth (X-axis), range (Y-axis), and pitch (Z-axis), the 2-D
UWB MIMO radar can detect multiple targets in 3-D space simultaneously. In the line-
of-sight experiments, the MIMO radar recorded 10 seconds of data at first. Figure 7a
shows one frame of the BP imaging results of three persons. It is difficult to identify the
persons directly. However, as shown in Figure 7b, the fourth-order cumulant helps to
detect and localize the human targets successfully. The voxel intensities of the cumulant
reflect the vibrations of the human body caused by breathing and heartbeat activities. For
a harmonic signal modeled as the vital signs signal, the fourth-order cumulant at zero lag
is C40 = − 3

8 ∑i A4
i , where Ai is the vibration amplitude of the sinusoidal component [48].

Thus, the greater the amplitude of respiration and heartbeat, the greater the absolute value
of fourth-order cumulant. Figure 7b indicates that Subject 2 has heavier breathing than
the other two subjects. As a result, there are three targets detected through CFAR in the
fourth-order cumulant image. Then the position of each subject is determined by the
strongest voxel in each connected region.

In the through-wall case, Figure 8a shows the direct 3-D BP image. Although the
microwave penetrates the brick wall, the subjects are sheltered by the wall and the direct
wave tailing. So it is hard to detect the subjects behind the wall. By performing the fourth-
order cumulant along the slow time, the wall clutter and noise are suppressed significantly.
Figure 8b shows the results of fourth-order cumulant with three subjects in the image.
The 3-D shape of the cumulant is slightly distorted compared with Figure 7, but all three
subjects are still revealed.

Table 3 shows the coordinates of estimated human positions in both cases. The center
of the nipple line on the chest wall is measured as the true position. We also demonstrate
the estimated errors, which are the coordinate offsets relative to the true position. As the
vibrations exist on the whole surface of the thorax, the offsets mainly exist on the XZ-
plane. The errors are smaller than the size of the thorax so that the results are acceptable.
Compared with the line-of-sight localization, it has larger errors in the through-wall case
because of the distortion of the image.

(a) (b)

Figure 7. Line-of-sight detection results of multiple subjects. (a) Projection of the initial 3-D image.
(b) Projection and CFAR detection of the fourth-order cumulant.
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(a) (b)

Figure 8. Through-wall detection results of radar imaging for multiple subjects. (a) Projection of the
initial 3-D image. (b) Projection and CFAR detection of the fourth-order cumulant.

Table 3. Localization results (in meters) of multiple subjects in line-of-sight and through-wall cases.

Truth (m) Estimation (m) Error (m)

Line-of-sight

Subj. 1 (−0.50, 2.50, −0.10) (−0.44, 2.51, −0.26) (0.06, 0.01, −0.16)

Subj. 2 (0, 2.50, −0.06) (0.06, 2.51, 0.05) (0.06, 0.01, 0.11)

Subj. 3 (0.50, 2.50, 0.05) (0.69, 2.52, 0.16) (0.19, 0.02, 0.11)

Through-wall

Subj. 1 (−0.3, 2.00, −0.10) (−0.19, 1.88, −0.26) (0.11, −0.12, −0.16)

Subj. 2 (0.50, 2.00, −0.06) (0.44, 2.06, 0.16) (−0.06, 0.06, 0.22)

Subj. 3 (1.00, 2.00, 0.05) (1.07, 1.97, −0.16) (0.07, −0.03, −0.21)

3.2. Vital Signs Separation Results

After localizing the subjects, we extract the vital signs signal for each person, respec-
tively. Figure 9a shows the extracted vital signs signal of Subject 1 for 20 s in line-of-sight
case. The peak-to-peak displacement is about 0.9 mm and the breaths are obvious. How-
ever, It is hard to identify the heartbeats in the vital signs signal. From the power spectrum
magnitude in Figure 9b, the respiration fundamental frequency is about 0.425 Hz and the
second harmonic is significant at 0.85 Hz. The heartbeat fundamental frequency is 1.150 Hz
and it is about 20 dB lower than the respiration fundamental.

We separate the respiration and heartbeat signals by the VMD algorithm with the
proposed grouping criterion and compare the results with the reference signals obtained
by the contact sensor. To initialize the VMD algorithm, we set the number of modes to
6 and the moderate bandwidth constraint to 10,000. In the VMD algorithm, the number
of modes is usually preset due to priori information. According to the component of the
vital signs signal empirically, including 4 respiration harmonics, it works well to set the
number of modes to 6. Too few modes lead to mixture of the respiration harmonics and
the heartbeat fundamentals, while too many modes split the respiration and heartbeat
components to artificial modes. Generally, a greater modes number is better than a smaller
one but brings more complexity. We also determine the initial center frequencies to be
uniformly distributed and the tolerance of convergence criterion to 10−10.

For the vital signs signal in Figure 9, the decomposition results are shown in Figure 10a
and the corresponding spectrum of each IMFs are given in Figure 10b. The center fre-
quencies of IMF 1 and IMF 2 are lower than 0.1 Hz, so they are regarded as random body
movements. IMF 3 and IMF 4 are in the respiration frequency range. IMF 5 and IMF 6
are in the heartbeat frequency range. However, IMF 5 is the second harmonic of IMF 4.
According to the grouping criterion, IMF 3–5 belong to the respiration pattern, while IMF 6
and the residual term belong to the heartbeat pattern. Then the respiration and heartbeat
patterns are obtained after the combination.



Remote Sens. 2021, 13, 2905 13 of 21

0 2 4 6 8 10 12 14 16 18 20

Time (s)

-0.6

-0.4

-0.2

0

0.2

0.4

D
is
p
la
ce
m
en
t
(m

m
)

(a)

0 1 2 3 4 5 6 7 8 9 10

Frequency (Hz)

-110

-100

-90

-80

-70

-60

M
a
g
n
it
u
d
e
(d
B
)

fr

fh

2fh 3fh

2fr

(b)

Figure 9. Vital signs signal (Subject 1) extracted by radar imaging. (a) vital signs signal in time
domain. (b) Spectrum of the vital signs signal. The fundamental and harmonic frequencies of
respiration and heartbeat are indicated.
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(b)

Figure 10. Vital signs signal (Subject 1) decomposited by VMD. (a) The IMFs. (b) Spectrums of
the IMFs.

The respiration and heartbeat patterns are reconstructed by grouping and combining
the IMFs. For the vital signs signal in Figure 9, Figure 11 shows the separated results
compared with the contact sensor, as well as some other algorithms. For the VMD algorithm,
the separated respiration pattern and the reference signal are highly consistent in periods.
The peak-to-peak amplitude is about 0.9 mm, and the RR is about 25 breaths per minute
through peak detection. It is clear to see the exhalation and inhalation and their state
transition during breathing. Similarly, we compare the separated heartbeat pattern with
the reference ECG signal. As shown in Figure 11b, the peak-to-peak amplitude of chest
wall vibration caused by heartbeat is about 0.1 mm, and the HR is 69 bpm (1.15 Hz). The
heartbeat pattern shows high similarity from one beat to another. From adjacent beats,
we can obtain the instantaneous HR. The shape of each beat also shows the features of
heart contraction and relaxation, which provides a high-quality signal for subsequent
feature extraction.

Meanwhile, for comparison we also implement some other algorithms such as infinite
impulse response (IIR) filtering, FFT-based ideal band-pass filtering [34], and complete
ensemble empirical mode decomposition with adaptive noise (CEEMDAN) [49,50]. The
results are shown in Figure 11. For all these algorithms, the separated respiration patterns
are consistent with the reference signal. The separated heartbeat pattern by CEEMDAN has
similar periods except for a bit of time at the beginning. However, the heartbeat patterns
separated by IIR and FFT-based filtering show wrong results. The results can be explained
according to the implementation of each algorithm. In the IIR filtering algorithm, a fourth-
order IIR filter with a passband of 0.1 Hz to 0.8 Hz filters the displacement signal to obtain
the respiration component, and an eighth-order IIR bandpass filter with a passband of
0.8 Hz to 10 Hz filters the heartbeat component out. This algorithm is simple and efficient.
It is effective in situations when a person breathes slowly. When the breathing is fast, the
spectrum of the respiration component exceeds the cutoff frequency so that the heartbeat
component is mixed with the respiration component. In this instance, the second respiration
harmonic happens to be at 0.85 Hz, so the filter regards it as a part of the heartbeat
component. As a result, the real heartbeats are obscured by the respiration harmonics. The
FFT-based ideal bandpass filter is a frequency-domain algorithm. Firstly we transform the
extracted vital signs signal by FFT and then apply the ideal rectangular window function
to the spectrum. The window cutoff frequencies are 0.1 Hz to 0.8 Hz for the respiration
signal and 0.8 Hz to 10 Hz for the heartbeat signal. At last, the inverse FFT is applied to
the filtered spectra to obtain the time-domain signals. By exploiting these operations, the
heartbeat pattern can be separated from the respiration pattern. In addition to having the
same problem as in the IIR filtering, this algorithm also has the disadvantage of spectrum
leakage caused by FFT. The spectrum energy spreads around the true frequencies, and the
rigid cutoff frequency may divide the respiration component as the heartbeat component.
CEEMDAN is an improved empirical mode decomposition (EMD) algorithm to decompose
signals to their IMFs. This improved EMD-based algorithm overcomes the mode mixing
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effect of the EMD algorithm to some extent, and it is more efficient and stable than the
ensemble empirical mode decomposition (EEMD) algorithm [49]. For the parameters in
the CEEMDAN, the noise standard deviation is 0.1, and the number of realizations is
100. We combine the IMFs with the prominent peak in the range of 0.1 Hz to 0.8 Hz as the
respiration component and the IMFs with the prominent peak in the range of 0.8 Hz to
10 Hz as the heartbeat component.
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Figure 11. Separation results of respiration and heartbeat patterns for one of the subjects (Subject 1).
The red lines are the reference signals (in mV). The other ones are displacement signals (in mm)
separated by different algorithms. (a) Separated respiration patterns compared with the reference
respiration signal. (b) Separated heartbeat patterns compared with the reference ECG signal.

As apnea may occur during vital signs monitoring, we also display the extracted vital
signs signal of Subject 2, who holds his breath at the 12th second. As shown in Figure 12,
the vital signs signal captures the change of breathing. Apnea reveals the heartbeat without
the effect of respiration, while with normal breathing, it is hard to identify the heartbeat
directly. However, by the VMD algorithm, we separate the respiration and heartbeat
patterns in both conditions.
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Figure 12. (a) Vital signs signal and separation results of Subject 2 with apnea. (b) Zoom of the
respiration and heartbeat patterns extracted with radar and its associated reference signals.
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Moreover, as shown in Figure 13, we extracted the vital signs signals of the three
subjects behind the wall and separated the respiration and heartbeat patterns by the
proposed method. The through-wall vital signs signals are similar to the line-of-sight one
in Figure 9. From the separated respiration and heartbeat patterns, it is easy to calculate
the corresponding RR and HR. The amplitudes also show the intensities of the vital signs.
Additionally, we can assign each respiration pattern and heartbeat pattern to the related
subject. Thus, we achieve the goal to detect the vital signs of multiple subjects behind
the wall.
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Figure 13. Through-wall vital signs detection results of multiple subjects. (a) The extracted vi-
tal signs signals of the three subjects. (b) The separated respiration patterns. (c) The separated
heartbeat patterns.

The separated components are promising estimations of respiration and heartbeat
patterns. We detect the peak intervals at each breath to monitor the RR for both radar-based
and contact-sensor-based signals. To obtain the instantaneous HR by the MIMO radar,
we perform short-term autocorrelation with a sliding window to calculate the heartbeat
period [51]. The length of the window function is 2 s and the step is 0.1 s. The R-R peak
intervals of the ECG signal provide the ground truth of HR. Figure 14 shows the RR and
HR monitoring results of 40 s in both cases. The curves based on the radar are in good
agreement with the reference signals. In Figure 14a, the RR values are not detected after
the 12th s because the subject holds his breath, while the HR monitoring continues with
correct values.

For statistical analysis, we further recorded 600 s of data for the three subjects. Table 4
shows the root mean square error (RMSE) of RR and HR of the three subjects for both
line-of-sight and through-wall cases. The RMSE is defined as

RMSE =

√√√√ 1
N

N

∑
n=1

(rradar − rre f )2 (19)
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where N is the number of samples, rradar is the RR obtained by radar and rre f is the reference
RR for calculating the RMSE of RR. Similarly, when calculating the RMSE of HR, rradar is
the HR obtained by radar and rre f is the reference HR. In each case, the RMSE of RR is
lower than 2 bpm because of the high quality of the recovered respiration patterns. The
RMSE of HR is higher for through-wall detection because of the wall attenuation. However,
the overall performance degrades less than 2 bpm owing to the strong penetration property
of the low-frequency microwave.
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Figure 14. RR and HR monitoring results of Subject 2 in line-of-sight and through-wall cases. (a) Line-
of-sight RR monitoring with apnea from the 12th s. (b) Through-wall RR monitoring. (c) Line-of-sight
HR monitoring. (d) Through-wall HR monitoring.

Table 4. RMSE (in bpm) of RR and HR monitoring in cases of line-of-sight (without wall) and
through-wall (with wall) detection.

Subject
RMSE (bpm)

RR without Wall RR with Wall HR without Wall HR with Wall

Subj. 1 0.8565 1.1757 2.2209 3.5461

Subj. 2 0.7058 1.2485 2.8609 4.0297

Subj. 3 0.9571 1.2701 2.8079 3.4779

4. Discussion

This research presents the localization and vital signs monitoring of multiple subjects
behind a wall. Theoretical derivation and experiments show that the coherent imaging
method greatly improves the SNR. The HOC further suppresses the noises, which is
helpful to achieve accurate micro-motion measurement in the case of low SNR, such as
through-wall detection.

By radar imaging, multiple human bodies can be detected and localized. The chest
wall vibrations caused by cardiopulmonary movements can be obtained by extracting the
phase of the subject image. The HOC results also suggest a potential to estimate the chest
shape and the posture of the human body. The vibrations caused by breathing distribute
in the torso, while the vibrations caused by heartbeats not only exist on the surface of the
chest but also on the head and limbs [52]. Thus, the shape of the torso or even the body
can be retrieved by vibration detection. However, radar imaging with higher resolution is
necessary to improve accuracy.

The vibrations contain the vital signs information of respiration and heartbeat. How-
ever, the two vital signs signals are superimposed together. Unlike extracting the respiration
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signal from the ECG signal, the amplitude of the respiration signal is much larger than that
of the heartbeat signal. Therefore, the separation of respiration and heartbeat signals can
be summarized as the problem of separating higher-frequency weaker signals from lower-
frequency stronger ones. The critical problem is how to separate the heartbeat pattern
from the respiration pattern without interference from respiration harmonics. Although
simple and efficient, the IIR and FFT-based ideal bandpass filtering cannot effectively
distinguish heartbeat patterns from respiration harmonics. When the breath is fast, the
harmonics of the respiration signal are close to the heartbeat fundamental in the frequency
domain. The CEEMDAN algorithm also has the potential to separate the respiration and
heartbeat patterns with the proposed criterion, but the computation complexity is much
higher than VMD. In our VMD algorithm, we need to determine the number of modes
in advance. Too few modes will lead to the mixing of heartbeat patterns and respiration
harmonics, while too many modes may produce fake IMFs. According to the waveforms
of respiration and heartbeat patterns, the empirical number of modes is around 6. Different
from identifying a single pattern as the respiration or heartbeat signal [50], VMD with
the grouping criterion combines multiple decomposed patterns to attain respiration and
heartbeat patterns, which retains the details of the heartbeat signal. The separated signals
lay a good foundation for subsequent classification and recognition processing.

Due to the non-stationarity of vital signs, it is more difficult to separate respiration
and heartbeat patterns when breathing changes rapidly. In the grouping criterion, we
compare the central frequency of the mode with the fundamental frequency of respiration
to determine which modes are respiration harmonics. When breathing changes rapidly, the
central frequency of the mode containing respiration harmonics may not be equal to an
integer multiple of the respiration fundamental, so it becomes more difficult to identify
respiration harmonics. One solution is to expand the range of higher-order harmonic
frequency. However, it may cause the heartbeat signal component to be identified as
respiration harmonics. Using the idea of short-time Fourier transform (STFT) for reference,
the non-stationary signal can be processed by shortening the observation time.

It is important to highlight that human behaviors have an impact on radar-based
detection. Different body orientations may cause different vital signs to be extracted, but
they still contain breathing and heartbeat signals. Arterial pulse have been extracted by
radar-based measurements of the displacements from the back and calf of the human
body [52]. Although the proportions of breathing and heartbeat signals vary for different
body orientations, rhythmic components containing respiration and heartbeat informa-
tion remain in the displacement signals. Moreover, random body movement may cause
incorrect results of vital signs monitoring. As shown in Figure 14d, the HR values of
both curves are almost the same except for 2 s after the 17th second. It is caused by a
random movement of the torso. Eliminating the influence of random body movements is
still a difficult problem in the radar-based vital signs monitoring application. Large body
movement severely whelms the vital signs, while small body movement can be considered
as a superposed low-frequency component. Fortunately for the stationary subject, the
random body movement is so insignificant that it can be decomposed as IMFs with low
frequencies. These effects require a further research for continuous monitoring of vital
signs in different situations.

5. Conclusions

In this paper, we use a low-frequency ultra-wideband MIMO radar for through-
wall vital signs localization and detection. The derivation shows the essential relationship
between chest displacements and radar images. Compared with CW Doppler radars, SFCW
MIMO imaging improves the SNR critically by the factor of the radar channel number times
the frequency number. From successive radar imaging, we locate the multiple subjects by
HOC and CFAR. Then we extract the phase of radar images as the vital signs signal. We also
exploit the VMD algorithm with a grouping criterion to separate the heartbeat signal from
the respiration signal. As the experimental results in different scenarios have shown, the



Remote Sens. 2021, 13, 2905 19 of 21

proposed method can track multiple subjects and monitor their RR and instantaneous HR,
even under the condition of through-wall detection. In some other non-contact health
monitoring applications, we believe that the proposed method is also suitable for vital
signs detection by mmWave radars with higher resolutions. In addition to RR and HR, as
we have obtained the patterns of respiration and heartbeat, we will attempt to classify and
identify the vital signs in further research.
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Abbreviations
The following abbreviations are used in this manuscript:

AD Arctangent demodulation
BSS Blind source separation
BP Back-projection
CEEMDAN Complete ensemble empirical mode decomposition with adaptive noise
CFAR Constant false alarm rate
CW Continuous-wave
DACM Differentiate and cross multiply
DC Direct Current
ECG Electrocardiogram
EMD Empirical mode decomposition
EEMD Ensemble empirical mode decomposition
FMCW Frequency-modulated continuous-wave
HOC Higher-order cumulant
HR Heart rate
IIR Infinite impulse response
IMF Intrinsic mode function
IR-UWB Impulse radio ultra-wideband
MIMO Multiple-input multiple-output
RMSE Root mean square error
RR Respiratory rate
SFCW Stepped-frequency continuous-wave
STFT Short-time Fourier transform
SIMO Single-input multiple-output
SNR Signal-to-noise ratio
UWB Ultra-wideband
VMD Variational mode decomposition
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