Survival Is Skin Deep: Toughness of the Outer Cactus Stem with Insights for Technical Envelopes
Abstract
1. Introduction
2. Materials and Methods
2.1. Location and Material
2.2. Specimen Preparation
2.3. Cutting Test
2.4. Fracture Toughness of Skin
2.5. Skin Structure
3. Results
3.1. Damage of Cactus Skin in the Natural Environment
3.2. Toughness of Cactus Growth Forms
3.3. Toughness and Developmental Age
3.4. Structural Organisation of the Cactus Skin
4. Discussion
4.1. Skin Damage
4.2. Skin Toughness and Growth Form Diversity
4.3. Skin Toughness and Developmental Age
4.4. Skin Properties and Structure
4.5. Bio-Inspired Cactus Skin
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bravo-Avilez, D.; Zavala-Hurtado, J.A.; Rendón-Aguilar, B. Damage in Cactaceae, their geographic distribution and new evidences. Bot. Sci. 2019, 97, 551–567. [Google Scholar] [CrossRef]
- Abreu, D.D.; Arruda, E.; Melo-De-Pinna, G.F.A. Morphology and anatomy of stem mines in Cipocereus minensis (Wender.) Ritter (Cactaceae), an endemic species to eastern Brazil. Haseltonia 2012, 17, 42–50. [Google Scholar] [CrossRef]
- Martínez-Ávalos, J.G.; Golubov, J.; Mandujano, M.C.; Jurado, E. Causes of individual mortality in the endangered star cactus Astrophytum asterias (Cactaceae): The effect of herbivores and disease in Mexican populations. J. Arid. Environ. 2007, 71, 250–258. [Google Scholar] [CrossRef]
- Jiménez-Sierra, C.L.; Eguiarte, L.E. Candy barrel cactus (Echinocactus platyacanthus Link & Otto): A traditional plant resource in Mexico subject to uncontrolled extraction and browsing. Botany 2010, 64, 99–108. [Google Scholar] [CrossRef]
- Maya, Y.; Palacios-Cardiel, C.; Jiménez, M.L. El cardón Pachycereus pringlei, nuevo hospedero para Scyphophorus acupunctatus (Coleoptera: Curculionidae) en Baja California Sur, México. Rev. Mex. Biodivers 2011, 82, 1041–1045. [Google Scholar] [CrossRef]
- Danzer, S.; Drezner, T.D. Relationships between epidermal browning, girdling, damage, and bird cavities in a military restricted database of 12,000+ plants of the keystone Carnegiea gigantea in the northern Sonoran Desert. Madroño 2014, 61, 115–125. [Google Scholar] [CrossRef]
- Nobel, P.S. Morphology, nurse plants, and minimum apical temperatures for young Carnegiea gigantea. Int. J. Plant Sci. 1980, 141, 188–191. [Google Scholar] [CrossRef]
- Villalobos, S.; Vargas, O.; Melo, S. Usage, management and conservation of “yosu”, Stenocereus griseus (Cactaceae), in the upper Guajira, Colombia. Acta Biol. Colomb. 2007, 12, 99–112. [Google Scholar]
- Evans, L.S.; Macri, A. Stem surface injuries of several species of columnar cacti of Ecuador. J. Torrey Bot. Soc. 2008, 135, 475–482. [Google Scholar] [CrossRef]
- Bobich, E.G.; Wallace, N.L.; Sartori, K.L. Cholla mortality and extreme drought in the Sonoran Desert. Madroño 2014, 61, 126–136. [Google Scholar] [CrossRef]
- Bastola, A.K.; Rodriguez, N.; Behl, M.; Soffiatti, P.; Rowe, N.P.; Lendlein, A. Cactus-inspired design principles for soft robotics based on 3D printed hydrogel-elastomer systems. Mater. Des. 2021, 202, 109515. [Google Scholar] [CrossRef]
- Bastola, A.K.; Soffiatti, P.; Behl, M.; Lendlein, A.; Rowe, N.P. Structural performance of a climbing cactus: Making the most of softness. J. R. Soc. Interface 2021, 18, 20210040. [Google Scholar] [CrossRef] [PubMed]
- Striet, L.; Mylo, M.D.; Speck, O.; Dondl, P.W. Modeling abscission of cacti branches. J. Mech. Phys. Solids 2025, 196, 105965. [Google Scholar] [CrossRef]
- Sun, H.; Song, Y.; Zhang, B.; Huan, Y.; Jiang, C.; Liu, H.; Bao, T.; Yu, S.; Wang, H. Bioinspired micro- and nanostructures used for fog harvesting. Appl. Phys. A 2021, 127, 461. [Google Scholar] [CrossRef]
- Chen, J.; Li, E.; Liu, W.; Mao, Y.; Hou, S. Crashworthiness analysis of novel cactus-inspired multi-cell structures under axial crushing. Int. J. Mech. Sci. 2024, 268, 109053. [Google Scholar] [CrossRef]
- Mei, X.; Liu, C.; Li, Z. Research progress on functional, structural, and material design of plant-inspired green bionic buildings. Energy Build. 2024, 316, 114357. [Google Scholar] [CrossRef]
- Kuru, A.; Fiorito, F.; Oldfield, P.; Bonser, S.P. Multi-functional biomimetic adaptive façades: A case study. In Proceedings of the COST TU1403 “Adaptive Facades Network”, Lucerne, Switzerland, 26–27 November 2018. [Google Scholar]
- Xu, X.; Ran, F.; Lai, H.; Cheng, Z.; Lv, T.; Shao, L.; Liu, Y. Cactus-inspired bimetallic metal–organic framework-derived 1D–2D hierarchical Co/N-decorated carbon architecture toward enhanced electromagnetic wave absorbing performance. ACS Appl. Mater. Interfaces 2019, 11, 13564–13573. [Google Scholar] [CrossRef] [PubMed]
- Penick, C.; Cope, G.; Morankar, S.; Mistry, Y.; Grishin, A.; Chawla, N.; Bhate, D. The comparative approach to bio-inspired design: Integrating Biodiversity and Biologists into the design process. Integr. Comp. Biol. 2022, 62, 1153–1163. [Google Scholar] [CrossRef] [PubMed]
- Rowe, N.P. Inverting the lady’s slipper orchid: Development and active-passive mechanisms in a “living machine”. J. Exp. Botany 2025, 76, 191–194. [Google Scholar] [CrossRef] [PubMed]
- Soffiatti, P.; Rowe, N.P. Mechanical innovations of a climbing cactus: Functional insights for a new generation of growing robots. Front. Robot. AI 2020, 7, 64. [Google Scholar] [CrossRef] [PubMed]
- Marques, M.C.M.; Silva, S.M.; Liebsch, D. Coastal plain forests in southern and southeastern Brazil: Ecological drivers, floristic patterns and conservation status. Braz. J. Bot. 2015, 38, 1–18. [Google Scholar] [CrossRef]
- Inague, G.M.; Zwiener, V.P.; Marques, M.C.M. Climate change threatens the woody plant taxonomic and functional diversities of the Restinga vegetation in Brazil. Perspect. Ecol. Conserv. 2021, 19, 53–60. [Google Scholar] [CrossRef]
- Rowe, N.P.; Cheng Clavel, L.; Soffiatti, P. Failure without tears: Two-step attachment in a climbing cactus. Biomimetics 2023, 8, 220. [Google Scholar] [CrossRef] [PubMed]
- Mylo, M.D.; Krüger, F.; Speck, T.; Speck, O. Self-Repair in Cacti Branches: Comparative Analyses of their Morphology, anatomy, and biomechanics. Int. J. Mol. Sci. 2020, 21, 4630. [Google Scholar] [CrossRef] [PubMed]
- Domínguez, E.; Heredia-Guerrero, J.A.; Heredia, A. The plant cuticle: Old challenges, new perspectives. J. Exp. Botany 2017, 68, 5251–5255. [Google Scholar] [CrossRef] [PubMed]
- Khanal, B.P.; Knoche, M. Mechanical properties of cuticles and their primary determinants. J. Exp. Botany 2017, 68, 5351–5367. [Google Scholar] [CrossRef] [PubMed]
- Reynoud, N.; Geneix, N.; D’Orlando, A.; Petit, J.; Mathurin, J.; Deniset-Besseau, A.; Marion, D.; Rothan, C.; Lahaye, M.; Bakan, B. Cuticle architecture and mechanical properties: A functional relationship delineated through correlated multimodal imaging. New Phytol. 2023, 238, 2033–2046. [Google Scholar] [CrossRef] [PubMed]
- Gibson, A.C.; Nobel, P.S. The Cactus Primer; Harvard University Press: Cambridge, MA, USA, 1986. [Google Scholar]
- Mauseth, J.D. Structure–function relationships in highly modified shoots of Cactaceae. Ann. Bot. 2006, 98, 901–926. [Google Scholar] [CrossRef] [PubMed]
- Benítez, J.J.; Guzmán-Puyol, S.; Vilaplana, F.; Heredia-Guerrero, J.A.; Domínguez, E.; Heredia, A. Mechanical performances of isolated cuticles along tomato fruit growth and ripening. Front. Plant Sci. 2021, 12, 787839. [Google Scholar] [CrossRef] [PubMed]
- Wiedemann, P.; Neinhuis, C. Biomechanics of isolated plant cuticles. Bot. Acta 1998, 111, 28–34. [Google Scholar] [CrossRef]
- Khanal, B.P.; Le, T.L.; Si, Y.; Knoche, M. Russet susceptibility in apple is associated with skin cells that are larger, more variable in size, and of reduced fracture strain. Plants 2020, 9, 1118. [Google Scholar] [CrossRef] [PubMed]
- Mylo, M.D.; Hoppe, A.; Pastewka, L.; Speck, T.; Speck, O. Elastic property and fracture mechanics of lateral branch-branch junctions in cacti: A case study of Opuntia ficus-indica and Cylindropuntia bigelovii. Front. Plant Sci. 2022, 13, 950860. [Google Scholar] [CrossRef] [PubMed]
- Schwager, H.; Masselter, T.; Speck, T.; Neinhuis, C. Functional morphology and biomechanics of branch-stem junctions in columnar cacti. Proc. R. Soc. B Biol. Sci. 2013, 280, 20132244. [Google Scholar] [CrossRef] [PubMed]
- Freitas, M.; Calvente, A.; Gonzaga, D. Flora do Rio de Janeiro: Cactaceae. Rodriguesia 2020, 71, 1–27. [Google Scholar] [CrossRef]
- Campanhã-Bechara, F.; Zocatelli-Salvador, L.; Almeida-Ventura, R.; Regina-Topanotti, L.; Gerber, D.; Santana-da-Cruz, I.; Simonelli, M. Vegetation and seed bank of an open-scrub bush restinga formation in the Southeastern coast of Brazil. Rev. Biol. Trop. 2020, 68, 541–550. [Google Scholar] [CrossRef]
- Ang, K.Y.; Lucas, P.W.; Tan, H.T.W. Novel way of measuring the fracture toughness of leaves and other thin films using a single inclined razor blade. New Phytol. 2008, 177, 830–837. [Google Scholar] [CrossRef] [PubMed]
- Hammer, Ø.; Harper, D.A.T.; Ryan, P.D. PAST: Paleontological Statistics Software Package for Education and Data Analysis. Palaeontol. Electron. 2001, 4, 9. [Google Scholar]
- Kohl, K.D.; Miller, A.W.; Dearing, M.D. Evolutionary irony: Evidence that ‘defensive’ plant spines act as a proximate cue to attract a mammalian herbivore. Oikos 2015, 124, 835–841. [Google Scholar] [CrossRef] [PubMed]
- Loza-Cornejo, S.; Terrazas, T. Epidermal and hypodermal characteristics in North American Cactoideae (Cactaceae). J. Plant Res. 2003, 116, 27–35. [Google Scholar] [CrossRef] [PubMed]
- Soffiatti, P.; Angyalossy, V. Anatomy of Brazilian Cereeae (subfamily Cactoideae, Cactaceae): Arrojadoa Britton & Rose, Stephanocereus A. Berger and Brasilicereus Backeberg. Acta Bot. Bras. 2007, 21, 813–822. [Google Scholar] [CrossRef]
- Mauseth, J.D.; Landrum, J.V. Relictual vegetative anatomical characters in Cactaceae: The genus Pereskia. J. Plant Res. 1997, 110, 55–64. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Quezada, D.M.; Arias, S.; Korotkova, N.; Terrazas, T. From the ground up: The evolution of structurally dependent plants in Hylocereeae (Cactaceae). Braz. J. Bot. 2025, 48, 31. [Google Scholar] [CrossRef]
- Mauseth, J.D. Theoretical aspects of surface-to-volume ratios and water-storage capacities of succulent shoots. Am. J. Bot. 2000, 87, 1107–1115. [Google Scholar] [CrossRef] [PubMed]
- Garcia, S.L.F.P.; Giovanoni, S.S.; Boeger, M.R.T.; Soffiatti, P. A Comparative Morphoanatomical study between a terrestrial and epiphytic Rhipsalis (Rhipsalideae, Cactaceae). J. Torrey Bot. Soc. 2014, 141, 265–272. [Google Scholar] [CrossRef]
- Wallace, R.S.; Gibson, A.C. Evolution and Systematics. In Cacti: Biology and Uses; University of Berkeley Press: Berkeley, CA, USA, 2002. [Google Scholar]
- Calvente, A.; Zappi, D.C.; Forest, F.; Lohman, L.G. Molecular phylogeny, evolution, and biogeography of South American epiphytic cacti. Int. J. Plant Sci. 2011, 172, 902–914. [Google Scholar] [CrossRef]
- Bai, F.; Wu, J.; Gong, G.; Guo, L. Biomimetic “cactus spine” with hierarchical groove structure for efficient fog collection. Adv. Sci. 2015, 2, 1500047. [Google Scholar] [CrossRef] [PubMed]
- Malik, F.T.; Clement, R.M.; Gethin, D.T.; Kiernan, M.; Goral, T.; Griffiths, P.; Beynon, D.; Parker, A.R. Hierarchical structures of cactus spines that aid in the directional movement of dew droplets. Philos. Trans. R. Soc. A 2016, 374, 20160110. [Google Scholar] [CrossRef] [PubMed]
- Badarnah, L. Form Follows Environment: Biomimetic approaches to building envelope design for environmental adaptation. Buildings 2017, 7, 40. [Google Scholar] [CrossRef]
- Saruta, J.; Ozawa, R.; Okubo, T.; Taleghani, S.R.; Ishijima, M.; Kitajima, H.; Hirota, M.; Ogawa, T. Biomimetic zirconia with cactus-inspired meso-scale spikes and nano-trabeculae for enhanced bone integration. Int. J. Mol. Sci. 2021, 22, 7969. [Google Scholar] [CrossRef] [PubMed]
- ElDin, N.N. Biomimetic approach for building envelope adaptation in hot and dry regions. GBCE 2023, 4, 367–383. [Google Scholar] [CrossRef]
- Wu, Z.; Liu, Y.; Zang, S.; Huang, Z.; Jiang, Q.; Zhou, T.; Hu, J. Biomimetic structure design and construction of cactus-like MoS2/Bi19Cl3S27 photocatalyst for efficient hydrogen evolution. J. Mater. Chem. A 2018, 6, 21404–21409. [Google Scholar] [CrossRef]
- Rose, J.B.R.; Natarajan, S.G.; Gopinathan, V.T. Biomimetic flow control techniques for aerospace applications: A comprehensive review. Rev. Environ. Sci. Bio/Technol. 2021, 20, 645–677. [Google Scholar] [CrossRef]
- He, G.; Zhang, C.; Dong, Z. Survival in desert: Extreme water adaptations and bioinspired structural designs. iScience 2023, 26, 105819. [Google Scholar] [CrossRef] [PubMed]
- Cenk, Z.; Mutlu Avinç, G.; Arslan Selçuk, S. Application of biomimetic strategies in building envelope design for water harvesting. Gazi Univ. J. Sci. 2024, 37, 1575–1594. [Google Scholar] [CrossRef]
- Reddy, N.; Reddy, R.; Guna, V.; Nagananda, S.G.; Aramwit, P. Epidermis of Cereus hildmannianus as a biomimetic scaffold for tissue engineering. J. Biomed. Mater. Res. -B Appl. Biom. Mater. 2024, 112, e35343. [Google Scholar] [CrossRef] [PubMed]
- Coelho, L.M.C.; Veloso, B.F.; Silva, V.L.; Assunção, L.S.; Ribeiro, C.D.F.; Otero, D.M. Innovations and challenges in the use of cactus mucilage: A technological analysis. Int. J. Biol. Macromol. 2025, 316, 144792. [Google Scholar] [CrossRef] [PubMed]
- Soliman, M.E.; Bo, S. An innovative multifunctional biomimetic adaptive building envelope based on a novel integrated methodology of merging biological mechanisms. J. Build. Eng. 2023, 76, 106995. [Google Scholar] [CrossRef]
- Mylo, M.D.; Speck, O. Longevity of system functions in biology and biomimetics: A matter of robustness and resilience. Biomimetics 2023, 8, 173. [Google Scholar] [CrossRef] [PubMed]
- Speck, O.; Speck, T. An overview of bioinspired and biomimetic self-repairing materials. Biomimetics 1919, 4, 26. [Google Scholar] [CrossRef] [PubMed]
Traits/Species | C. fernambucensis | P. arrabidae | P. ulei | S. setaceus |
---|---|---|---|---|
Energy of cutting (J) | 0.006 (±0.002) a | 0.009 (±0.007) a | 0.009 (±0.003) b | 0.003 (±0.002) c |
Toughness (Jm−2) | 3912.97 (±1175.34) a | 5346.82 (±2940.29) b | 4398.71 (±1357.18) ab | 1642.52 (±695.32) c |
Skin thickness (mm) | 0.12 (±0.008) a | 0.12 (±0.029) a | 0.17 (±0.018) b | 0.15 (±0.023) c |
Hypodermis thickness (mm) | 0.08 (±0.008) a | 0.09 (±0.008) b | 0.13 (±0.016) c | 0.12 (±0.022) c |
Cuticle thickness (μm) | 9.63 (±3.07) abc | 9.78 (±2.65) a | 11.30 (±3.29) b | 8.06 (±2.25) d |
Traits/Species | C. fernambucensis | P. arrabidae | P. ulei | S. setaceus | ||||
---|---|---|---|---|---|---|---|---|
Section | CS | LG | CS | LG | CS | LG | CS | LG |
Skin thickness (mm) | 0.12 (±0.009) | 0.11 (±0.034) | 0.13 (±0.025) | 0.12 (±0.034) | 0.17 (±0.017) | 0.16 (±0.020) | 0.15 (±0.022) | 0.15 (±0.023) |
Hypodermis thickness (mm) | 0.08 (±0.008) | 0.07 (±0.024) | 0.09 (±0.015) | 0.09 (±0.016) | 0.13 (±0.016) | 0.12 (±0.017) | 0.12 (±0.021) | 0.12 (±0.022) |
Energy of cutting (J) | 0.006 (±0.002) | 0.006 (±0.002) | 0.009 (±0.01) | 0.010 (±0.011) | 0.009 (±0.004) | 0.009 (±0.002) | 0.003 (±0.002) | 0.004 (±0.002) |
Toughness (Jm−2) | 3788.24 (±3869.07) | 3994.64 (±1119.05) | 5009.86 (±2944.27) | 5683.77 (±2965.75) | 4304.94 (±1563.84) | 4492.47 (±1155.30) | 1678.76 (±663.64) | 1606.28 (±736.47) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Soffiatti, P.; Bonfante, N.O.; Jaculiski, M.C.L.; Rowe, N.P. Survival Is Skin Deep: Toughness of the Outer Cactus Stem with Insights for Technical Envelopes. Biomimetics 2025, 10, 487. https://doi.org/10.3390/biomimetics10080487
Soffiatti P, Bonfante NO, Jaculiski MCL, Rowe NP. Survival Is Skin Deep: Toughness of the Outer Cactus Stem with Insights for Technical Envelopes. Biomimetics. 2025; 10(8):487. https://doi.org/10.3390/biomimetics10080487
Chicago/Turabian StyleSoffiatti, Patricia, Natália O. Bonfante, Maria Clara L. Jaculiski, and Nick P. Rowe. 2025. "Survival Is Skin Deep: Toughness of the Outer Cactus Stem with Insights for Technical Envelopes" Biomimetics 10, no. 8: 487. https://doi.org/10.3390/biomimetics10080487
APA StyleSoffiatti, P., Bonfante, N. O., Jaculiski, M. C. L., & Rowe, N. P. (2025). Survival Is Skin Deep: Toughness of the Outer Cactus Stem with Insights for Technical Envelopes. Biomimetics, 10(8), 487. https://doi.org/10.3390/biomimetics10080487