Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (659)

Search Parameters:
Keywords = starch potato

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 5354 KiB  
Article
Carboxymethyl Polysaccharides/Montmorillonite Biocomposite Films and Their Sorption Properties
by Adrian Krzysztof Antosik, Marcin Bartkowiak, Magdalena Zdanowicz and Katarzyna Wilpiszewska
Polymers 2025, 17(15), 2130; https://doi.org/10.3390/polym17152130 - 1 Aug 2025
Viewed by 230
Abstract
The production of bionanocomposite films based on carboxymethyl derivatives of starch and cellulose with sodium montmorillonite (MMT-Na) as a filler was described. The developed films with high absorbency can be used in the preparation of adhesive dressings for wounds oozing as a result [...] Read more.
The production of bionanocomposite films based on carboxymethyl derivatives of starch and cellulose with sodium montmorillonite (MMT-Na) as a filler was described. The developed films with high absorbency can be used in the preparation of adhesive dressings for wounds oozing as a result of abrasions or tattoos. Carboxymethyl cellulose (CMC), carboxymethyl starch (CMS), and potato starch were used as the raw materials for film manufacturing. Citric acid was used as a crosslinking agent and glycerol as a plasticizer. The following parameters were evaluated for the obtained films: solubility in water, swelling behavior, moisture absorption, and mechanical durability (tensile strength, elongation at break, and Young’s modulus). This study revealed that filler concentration has a significant influence on the stability, durability, and moisture absorption parameters of films. The best nanocomposite with a high absorption capacity was a two-component film CMS/CMC containing 5 pph of sodium montmorillonite and can be used as a base material for wound dressing, among other applications. Full article
(This article belongs to the Section Innovation of Polymer Science and Technology)
Show Figures

Figure 1

16 pages, 1258 KiB  
Article
Genome-Wide Association Analysis of Traits Related to Nitrogen Deficiency Stress in Potato
by Carmen Iribar, Alba Alvarez-Morezuelas, Leire Barandalla and Jose Ignacio Ruiz de Galarreta
Horticulturae 2025, 11(8), 889; https://doi.org/10.3390/horticulturae11080889 (registering DOI) - 1 Aug 2025
Viewed by 161
Abstract
Potato (Solanum tuberosum L.) crop yields may be reduced by nitrogen deficiency stress tolerance. An evaluation of 144 tetraploid potato genotypes was carried out during two consecutive seasons (2019 and 2020), with the objective of characterizing their variability in key physiological and [...] Read more.
Potato (Solanum tuberosum L.) crop yields may be reduced by nitrogen deficiency stress tolerance. An evaluation of 144 tetraploid potato genotypes was carried out during two consecutive seasons (2019 and 2020), with the objective of characterizing their variability in key physiological and agronomic parameters. Physiological parameters included chlorophyll content and fluorescence, stomatal conductance, NDVI, leaf area, and perimeter, while agronomic characteristics such as yield, tuber fresh weight, tuber number, starch content, dry matter, and reducing sugars were evaluated. To genotype the population, the GGP V3 Potato array was used, generating 18,259 high-quality SNP markers. Marker–trait association analysis was conducted using the GWASpoly package in R, applying Q + K linear mixed models to enhance precision. This methodology enabled the identification of 18 SNP markers that exhibited statistically significant associations with the traits analyzed in both trials and periods, relating them to genes whose functional implication has already been described. Genetic loci associated with chlorophyll content and tuber number were detected across non-stress and stress treatments, while markers linked to leaf area and leaf perimeter were identified specifically under nitrogen deficiency stress. The genomic distribution of these markers revealed that genetic markers or single-nucleotide polymorphisms (SNPs) correlated with phenotypic traits under non-stress conditions were predominantly located on chromosome 11, whereas SNPs linked to stress responses were mainly identified on chromosomes 2 and 3. These findings contribute to understanding the genetic mechanisms underlying potato tolerance to nitrogen deficiency stress, offering valuable insights for the development of future marker-assisted selection programs aimed at improving nitrogen use efficiency and stress resilience in potato breeding. Full article
(This article belongs to the Special Issue Genetics, Genomics and Breeding of Vegetable Crops)
Show Figures

Figure 1

18 pages, 2409 KiB  
Article
Genome-Wide Identification and Expression Analysis of the Fructose-1,6-Bisphosphate Aldolase (FBA) Gene Family in Sweet Potato and Its Two Diploid Relatives
by Zhicheng Jiang, Taifeng Du, Yuanyuan Zhou, Zhen Qin, Aixian Li, Qingmei Wang, Liming Zhang and Fuyun Hou
Int. J. Mol. Sci. 2025, 26(15), 7348; https://doi.org/10.3390/ijms26157348 - 30 Jul 2025
Viewed by 201
Abstract
Fructose-1,6-bisphosphate aldolase (FBA; EC 4.1.2.13) is a key enzyme in glycolysis and the Calvin cycle, which plays crucial roles in carbon allocation and plant growth. The FBA family genes (FBA s) have been identified in several plants. However, their [...] Read more.
Fructose-1,6-bisphosphate aldolase (FBA; EC 4.1.2.13) is a key enzyme in glycolysis and the Calvin cycle, which plays crucial roles in carbon allocation and plant growth. The FBA family genes (FBA s) have been identified in several plants. However, their presence and roles in sweet potato remain unexplored. In this study, a total of 20 FBAs were identified in sweet potato and its wild wild diploidrelatives, including seven in sweet potato (Ipomoea batatas, 2n = 6x = 90), seven in I. trifida (2n = 2x = 30), and six in I. triloba (2n = 2x = 30). Their protein physicochemical properties, chromosomal localization, phylogenetic relationship, gene structure, promoter cis-elements, and expression patterns were systematically analyzed. The conserved genes and protein structures suggest a high degree of functional conservation among FBA genes. IbFBAs may participate in storage root development and starch biosynthesis, especially IbFBA1 and IbFBA6, which warrant further investigation as candidate genes. Additionally, the FBAs could respond to drought and salt stress. They are also implicated in hormone crosstalk, particularly with ABA and GA. This work provides valuable insights into the structure and function of FBAs and identifies candidate genes for improving yield, starch content, and abiotic stress tolerance in sweet potatoes. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

21 pages, 2195 KiB  
Article
Physicochemical and Sensory Analysis of Apple Cream Fillings for Use in the Pastry Industry
by Marios Liampotis, Zacharias Ioannou, Kosmas Ellinas and Konstantinos Gkatzionis
Appl. Sci. 2025, 15(15), 8386; https://doi.org/10.3390/app15158386 - 29 Jul 2025
Viewed by 229
Abstract
The sensory and physicochemical properties of three different recipes for apple cream filling were investigated, focusing on their potential to enhance consumer appeal in pastry applications. Two of the recipes incorporate dried apple cubes (AP1, 48% and AP2, 38% w/w, respectively), while [...] Read more.
The sensory and physicochemical properties of three different recipes for apple cream filling were investigated, focusing on their potential to enhance consumer appeal in pastry applications. Two of the recipes incorporate dried apple cubes (AP1, 48% and AP2, 38% w/w, respectively), while the third recipe (PD) features a cube-free formulation with higher quantities of sugar, potato starch, xanthan gum, dextrose, cinnamon and malic acid. The study evaluated the impact of ingredient composition and processing techniques on sensory attributes. The results indicate that AP1 and AP2 resulted in higher moisture, ash and fiber content but lower viscosity, pH values and emulsion stability compared to PD. All samples exhibited pseudoplastic behavior. The AP2 sample exhibited the most hydrophilic behavior. FT-IR spectra have shown three main peaks, i.e., O-H (3300–3320 cm−1), C=O (1640–1730 cm−1) and C-O (1025–1030 cm−1) stretching vibrations. AP1 and AP2 significantly enhanced hardness and cohesion, providing a more engaging sensory experience. PD offers a smoother, creamier texture with lower inhomogeneity compared to AP1 and AP2 samples, making it ideal for consumers who prefer a uniform mouthfeel. This research demonstrates the critical role of formulation choices in tailoring sensory and physicochemical properties of apple cream fillings to meet diverse consumer preferences. Full article
Show Figures

Figure 1

27 pages, 940 KiB  
Review
Characteristics of Food Industry Wastewaters and Their Potential Application in Biotechnological Production
by Ivana Nikolić, Kosta Mijić and Ivana Mitrović
Processes 2025, 13(8), 2401; https://doi.org/10.3390/pr13082401 - 28 Jul 2025
Viewed by 578
Abstract
The food industry consumes large amounts of water across various processes, and generates wastewater characterized by parameters like biochemical oxygen demand, chemical oxygen demand, pH, suspended solids, and nutrients. To meet environmental standards and enable reuse or valorization, treatment methods such as physicochemical, [...] Read more.
The food industry consumes large amounts of water across various processes, and generates wastewater characterized by parameters like biochemical oxygen demand, chemical oxygen demand, pH, suspended solids, and nutrients. To meet environmental standards and enable reuse or valorization, treatment methods such as physicochemical, biological, and membrane-based processes are applied. This review focuses on the valorization of food industry wastewater in the biotechnological production of high-value products, with an emphasis on starch-rich wastewater, wineries and confectionery industry wastewater, and with a focus on new technologies for reduces environmental burden but also supports circular economy principles. Starch-rich wastewaters, particularly those generated by the potato processing industry, offer considerable potential for biotechnological valorization due to their high content of soluble starch, proteins, organic acids, minerals, and lipids. These effluents can be efficiently converted by various fungi (e.g., Aspergillus, Trichoderma) and yeasts (e.g., Rhodotorula, Candida) into value-added products such as lipids for biodiesel, organic acids, microbial proteins, carotenoids, and biofungicides. Similarly, winery wastewaters, characterized by elevated concentrations of sugars and polyphenols, have been successfully utilized as medium for microbial cultivation and product synthesis. Microorganisms belonging to the genera Aspergillus, Trichoderma, Chlorella, Klebsiella, and Xanthomonas have demonstrated the ability to transform these effluents into biofuels, microbial biomass, biopolymers, and proteins, contributing to sustainable bioprocess development. Additionally, wastewater from the confectionery industry, rich in sugars, proteins, and lipids, serves as a favorable fermentation medium for the production of xanthan gum, bioethanol, biopesticides, and bioplastics (e.g., PHA and PHB). Microorganisms of the genera Xanthomonas, Bacillus, Zymomonas, and Cupriavidus are commonly employed in these processes. Although there are still certain regulatory issues, research gaps, and the need for more detailed economic analysis and kinetics of such production, we can conclude that this type of biotechnological production on waste streams has great potential, contributing to environmental sustainability and advancing the principles of the circular economy. Full article
(This article belongs to the Special Issue 1st SUSTENS Meeting: Advances in Sustainable Engineering Systems)
Show Figures

Figure 1

24 pages, 4861 KiB  
Article
Impact of Abiotic Stress-Reducing Cultivation Technologies and Long-Term Storage on the Oxidative Potential of Edible Potato Tubers (Solanum tuberosum L.)
by Jarosław Pobereżny, Elżbieta Wszelaczyńska, Jarosław Chmielewski, Barbara Gworek, Wiesław Szulc, Beata Rutkowska and Joanna Korczyk-Szabó
Agriculture 2025, 15(15), 1629; https://doi.org/10.3390/agriculture15151629 - 27 Jul 2025
Viewed by 250
Abstract
Currently, in the context of the emphasis on introducing a reduction in mineral fertilization and the increase in pressure on sustainable agriculture, magnesium fertilization and the use of biostimulants are becoming an alternative tool to increase the quality of potato tuber yield. This [...] Read more.
Currently, in the context of the emphasis on introducing a reduction in mineral fertilization and the increase in pressure on sustainable agriculture, magnesium fertilization and the use of biostimulants are becoming an alternative tool to increase the quality of potato tuber yield. This study aimed to assess the impact of potato genotype, cultivation technology, and long-term storage on the susceptibility of tubers to enzymatic browning. Two edible potato varieties were examined: the early ‘Wega’ and the mid-early ‘Soraya’. It was demonstrated that the varieties maintained their characteristic browning susceptibility consistent with their breeding descriptions. The ‘Wega’ variety exhibited decreasing browning susceptibility immediately after harvest; however, after 6 months of storage, its susceptibility significantly increased, exceeding that of the ‘Soraya’ variety. Additionally, the application of magnesium fertilization (90 kg ha−1) and biostimulant treatment (3 L ha−1) most effectively reduced the oxidative potential of the tubers, thereby decreasing browning susceptibility. This is due to a significant change in the concentration of organic acids responsible for enzymatic browning processes. A decrease in the content of chlorogenic acid by 9.4% and 8.4% and an increase in the content of citric and ascorbic acid by 11.1%, 5.3%, and 13.6% were achieved. Storage significantly affected the chemical composition of the tubers. An increase in chlorogenic (7.3%) and citric (5.8%) acids and a decrease in ascorbic (34%) acid content were observed. These changes correlated with the intensification of browning, with the increase in chlorogenic acid and the decrease in ascorbic acid having the greatest influence. The results indicate that the technology based on supplementary fertilization and biostimulation improves the quality of potato raw material without a significant increase in production costs. Further research on varieties with different vegetation lengths and those intended for food processing and starch production is advised. Full article
(This article belongs to the Section Agricultural Product Quality and Safety)
Show Figures

Figure 1

17 pages, 1307 KiB  
Review
Starch Valorisation as Biorefinery Concept Integrated by an Agro-Industry Case Study to Improve Sustainability
by Maider Gomez Palmero, Ana Carrasco, Paula de la Sen, María Dolores Mainar-Toledo, Sonia Ascaso Malo and Francisco Javier Royo Herrer
Sustainability 2025, 17(15), 6808; https://doi.org/10.3390/su17156808 - 27 Jul 2025
Viewed by 350
Abstract
The production of bio-based products for different purposes has become an increasingly common strategy over the last few decades, both in Europe and worldwide. This trend seeks to contribute to mitigating the impacts associated with climate change and to cope with the ambitious [...] Read more.
The production of bio-based products for different purposes has become an increasingly common strategy over the last few decades, both in Europe and worldwide. This trend seeks to contribute to mitigating the impacts associated with climate change and to cope with the ambitious objectives established at European level. Over recent decades, agro-industries have shown significant potential as biomass suppliers, triggering the development of robust logistical supply chains and the valorization of by-products to obtain bio-based products that can be marketed at competitive prices. However, this transformation may, in some cases, involve restructuring traditional business model to incorporate the biorefinery concept. In this sense, the first step in developing a bio-based value chain involves assessing the resource’s availability and characterizing the feedstock to select the valorization pathway and the bio-application with the greatest potential. The paper incorporates inputs from a case study on PATURPAT, a company commercializing a wide range of ready-prepared potato products, which has commissioned a starch extraction facility to process the rejected pieces of potatoes and water from the process to obtain starch that can be further valorized for different bio-applications. This study aims to comprehensively review current trends and frameworks for potatoes processing agro-industries and define the most suitable bio-applications to target, as well as identify opportunities and challenges. Full article
Show Figures

Figure 1

26 pages, 5763 KiB  
Article
The Development and Optimization of Extrusion-Based 3D Food Printing Inks Using Composite Starch Gels Enriched with Various Proteins and Hydrocolloids
by Evgenia N. Nikolaou, Eftychios Apostolidis, Eirini K. Nikolidaki, Evangelia D. Karvela, Athena Stergiou, Thomas Kourtis and Vaios T. Karathanos
Gels 2025, 11(8), 574; https://doi.org/10.3390/gels11080574 - 23 Jul 2025
Viewed by 216
Abstract
This study presents a comprehensive evaluation of starch-based gel formulations enriched with proteins and hydrocolloids for extrusion-based 3D food printing (3DFP). Food inks were prepared using corn or potato starch, protein concentrates (fava, whey, rice, pea and soya), and hydrocolloids (κ-carrageenan, arabic gum, [...] Read more.
This study presents a comprehensive evaluation of starch-based gel formulations enriched with proteins and hydrocolloids for extrusion-based 3D food printing (3DFP). Food inks were prepared using corn or potato starch, protein concentrates (fava, whey, rice, pea and soya), and hydrocolloids (κ-carrageenan, arabic gum, xanthan gum, and carboxy methylcellulose). Their rheological, mechanical, and textural properties were systematically analyzed to assess printability. Among all formulations, those containing κ-carrageenan consistently demonstrated superior viscoelastic behavior (G′ > 4000 Pa), optimal tan δ values (0.096–0.169), and yield stress conducive to stable extrusion. These inks also achieved high structural fidelity (93–96% accuracy) and favourable textural attributes such as increased hardness and chewiness. Computational Fluid Dynamics (CFD) simulations further validated the inks’ performances by linking pressure and velocity profiles with rheological parameters. FTIR analysis revealed that gel strengthening was primarily driven by non-covalent interactions, such as hydrogen bonding and electrostatic effects. The integration of empirical measurements and simulation provided a robust framework for evaluating and optimizing printable food gels. These findings contribute to the advancement of personalized and functional 3D-printed foods through data-driven formulation design. Full article
(This article belongs to the Special Issue Recent Advances in Food Gels (2nd Edition))
Show Figures

Figure 1

25 pages, 2341 KiB  
Article
Lipid-Enriched Cooking Modulates Starch Digestibility and Satiety Hormone Responses in Traditional Nixtamalized Maize Tacos
by Julian de la Rosa-Millan
Foods 2025, 14(15), 2576; https://doi.org/10.3390/foods14152576 - 23 Jul 2025
Viewed by 604
Abstract
Traditional taco preparation methods, such as oil immersion and steaming, can significantly affect the nutritional and metabolic characteristics of the final product. This study evaluated tacos made with five commercial nixtamalized maize flours and four common fillings (chicharron, beef skirt, potato, and refried [...] Read more.
Traditional taco preparation methods, such as oil immersion and steaming, can significantly affect the nutritional and metabolic characteristics of the final product. This study evaluated tacos made with five commercial nixtamalized maize flours and four common fillings (chicharron, beef skirt, potato, and refried beans), processed using three different methods: Plain, Full-Fat, and Patted-Dry. We assessed their chemical composition, starch digestibility, and thermal properties, and measured satiety-related hormone responses in mice. Fillings had a stronger influence on protein, fat, and moisture content than tortilla type. Full-fat tacos exhibited increased amylose–lipid complex formation and a lower gelatinization enthalpy, whereas plain tacos retained more retrograded starch and a crystalline structure. In vitro digestion revealed that Plain tacos, especially those with plant-based fillings, had the highest resistant starch content and the lowest predicted glycemic index. Hierarchical clustering showed that resistant starch, moisture, and gelatinization onset temperature were closely linked in the Plain samples, whereas lipid-driven variables dominated in the Full-Fat tacos. In mice, tacos with a higher resistant starch content led to greater GLP-1 levels, lower ghrelin levels, and reduced insulin responses, suggesting improved satiety and glycemic control. Patted-Dry tacos showed intermediate hormonal effects, supporting their potential as a balanced, health-conscious alternative. These findings demonstrate how traditional preparation techniques can be leveraged to enhance the nutritional profile of culturally relevant foods, such as tacos. Full article
Show Figures

Graphical abstract

15 pages, 1806 KiB  
Article
Effects of Nitrogen Application on Soluble Sugar and Starch Accumulation During Sweet Potato Storage Root Formation
by Hong Tham Dong, Yujuan Li, Philip Brown, Delwar Akbar and Cheng-Yuan Xu
Horticulturae 2025, 11(7), 837; https://doi.org/10.3390/horticulturae11070837 - 15 Jul 2025
Viewed by 246
Abstract
Nitrogen is an essential element for plant growth, and both insufficient and excessive use of nitrogen have been shown to negatively affect sweet potato production. Nitrogen supply can affect carbon metabolism in plant storage organs; however, limited studies have examined its effects on [...] Read more.
Nitrogen is an essential element for plant growth, and both insufficient and excessive use of nitrogen have been shown to negatively affect sweet potato production. Nitrogen supply can affect carbon metabolism in plant storage organs; however, limited studies have examined its effects on the accumulation of non-structural carbohydrates (soluble sugar and starch) during the formation of sweet potato storage roots. Two pot trials were conducted to evaluate the effects of different nitrogen application levels and timings on the accumulation of non-structural carbohydrates during the formation of sweet potato storage roots. In the first experiment, plants were supplied with 0, 50, 100, or 200 mg/L of nitrogen. In the second experiment, the optimum nitrogen rate (100 mg/L) for storage root formation from the previous experiment was applied at five different times: nil N supply and nitrogen applied at planting or 3, 7, or 14 days after planting. A significant highest starch accumulation in roots during the first 35 days after transplanting was recorded in the 100 mg/L treatment. However, sweet potato required more nitrogen after storage root formation, as indicated by higher non-structural carbohydrate accumulation in roots (1905 mg/plant) in the 200 mg/L treatment at 49 days after planting. Earlier nitrogen applications promoted soluble sugar and starch accumulation in plants during storage root formation, with up to 5697 mg of non-structural carbohydrate accumulated in a plant. The study provided agronomic indicators that moderate nitrogen should be available in soil before or on planting day. Full article
(This article belongs to the Section Plant Nutrition)
Show Figures

Graphical abstract

15 pages, 3491 KiB  
Article
Development and Characterization of Composite Films of Potato Starch and Carboxymethylcellulose/Poly(ethylene oxide) Nanofibers
by Yenny Paola Cruz Moreno, Andres Felipe Rubiano-Navarrete, Erika Rocio Cely Rincón, Adriana Elizabeth Lara Sandoval, Alfredo Maciel Cerda, Edwin Yesid Gomez-Pachon and Ricardo Vera-Graziano
Eng 2025, 6(7), 160; https://doi.org/10.3390/eng6070160 - 15 Jul 2025
Viewed by 543
Abstract
This study aimed to develop and characterize biodegradable films based on potato starch reinforced with carboxymethylcellulose (CMC) and polyethylene oxide (PEO) nanofibers, with the goal of improving their mechanical and thermal properties for potential use in sustainable packaging. The films were prepared through [...] Read more.
This study aimed to develop and characterize biodegradable films based on potato starch reinforced with carboxymethylcellulose (CMC) and polyethylene oxide (PEO) nanofibers, with the goal of improving their mechanical and thermal properties for potential use in sustainable packaging. The films were prepared through the thermal gelatinization of starch extracted from tubers, combined with nanofibers obtained by electrospinning CMC synthesized from potato starch. Key electrospinning variables, including solution concentration, voltage, distance, and flow rate, were analyzed. The films were morphologically characterized using scanning electron microscopy (SEM) and chemically analyzed by Fourier Transform Infrared Spectroscopy (FTIR) and X-ray Diffraction (XRD), and their thermal properties were assessed by Thermogravimetric Analysis (TGA) and Differential Scanning Calorimetry (DSC). The results indicated an increase in tensile strength to 14.1 MPa in the reinforced films, compared to 13.6 MPa for pure starch and 7.1 MPa for the fiber-free CMC blend. The nanofibers had an average diameter of 63.3 nm and a porosity of 32.78%. A reduction in crystallinity and more stable thermal behavior were also observed in the composite materials. These findings highlight the potential of using agricultural waste as a functional reinforcement in biopolymers, providing a viable and environmentally friendly alternative to synthetic polymers. Full article
(This article belongs to the Section Materials Engineering)
Show Figures

Figure 1

25 pages, 845 KiB  
Review
Edible Tubers as a Source of Bioactive Compounds in Baked Goods: Benefits and Drawbacks
by Rafał Wiśniewski, Ewa Pejcz and Joanna Harasym
Molecules 2025, 30(13), 2838; https://doi.org/10.3390/molecules30132838 - 2 Jul 2025
Viewed by 474
Abstract
Root and tuber vegetables—such as beetroot (Beta vulgaris), carrot (Daucus carota), cassava (Manihot esculenta), potato (Solanum tuberosum), taro (Colocasia esculenta), and Jerusalem artichoke (Helianthus tuberosus)—are increasingly recognized not only for their [...] Read more.
Root and tuber vegetables—such as beetroot (Beta vulgaris), carrot (Daucus carota), cassava (Manihot esculenta), potato (Solanum tuberosum), taro (Colocasia esculenta), and Jerusalem artichoke (Helianthus tuberosus)—are increasingly recognized not only for their nutritional value but also for their richness in bioactive compounds, including polyphenols, dietary fiber, resistant starch, and prebiotic carbohydrates that exhibit varying levels of antioxidant, anti-inflammatory, and glycemic-regulating properties. Incorporating these vegetables into baked goods offers both functional and technological benefits, such as improved moisture retention, reduced acrylamide formation, and suitability for gluten-free formulations. The processing conditions can significantly influence the stability and bioavailability of these bioactive components, while the presence of antinutritional factors—such as phytates, cyanogenic glycosides, and FODMAPs (fermentable oligo-, di-, monosaccharides, and polyols)—needs careful optimization. The structured narrative literature review approach allowed collecting studies that examine both the beneficial and potential drawbacks of tuber-based ingredients. This review provides a comprehensive overview of the chemical composition, health-promoting effects, and technological roles of edible tubers in bakery applications, also addressing current challenges related to processing, formulation, and consumer acceptance. Special emphasis is placed on the valorization of tuber by-products, enhancement of functional properties, and the promotion of sustainable food systems using zero-waste strategies. Full article
(This article belongs to the Special Issue Food Bioactive Components in Functional Foods and Nutraceuticals)
Show Figures

Graphical abstract

19 pages, 3483 KiB  
Article
Preparation of CF-NiO-PANI Electrodes and Study on the Efficiency of MFC in Recovering Potato Starch Wastewater
by Yiwei Han, Jingyuan Wang, Liming Jiang, Jiuming Lei, Wenjing Li, Tianyi Yang, Zhijie Wang, Jinlong Zuo and Yuyang Wang
Coatings 2025, 15(7), 776; https://doi.org/10.3390/coatings15070776 - 30 Jun 2025
Viewed by 263
Abstract
Microbial Fuel Cell (MFC) is a novel bioelectrochemical system that catalyzes the oxidation of chemical energy in organic waste and converts it directly into electrical energy through the attachment and growth of electroactive microorganisms on the electrode surface. This technology realizes the synergistic [...] Read more.
Microbial Fuel Cell (MFC) is a novel bioelectrochemical system that catalyzes the oxidation of chemical energy in organic waste and converts it directly into electrical energy through the attachment and growth of electroactive microorganisms on the electrode surface. This technology realizes the synergistic effect of waste treatment and renewable energy production. A CF-NiO-PANI capacitor composite anode was prepared by loading polyaniline on a CF-NiO electrode to improve the capacitance of a CF electrode. The electrochemical characteristics of the composite anode were evaluated using cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS), and the electrode materials were analyzed comprehensively by scanning electron microscopy (SEM), energy diffusion spectrometer (EDS), and Fourier transform infrared spectroscopy (FTIR). MFC system based on CF-NiO-PANI composite anode showed excellent energy conversion efficiency in potato starch wastewater treatment, and its maximum power density increased to 0.4 W/m3, which was 300% higher than that of the traditional CF anode. In the standard charge–discharge test (C1000/D1000), the charge storage capacity of the composite anode reached 2607.06 C/m2, which was higher than that of the CF anode (348.77 C/m2). Microbial community analysis revealed that the CF-NiO-PANI anode surface formed a highly efficient electroactive biofilm dominated by electrogenic bacteria (accounting for 47.01%), confirming its excellent electron transfer ability. The development of this innovative capacitance-catalytic dual-function anode material provides a new technical path for the synergistic optimization of wastewater treatment and energy recovery in MFC systems. Full article
(This article belongs to the Section Environmental Aspects in Colloid and Interface Science)
Show Figures

Figure 1

25 pages, 9606 KiB  
Article
Development and Characterization of Peruvian Native Potato Starch/PVA-Based pH-Sensitive Films Incorporated with Purple Potato Anthocyanin Extract for Food Packaging
by Leandro Neodini Remedio and Carolina Parada-Quinayá
Polymers 2025, 17(13), 1813; https://doi.org/10.3390/polym17131813 - 29 Jun 2025
Viewed by 454
Abstract
Intelligent films (IFs) incorporating natural colorants and biodegradable materials offer innovative solutions for monitoring food freshness and spoilage. This study evaluated the impact of varying the PVA-APN ratio on films formulated with Peruvian Purple Potato starch (APN) and anthocyanin extract (AE). The research [...] Read more.
Intelligent films (IFs) incorporating natural colorants and biodegradable materials offer innovative solutions for monitoring food freshness and spoilage. This study evaluated the impact of varying the PVA-APN ratio on films formulated with Peruvian Purple Potato starch (APN) and anthocyanin extract (AE). The research focused on the effects of PVA on physicochemical and mechanical characteristics, as well as the color changes observed when the films were used with seafood. The results indicated a decrease in chroma a* and an increase in chroma b* when the films were in contact with different buffer solutions (from acidic to alkaline). Solubility decreased with higher starch concentrations and the mechanical properties revealed a reduced tensile strength and elongation with increased APN concentration. The films effectively indicated freshness, with the best ΔE values for the 50:50 formulations (13.6 ± 1.6 and 12.04 ± 2.8 for fish and shrimp, respectively), making them promising candidates for intelligent seafood packaging. Full article
Show Figures

Figure 1

20 pages, 3790 KiB  
Article
Fabrication of CF–NiO Electrodes and Performance Evaluation of Microbial Fuel Cells in the Treatment of Potato Starch Wastewater
by Tianyi Yang, Song Xue, Liming Jiang, Jiuming Lei, Wenjing Li, Yiwei Han, Zhijie Wang, Jinlong Zuo and Yuyang Wang
Coatings 2025, 15(7), 760; https://doi.org/10.3390/coatings15070760 - 27 Jun 2025
Viewed by 514
Abstract
Microbial fuel cells (MFCs) generate electricity through the microbial oxidation of organic waste. However, the inherent electrochemical performance of carbon felt (CF) electrodes is relatively poor and requires enhancement. In this study, nickel oxide (NiO) was successfully loaded onto CF to improve its [...] Read more.
Microbial fuel cells (MFCs) generate electricity through the microbial oxidation of organic waste. However, the inherent electrochemical performance of carbon felt (CF) electrodes is relatively poor and requires enhancement. In this study, nickel oxide (NiO) was successfully loaded onto CF to improve its electrode performance, thereby enhancing the electricity generation capacity of MFCs during the degradation of treated wastewater. Scanning electron microscopy (SEM), X-ray diffraction (XRD), and energy diffusion spectrometer (EDS) analyses confirmed the successful deposition of NiO on the CF surface. The modification enhanced both the conductivity and capacitance of the electrode and increased the number of microbial attachment sites on the carbon fiber filaments. The prepared CF–NiO electrode was employed as the anode in an MFC, and its electrochemical and energy storage performance were evaluated. The maximum power density of the MFC with the CF–NiO anode reached 0.22 W/m2, compared to 0.08 W/m2 for the unmodified CF anode. Under the C1000-D1000 condition, the charge storage capacity and total charge output of the CF–NiO anode were 1290.03 C/m2 and 14,150.03 C/m2, respectively, which are significantly higher than the 452.9 C/m2 and 6742.67 C/m2 observed for the CF anode. These results indicate notable improvements in both power generation and energy storage performance. High-throughput gene sequencing of the anodic biofilm following MFC acclimation revealed that the CF–NiO anode surface hosted a higher proportion of electroactive bacteria. This suggests that the NiO modification enhances the biodegradation of organic matter and improves electricity generation efficiency. Full article
(This article belongs to the Section Environmental Aspects in Colloid and Interface Science)
Show Figures

Figure 1

Back to TopTop