Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (529)

Search Parameters:
Keywords = stem cutting

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 6639 KiB  
Article
CNS Axon Regeneration in the Long Primary Afferent System in E15/E16 Hypoxic-Conditioned Fetal Rats: A Thrust-Driven Concept
by Frits C. de Beer and Harry W. M. Steinbusch
Anatomia 2025, 4(3), 12; https://doi.org/10.3390/anatomia4030012 - 1 Aug 2025
Abstract
Background: Lower phylogenetic species are known to rebuild cut-off caudal parts with regeneration of the central nervous system (CNS). In contrast, CNS regeneration in higher vertebrates is often attributed to immaturity, although this has never been conclusively demonstrated. The emergence of stem cells [...] Read more.
Background: Lower phylogenetic species are known to rebuild cut-off caudal parts with regeneration of the central nervous system (CNS). In contrast, CNS regeneration in higher vertebrates is often attributed to immaturity, although this has never been conclusively demonstrated. The emergence of stem cells and their effective medical applications has intensified research into spinal cord regeneration. However, despite these advances, the impact of clinical trials involving spinal cord-injured (SCI) patients remains disappointingly low. Long-distance regeneration has yet to be proven. Methods: Our study involved a microsurgical dorsal myelotomy in fetal rats. The development of pioneering long primary afferent axons during early gestation was examined long after birth. Results: A single cut triggered the intrinsic ability of the dorsal root ganglion (DRG) neurons to reprogram. Susceptibility to hypoxia caused the axons to stop developing. However, the residual axonal outgrowth sheds light on the intriguing temporal and spatial events that reveal long-distance CNS regeneration. The altered phenotypes displayed axons of varying lengths and different features, which remained visible throughout life. The previously designed developmental blueprint was crucial for interpreting these enigmatic features. Conclusions: This research into immaturity enabled the exploration of the previously impenetrable domain of early life and the identification of a potential missing link in CNS regeneration research. Central axon regeneration appeared to occur much faster than is generally believed. The paradigm provides a challenging approach for exhaustive intrauterine reprogramming. When the results demonstrate pre-clinical effectiveness in CNS regeneration research, the transformational impact may ultimately lead to improved outcomes for patients with spinal cord injuries. Full article
(This article belongs to the Special Issue From Anatomy to Clinical Neurosciences)
Show Figures

Figure 1

14 pages, 2566 KiB  
Review
Improved Biomass Production and Secondary Metabolism: A Critical Review of Grafting in Cannabis sativa
by S. M. Ahsan, Md. Injamum-Ul-Hoque, Md. Mezanur Rahman, Sang-Mo Kang, In-Jung Lee and Hyong Woo Choi
Plants 2025, 14(15), 2347; https://doi.org/10.3390/plants14152347 - 30 Jul 2025
Viewed by 101
Abstract
Cannabis sativa L. is a versatile plant with applications in various sectors such as agriculture, medicine, food, and cosmetics. The therapeutic properties of cannabis are often linked to its secondary compounds. The worldwide cannabis market is undergoing swift changes due to varying legal [...] Read more.
Cannabis sativa L. is a versatile plant with applications in various sectors such as agriculture, medicine, food, and cosmetics. The therapeutic properties of cannabis are often linked to its secondary compounds. The worldwide cannabis market is undergoing swift changes due to varying legal frameworks. Medicinal cannabis (as a heterozygous and dioecious species) is distinct from most annual crops grown in controlled environments, typically propagated through stem cutting rather than seeds to ensure genetic uniformity. Consequently, as with any commercially cultivated crop, biomass yield plays a crucial role in overall productivity. The key factors involved in cultivation conditions, such as successful root establishment, stress tolerance, and the production cycle duration, are critical for safeguarding, improving, and optimizing plant yield. Grafting is a long-established horticultural practice that mechanically joins the scion and rootstock of distinct genetic origins by merging their vascular systems. This approach can mitigate undesirable traits by leveraging the strengths of particular plants, proving beneficial to various applications. Grafting is not used commercially in Cannabis. Only three very recent investigations suggest that grafting holds significant promise for enhancing both the agronomic and medicinal potential of Cannabis. This review critically examines the latest advancements in cannabis grafting and explores prospects for improving biomass (stem, root, flower, etc.) yield and secondary metabolite production. Full article
Show Figures

Figure 1

12 pages, 432 KiB  
Review
Adventitious Root Formation in Cuttings: Insights from Arabidopsis and Prospects for Woody Plants
by Peipei Liu, Shili Zhang, Xinying Wang, Yuxuan Du, Qizhouhong He, Yingying Zhang, Lisha Shen, Hongfei Hu, Guifang Zhang and Xiaojuan Li
Biomolecules 2025, 15(8), 1089; https://doi.org/10.3390/biom15081089 - 28 Jul 2025
Viewed by 269
Abstract
Cutting propagation is a commonly employed technology for vegetative reproduction in agricultural, forestry, and horticultural practice. The success of cutting propagation depends on adventitious root (AR) formation—a process whereby roots regenerate from stem cuttings or leaf cuttings. In this review, we summarize the [...] Read more.
Cutting propagation is a commonly employed technology for vegetative reproduction in agricultural, forestry, and horticultural practice. The success of cutting propagation depends on adventitious root (AR) formation—a process whereby roots regenerate from stem cuttings or leaf cuttings. In this review, we summarize the distinct stages of cutting-induced AR formation and highlight the pivotal roles of plant hormones and age in this process. Jasmonic acid (JA) acts as a master trigger for promoting AR formation, while auxin serves as the core regulator, driving AR formation. Furthermore, plant age is a crucial factor determining the regenerative competence of cuttings. Notably, age and JA collaboratively modulate auxin synthesis in cutting-induced AR formation. Overall, this review not only elucidates the molecular mechanisms underlying AR formation but also provides valuable insights for improving efficiency of cutting propagation in various plant species. Full article
(This article belongs to the Section Biological Factors)
Show Figures

Figure 1

15 pages, 6009 KiB  
Article
Establishment of an In Vitro Regeneration System and Analysis of Endogenous Hormone Dynamics in Melastoma dodecandrum
by Shunshun Wang, Ruonan Tang, Fei Wang, Yun Pan, Yanru Duan, Luyu Xue, Danqi Zeng, Jinliao Chen and Donghui Peng
Horticulturae 2025, 11(8), 875; https://doi.org/10.3390/horticulturae11080875 - 25 Jul 2025
Viewed by 182
Abstract
Melastoma dodecandrum is primarily propagated through stem cuttings, which limits genetic variation and constrains breeding efforts. To overcome this limitation and facilitate molecular breeding, the establishment of a reliable and efficient regeneration system is essential. This study investigated the effects of plant growth [...] Read more.
Melastoma dodecandrum is primarily propagated through stem cuttings, which limits genetic variation and constrains breeding efforts. To overcome this limitation and facilitate molecular breeding, the establishment of a reliable and efficient regeneration system is essential. This study investigated the effects of plant growth regulators (PGRs) and culture media on the in vitro regeneration system of M. dodecandrum. The highest rate of callus induction (96.67%) was achieved when sterile leaf explants were cultured on Murashige and Skoog (MS) basal medium supplemented with 2.00 mg·L−1 2,4-dichlorophenoxyacetic acid (2,4-D) and 0.50 mg·L−1 6-benzylaminopurine (6-BA). For callus differentiation, the optimal formulation of MS + 2.0 mg·L−1 6-BA + 0.5 mg·L−1 naphthylacetic acid (NAA) resulted in a differentiation frequency of 83.33%. The optimal PGR combinations for shoot proliferation were 1.5 mg·L−1 6-BA + 0.1 mg·L−1 NAA and 0.5 mg·L−1 6-BA + 0.2 mg·L−1 NAA. The optimal rooting media were MS medium supplemented with 0.1, 0.2, or 0.5 mg·L−1 indole-3-butyric acid (IBA) or 1/2MS medium supplemented with 0.1 mg·L−1 IBA. Additionally, this study investigated the dynamic changes in endogenous hormones during the regeneration process. The levels and ratios of hormones, including gibberellin (GA3), abscisic acid (ABA), indole-3-acetic acid (IAA), and zeatin (ZT), collectively regulated the regeneration process. Elevated levels of ABA and GA3 may promote callus initiation as well as the growth and development of adventitious roots during the early induction stage. Reduced levels of ABA and IAA favored callus differentiation into shoots, whereas elevated GA3 levels facilitated proliferation of adventitious shoots. Throughout the regeneration process, fluctuations in ZT levels remained relatively stable. This study successfully established an in vitro regeneration system for M. dodecandrum using leaf explants, providing theoretical guidance and technical support for further molecular breeding efforts, genetic transformation, and industrial development. Full article
(This article belongs to the Section Propagation and Seeds)
Show Figures

Figure 1

18 pages, 8296 KiB  
Article
Survival Is Skin Deep: Toughness of the Outer Cactus Stem with Insights for Technical Envelopes
by Patricia Soffiatti, Natália O. Bonfante, Maria Clara L. Jaculiski and Nick P. Rowe
Biomimetics 2025, 10(8), 487; https://doi.org/10.3390/biomimetics10080487 - 23 Jul 2025
Viewed by 344
Abstract
Cacti are of interest for new bio-inspired technologies because of their remarkable adaptations to extreme environments. Recently, they have inspired functional designs from nano fibres to optimised buildings and architectures. We investigate the diversity of cactus skin properties in terms of toughness and [...] Read more.
Cacti are of interest for new bio-inspired technologies because of their remarkable adaptations to extreme environments. Recently, they have inspired functional designs from nano fibres to optimised buildings and architectures. We investigate the diversity of cactus skin properties in terms of toughness and resistance to cutting damage. Cacti are well known for their extreme adaptations to harsh environments, with soft, fleshy stems that expand and contract with water uptake and storage. This functioning is made possible by an extendable outer envelope (skin) and a fluted 3-dimensional structure of the stem. We explore the mechanical toughness and underlying structural organisation of the cactus skin in four species of cactus showing different growth forms. The toughness properties of the cactus skin is only one part of a multi-functional structure for surviving in extreme environments. The study suggests that survival involves a relatively “light” investment of tough materials in the outer envelope instead of a rigid “defensive” layer. This is capable of elastic deformation and enables water storage in challenging, arid environments. The main purpose of this article is to demonstrate the diversity of skin toughness and underlying structures in the biological world as providing potential new designs for technical envelopes. Full article
Show Figures

Graphical abstract

22 pages, 9981 KiB  
Article
Design and Experiment of Autonomous Shield-Cutting End-Effector for Dual-Zone Maize Field Weeding
by Yunxiang Li, Yinsong Qu, Yuan Fang, Jie Yang and Yanfeng Lu
Agriculture 2025, 15(14), 1549; https://doi.org/10.3390/agriculture15141549 - 18 Jul 2025
Viewed by 254
Abstract
This study presented an autonomous shield-cutting end-effector for maize surrounding weeding (SEMSW), addressing the challenges of the low weed removal rate (WRR) and high seedling damage rate (SDR) in northern China’s 3–5 leaf stage maize. The SEMSW integrated seedling positioning, robotic arm control, [...] Read more.
This study presented an autonomous shield-cutting end-effector for maize surrounding weeding (SEMSW), addressing the challenges of the low weed removal rate (WRR) and high seedling damage rate (SDR) in northern China’s 3–5 leaf stage maize. The SEMSW integrated seedling positioning, robotic arm control, and precision weeding functionalities: a seedling positioning sensor identified maize seedlings and weeds, guiding XYZ translational motions to align the robotic arm. The seedling-shielding anti-cutting mechanism (SAM) enclosed crop stems, while the contour-adaptive weeding mechanism (CWM) activated two-stage retractable blades (TRWBs) for inter/intra-row weeding operations. The following key design parameters were determined: 150 mm inner diameter for the seedling-shielding disc; 30 mm minimum inscribed-circle for retractable clamping units (RCUs); 40 mm ground clearance for SAM; 170 mm shielding height; and 100 mm minimum inscribed-circle diameter for the TRWB. Mathematical optimization defined the shape-following weeding cam (SWC) contour and TRWB dimensional chain. Kinematic/dynamic models were introduced alongside an adaptive sliding mode controller, ensuring lateral translation error convergence. A YOLOv8 model achieved 0.951 precision, 0.95 mAP50, and 0.819 mAP50-95, striking a balance between detection accuracy and localization precision. Field trials of the prototype showed 88.3% WRR and 2.2% SDR, meeting northern China’s agronomic standards. Full article
Show Figures

Figure 1

19 pages, 1661 KiB  
Article
Evaluation of the Field Performance and Economic Feasibility of Mechanized Onion Production in the Republic of Korea
by Jae-Seo Hwang and Wan-Soo Kim
Agronomy 2025, 15(7), 1721; https://doi.org/10.3390/agronomy15071721 - 17 Jul 2025
Viewed by 277
Abstract
Onion cultivation in the Republic of Korea is increasingly threatened by labor shortages and an aging rural population, underscoring the growing importance of mechanization. This study evaluated the combined and individual performances and economic feasibility of mechanized transplanting, stem cutting, harvesting, and collecting [...] Read more.
Onion cultivation in the Republic of Korea is increasingly threatened by labor shortages and an aging rural population, underscoring the growing importance of mechanization. This study evaluated the combined and individual performances and economic feasibility of mechanized transplanting, stem cutting, harvesting, and collecting operations using work efficiency; the missing plant, stem cutting, damage, and dropout rates; and foreign matter content as indicators. Mechanized operations achieved up to 358-fold higher work efficiencies than manual labor operations. However, in terms of marketability, performance was inferior due to missing plants, improperly cut stems, damaged bulbs, dropped onions, and foreign matter contamination. The economic analysis indicated that the use of individual machines is advantageous for farms larger than 10.2 ha for transplanting, 1.14 ha for stem cutting, 0 ha for harvesting (i.e., profitable regardless of farm size), and 6.95 ha for collecting. For fully mechanized operations, using machines for all four processes, the break-even area was found to be 3.63 ha, with a payback period of 2.1 years. These findings are expected to serve as a foundational reference for onion growers considering the adoption of mechanization. Full article
Show Figures

Figure 1

27 pages, 68526 KiB  
Article
Design and Evaluation of a Novel Actuated End Effector for Selective Broccoli Harvesting in Dense Planting Conditions
by Zhiyu Zuo, Yue Xue, Sheng Gao, Shenghe Zhang, Qingqing Dai, Guoxin Ma and Hanping Mao
Agriculture 2025, 15(14), 1537; https://doi.org/10.3390/agriculture15141537 - 16 Jul 2025
Viewed by 281
Abstract
The commercialization of selective broccoli harvesters, a critical response to agricultural labor shortages, is hampered by end effectors with large operational envelopes and poor adaptability to complex field conditions. To address these limitations, this study developed and evaluated a novel end-effector with an [...] Read more.
The commercialization of selective broccoli harvesters, a critical response to agricultural labor shortages, is hampered by end effectors with large operational envelopes and poor adaptability to complex field conditions. To address these limitations, this study developed and evaluated a novel end-effector with an integrated transverse cutting mechanism and a foldable grasping cavity. Unlike conventional fixed cylindrical cavities, our design utilizes actuated grasping arms and a mechanical linkage system to significantly reduce the operational footprint and enhance maneuverability. Key design parameters were optimized based on broccoli morphological data and experimental measurements of the maximum stem cutting force. Furthermore, dynamic simulations were employed to validate the operational trajectory and ensure interference-free motion. Field tests demonstrated an operational success rate of 93.33% and a cutting success rate of 92.86%. The end effector successfully operated in dense planting environments, effectively avoiding interference with adjacent broccoli heads. This research provides a robust and promising solution that advances the automation of broccoli harvesting, paving the way for the commercial adoption of robotic harvesting technologies. Full article
Show Figures

Figure 1

16 pages, 3513 KiB  
Article
Identification and Distribution of Begomoviruses Infecting Cassava Fields in Sierra Leone
by Musa Decius Saffa, Alusaine Edward Samura, Mohamed Alieu Bah, Angela Obiageli Eni, Ezechiel B. Tibiri, Saïdou Zongo, William J.-L. Amoakon, Fidèle Tiendrébéogo, Justin Simon Pita and Prince Emmanuel Norman
Plants 2025, 14(14), 2142; https://doi.org/10.3390/plants14142142 - 11 Jul 2025
Viewed by 435
Abstract
A dearth of knowledge exists on identifying the begomoviruses and distributing cassava mosaic viruses across key cassava-growing regions of Sierra Leone. The study aimed to identify and map the distribution of cassava mosaic disease (CMD)-associated viruses in farmers’ fields in Sierra Leone. Cassava [...] Read more.
A dearth of knowledge exists on identifying the begomoviruses and distributing cassava mosaic viruses across key cassava-growing regions of Sierra Leone. The study aimed to identify and map the distribution of cassava mosaic disease (CMD)-associated viruses in farmers’ fields in Sierra Leone. Cassava (Manihot esculenta Crantz) leaf samples were collected in 109 smallholder farms during a geo-referenced survey conducted from 10th May to 5th June 2024. Molecular diagnostics were carried out to identify the viral strains associated with CMD. Findings revealed that infection by stem cutting was more predominant in the south, east, north, and northwest regions than in the west region. In contrast, infection by whitefly was predominant in the west, north, and northwest regions. PCR screening of 426 samples coupled with sequence analysis revealed the presence of African cassava mosaic-like (ACMV-like) viruses, and East African cassava mosaic-like (EACMV-like) viruses as single infections at 78.1% and 1.3%, respectively. Co-infections of ACMV-like and EACMV-like viruses were detected in 20.6% of the tested samples. In addition, 70.6% of the samples positive for EACMV-like virus (single and mixed infections) were found to be positive for East African cassava mosaic Cameroon virus (EACMCMV). The ACMV and co-infection of ACMV and EACMV viruses were present in all regions, while EACMCV was detected in all regions except the western area. The results indicate more prevalence of the EACMCMV variant in Sierra Leone. This study suggests utilization of participatory surveillance and good agronomic practices to manage CMD in Sierra Leone. Full article
(This article belongs to the Section Plant Protection and Biotic Interactions)
Show Figures

Figure 1

29 pages, 4867 KiB  
Review
Targeting Resistance Pathways in Breast Cancer Through Precision Oncology: Nanotechnology and Immune Modulation Approaches
by Hussein Sabit, Sanaa Rashwan, Yasser Albrahim, Al-Hassan Soliman Wadan, Faisal Radwan, Amany I. Alqosaibi, Shaimaa Abdel-Ghany and Borros Arneth
Biomedicines 2025, 13(7), 1691; https://doi.org/10.3390/biomedicines13071691 - 10 Jul 2025
Viewed by 485
Abstract
According to the WHO, in 2022, there were 2.3 million women diagnosed with breast cancer (BC) and 670,000 deaths globally. BC remains the leading cause of cancer-related mortality, with therapeutic resistance representing a significant barrier to effective treatment, particularly in aggressive subtypes like [...] Read more.
According to the WHO, in 2022, there were 2.3 million women diagnosed with breast cancer (BC) and 670,000 deaths globally. BC remains the leading cause of cancer-related mortality, with therapeutic resistance representing a significant barrier to effective treatment, particularly in aggressive subtypes like triple-negative breast cancer (TNBC). This review article discusses emerging strategies to overcome resistance by integrating precision oncology, nanotechnology-based drug delivery, and immune modulation. Resistance mechanisms—such as metabolic reprogramming, tumor heterogeneity, immune evasion, autophagy, and the role of cancer stem cells—are critically examined. We highlight cutting-edge nanoplatforms that co-deliver chemotherapeutics and immune stimulants with spatiotemporal precision, including sonodynamic and photothermal systems, ADCs, and targeted nanoparticles. Moreover, advances in tumor microenvironment (TME) modulation, photoimmunotherapy, and exosomal miRNA targeting offer promising avenues to enhance immunogenicity and therapeutic durability. The integration of molecular profiling with advanced computational approaches, including artificial intelligence and biomimetic models, holds significant promise for the future development of personalized resistance-mitigating interventions, though a detailed exploration is beyond the current scope. Collectively, these strategies reflect a paradigm shift from conventional monotherapies toward multifaceted, precision-guided treatment approaches. This review aims to provide a comprehensive overview of current innovations and propose future directions for overcoming drug resistance in BC. Full article
(This article belongs to the Special Issue Drug Resistance and Novel Targets for Cancer Therapy—Second Edition)
Show Figures

Figure 1

15 pages, 5226 KiB  
Article
Enhancing Conservation Efforts of Stephanopodium engleri Through Vegetative Propagation: Effects of IBA and Cutting Types
by Giselly Mota da Silva, Evandro Alves Vieira, Luiz Palhares Neto, Silvio Ramos, Markus Gastauer and Cecílio Frois Caldeira
Plants 2025, 14(14), 2116; https://doi.org/10.3390/plants14142116 - 9 Jul 2025
Viewed by 350
Abstract
Stephanopodium engleri Baill. is an endangered tree species from the Dichapetalaceae family and endemic to the Iron Quadrangle region of Brazil. Recalcitrance and low seed viability limit conventional seedling production, making vegetative propagation a crucial alternative for conservation efforts. This study evaluated the [...] Read more.
Stephanopodium engleri Baill. is an endangered tree species from the Dichapetalaceae family and endemic to the Iron Quadrangle region of Brazil. Recalcitrance and low seed viability limit conventional seedling production, making vegetative propagation a crucial alternative for conservation efforts. This study evaluated the rooting and sprouting potential of different cutting types (apical, middle, and basal segments from the main stem, as well as the tip and the herbaceous and woody segments from the lateral branches) treated with Indole-3-Butyric Acid (IBA) at varying concentrations (0, 1, 2, 3, and 4 g L−1) and immersion durations (5 s to 10 min). Cuttings were collected from 12-month-old plants grown under controlled conditions and planted in Carolina Soil® substrate after treatment. Sprouting and rooting rates varied significantly between cutting types, with basal main stem cuttings showing the highest rooting success, particularly at 3 g L−1 of IBA. These cuttings also exhibited more and longer roots and enhanced sprouting-related biometric traits. Shorter immersion times (15 s and 1 min) were the most effective, promoting root formation while avoiding the potential inhibitory effects of prolonged exposure. Our findings provide a practical protocol for large-scale seedling production of S. engleri while minimizing impacts on wild populations. The effective use of vegetative propagation could facilitate the expansion of S. engleri populations in their natural habitats, enhancing conservation efforts and ensuring sustainable species management. Full article
(This article belongs to the Special Issue Physiology and Seedling Production of Plants)
Show Figures

Figure 1

13 pages, 2711 KiB  
Communication
Expanding the Cycad Horticulture Toolbox: Air Layer Protocols for Cycas Stems
by Thomas E. Marler and Gil N. Cruz
Horticulturae 2025, 11(7), 814; https://doi.org/10.3390/horticulturae11070814 - 9 Jul 2025
Viewed by 275
Abstract
Knowledge of propagation methods is crucial for conserving endangered plant species. Cycads are highly threatened, and propagation protocols using seeds and stem cuttings are well-understood. No air layer technique has been developed for cycad propagation, so the objective of this study was to [...] Read more.
Knowledge of propagation methods is crucial for conserving endangered plant species. Cycads are highly threatened, and propagation protocols using seeds and stem cuttings are well-understood. No air layer technique has been developed for cycad propagation, so the objective of this study was to develop a working protocol for adding this technique for cycad conservation. We opened wounds on mature Cycas edentata de Laub. stems to expose cortex and vascular tissue then installed an air layer medium to determine if adventitious roots would form. In one experiment, the peripheral vascular cylinder was exposed from 90° to 360°; in a second experiment, the use of auxin-promoting root stimulants was compared with a control group with no stimulants; and in a third experiment, the interior vascular cylinders were exposed in addition to the peripheral vascular cylinder. Every replication in every experiment developed adventitious roots beginning about 8 weeks and were ready to harvest with 10 cm roots by 14 weeks. The robust roots were about 1 cm in diameter, geotropic, and restricted to the outermost vascular cylinder exposed on the upper surface of the wounds. The number of roots and total root length per propagule increased by more than 300% as the percentage of exposed vascular tissue increased from 90° to 360°. Air layer techniques can be added to the cycad conservation toolbox, and its use may aid in conserving this threatened group of plants. Full article
(This article belongs to the Section Propagation and Seeds)
Show Figures

Figure 1

11 pages, 662 KiB  
Article
Antibody Responses Following Primary Immunization with the Recombinant Herpes Zoster Vaccine (Shingrix®) in VZV Seronegative Immunocompromised Adults
by Andrea Wessely, Ines Zwazl, Melita Poturica, Lukas Weseslindtner, Michael Kundi, Ursula Wiedermann and Angelika Wagner
Vaccines 2025, 13(7), 737; https://doi.org/10.3390/vaccines13070737 - 8 Jul 2025
Viewed by 449
Abstract
Background: Immunocompromised patients are at risk of severe varicella zoster virus (VZV) infection and reactivation. In VZV seronegative immunocompromised persons, live-attenuated VZV vaccination is contraindicated, thus the recombinant herpes zoster vaccine (rHZV) remains a safe alternative, although an off-label application. Yet, data on [...] Read more.
Background: Immunocompromised patients are at risk of severe varicella zoster virus (VZV) infection and reactivation. In VZV seronegative immunocompromised persons, live-attenuated VZV vaccination is contraindicated, thus the recombinant herpes zoster vaccine (rHZV) remains a safe alternative, although an off-label application. Yet, data on the induction of a VZV-specific immune response in immunocompromised individuals with VZV-specific IgG below the assay’s cut-off are only available for patients after solid-organ transplantation (SOT). Methods: We retrospectively analyzed the induction of VZV-specific IgG antibody levels after vaccination with rHZV in immunocompromised patients who previously tested anti-VZV-IgG negative between March 2018 and January 2024. Results: Of 952 vaccinees screened that received 2 or 3 doses rHZV, depending on the underlying disease, 33 patients (median age 53.0; 51.5% female) with either hematopoietic stem cell transplantation (82%) or high-grade immunosuppressive treatment (18%) fulfilled the inclusion criteria. Upon rHZV vaccination, 88% (29/33) individuals mounted a significant antibody response exceeding the assay’s cut-off level for seropositivity (p < 0.0001). We detected higher geometric mean antibody concentrations after three compared to two doses. However, 12% remained below the assay’s cut-off level and were therefore considered non-responsive. Conclusions: The rHZV is immunogenic in VZV-seronegative immunocompromised individuals and therefore presents a valid option to induce seroconversion. However, antibody testing in high-risk groups should be considered to identify humoral non- and low responders. Full article
(This article belongs to the Special Issue Varicella and Zoster Vaccination)
Show Figures

Figure 1

33 pages, 4665 KiB  
Review
A Paradigm Shift in SSTI Management: The Multifunctional Role of Extracellular Vesicles
by Barathan Muttiah and Alfizah Hanafiah
Int. J. Mol. Sci. 2025, 26(13), 6481; https://doi.org/10.3390/ijms26136481 - 5 Jul 2025
Viewed by 628
Abstract
Skin and soft tissue infections (SSTIs) are becoming an urgent public health issue worldwide. The globe is facing a growing problem with drug-resistant germs, and current treatments are not quite cutting it. There is a real need for new therapies that can tackle [...] Read more.
Skin and soft tissue infections (SSTIs) are becoming an urgent public health issue worldwide. The globe is facing a growing problem with drug-resistant germs, and current treatments are not quite cutting it. There is a real need for new therapies that can tackle these challenges more effectively. This brings us to an interesting question: Can extracellular vesicles (EVs) from different sources, such as mesenchymal stem cells (MSCs), immune cells, or even plants and animals, help in treating SSTIs, especially given the rise in drug resistance? Studies have shown that MSC-derived EVs are particularly noteworthy because they carry components such as antimicrobial peptides (AMPs) that can work together to fight infections, boost the immune response, and aid in healing. These vesicles play a role in how our body interacts with infections, helping to clear bacteria, reduce inflammation, and promote tissue repair. We also see that EVs from plants and bacteria can directly fight off germs, while those from animals can support the healing process of skin. Although early studies have shown promise for EV therapies, there are still hurdles to overcome, such as ensuring consistent production and delivery. This review looks at the potential of EVs as powerful agents in managing infections and supporting healing, highlighting an exciting area of research in medicine. Full article
(This article belongs to the Special Issue Extracellular Vesicles: Advances in Multi-Omics)
Show Figures

Graphical abstract

17 pages, 4939 KiB  
Article
Wood Loss in the Felling and Cross-Cutting of Trees from Spruce Stands Affected by Windthrow in the Curvature Carpathians
by Mihai Ciocirlan and Vasile Răzvan Câmpu
Forests 2025, 16(7), 1102; https://doi.org/10.3390/f16071102 - 3 Jul 2025
Viewed by 265
Abstract
Windthrow determines major changes in tree stand evolution due to the felling or breaking of either isolated trees or entire stands. It has a major ecological, social and economic impact. Wood loss resulting from tree felling and cross-cutting operations is a less-studied aspect [...] Read more.
Windthrow determines major changes in tree stand evolution due to the felling or breaking of either isolated trees or entire stands. It has a major ecological, social and economic impact. Wood loss resulting from tree felling and cross-cutting operations is a less-studied aspect related to windthrow. Wood loss is represented by high stumps, broken or split stems, wood lost in the felling of trees that remain standing, wood lost in felling cuts that attempt to remove the stem from the root plate of partially or totally uprooted trees and wood lost as a result of stem cross-cutting. The study focused on estimating losses and their indices in a spruce tree stand located in the Curvature Carpathians. Windthrow took place in this tree stand in February 2020. The results showed that the total wood loss index is 7.747%. The main losses are represented by wood losses in high stumps (5.319%). The amount of wood loss depends on the proportion of uprooted or standing trees, ground inclination and the uprooting direction of trees as opposed to ground inclination, as well as on tree dimension. Tree volume significantly influences wood loss in high stumps (p < 0.001). The closer the uprooting direction is to the highest slope, the higher the tree stump becomes. Wood loss caused by stem breaking and splitting represents 2.280%, tree felling cuttings and stem removal from the root plate in uprooted trees account for 0.138% while loss resulting from stem cross-cutting represents 0.10%. Full article
(This article belongs to the Special Issue Sustainable Forest Operations Planning and Management)
Show Figures

Figure 1

Back to TopTop