Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (16)

Search Parameters:
Keywords = staphylococcal food poisoning (SFP)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
37 pages, 1945 KiB  
Review
Staphylococcus aureus in Foodborne Diseases and Alternative Intervention Strategies to Overcome Antibiotic Resistance by Using Natural Antimicrobials
by Anna Phan, Sanjaya Mijar, Catherine Harvey and Debabrata Biswas
Microorganisms 2025, 13(8), 1732; https://doi.org/10.3390/microorganisms13081732 - 24 Jul 2025
Viewed by 369
Abstract
Foodborne diseases are the most common causes of illness worldwide. Bacterial pathogens, including Staphylococcus aureus, are often involved in foodborne disease and pose a serious threat to human health. S. aureus is commonly found in humans and a variety of animal species. [...] Read more.
Foodborne diseases are the most common causes of illness worldwide. Bacterial pathogens, including Staphylococcus aureus, are often involved in foodborne disease and pose a serious threat to human health. S. aureus is commonly found in humans and a variety of animal species. Staphylococcal enteric disease, specifically staphylococcal food poisoning (SFP), accounts for numerous gastrointestinal illnesses, through the contamination of food with its enterotoxins, and its major impact on human health imposes a heavy economic burden in society. Commonly, antibiotics and antimicrobials are used to treat SFP. However, a range of complications may arise with these treatments, impeding the control of S. aureus diseases specifically caused by methicillin-resistant S. aureus (MRSA). Natural alternative options to control S. aureus diseases, such as bacteriophages, plant-based antimicrobials, nanoparticle-based or light-based therapeutics, and probiotics, are promising in terms of overcoming these existing problems as they are environmentally friendly, abundant, unlikely to induce resistance in pathogens, cost-effective, and safe for human health. Recent findings have indicated that these alternatives may reduce the colonization and infection of major foodborne pathogens, including MRSA, which is crucial to overcome the spread of antibiotic resistance in S. aureus. This review focuses on the present scenario of S. aureus in foodborne disease, its economic importance and current interventions and, most importantly, the implications of natural antimicrobials, especially probiotics and synbiotics, as alternative antimicrobial means to combat pathogenic microorganisms particularly, S. aureus and MRSA. Full article
Show Figures

Figure 1

21 pages, 2116 KiB  
Review
Staphylococcal Enterotoxins: Description and Importance in Food
by Mirian Yuliza Rubio Cieza, Erika Carolina Romão Bonsaglia, Vera Lucia Mores Rall, Marcos Veiga dos Santos and Nathália Cristina Cirone Silva
Pathogens 2024, 13(8), 676; https://doi.org/10.3390/pathogens13080676 - 9 Aug 2024
Cited by 16 | Viewed by 5915
Abstract
Staphylococcus aureus stands out as one of the most virulent pathogens in the genus Staphylococcus. This characteristic is due to its ability to produce a wide variety of staphylococcal enterotoxins (SEs) and exotoxins, which in turn can cause staphylococcal food poisoning (SFP), [...] Read more.
Staphylococcus aureus stands out as one of the most virulent pathogens in the genus Staphylococcus. This characteristic is due to its ability to produce a wide variety of staphylococcal enterotoxins (SEs) and exotoxins, which in turn can cause staphylococcal food poisoning (SFP), clinical syndromes such as skin infections, inflammation, pneumonia, and sepsis, in addition to being associated with the development of inflammation in the mammary glands of dairy cattle, which results in chronic mastitis and cell necrosis. SEs are small globular proteins that combine superantigenic and emetic activities; they are resistant to heat, low temperatures, and proteolytic enzymes and are tolerant to a wide pH range. More than 24 SE genes have been well described (SEA-SEE, SEG, SEH, SEI, SEJ, SElK, SElL, SElM, SElN, SElO, SElP, SElQ, SElR, SElS, SElT, SElU, SElV, SElW, SElX, SElY, and SElZ), being a part of different SFP outbreaks, clinical cases, and isolated animal strains. In recent years, new genes (sel26, sel27, sel28, sel31, sel32, and sel33) from SEs have been described, as well as two variants (seh-2p and ses-3p) resulting in a total of thirty-three genes from Ses, including the nine variants that are still in the process of genetic and molecular structure evaluation. SEs are encoded by genes that are located in mobile genetic elements, such as plasmids, prophages, pathogenicity islands, and the enterotoxin gene cluster (egc), and housed in the genomic island of S. aureus. Both classical SEs and SE-like toxins (SEls) share phylogenetic relationships, structure, function, and sequence homology, which are characteristics for the production of new SEs through recombination processes. Due to the epidemiological importance of SEs, their rapid assessment and detection have been crucial for food security and public health; for this reason, different methods of identification of SEs have been developed, such as liquid chromatography coupled with high-resolution mass spectrometry (LC-HRMS), molecular methods, and whole-genome sequencing; providing the diagnosis of SEs and a better understanding of the occurrence, spread, and eradication of SEs. This review provides scientific information on the enterotoxins produced by S. aureus, such as structural characteristics, genetic organization, regulatory mechanisms, superantigen activity, mechanisms of action used by SEs at the time of interaction with the immune system, methods of detection of SEs, and recent biocontrol techniques used in food. Full article
(This article belongs to the Collection New Insights into Bacterial Pathogenesis)
Show Figures

Figure 1

14 pages, 338 KiB  
Article
The Enterotoxin Gene Profiles and Enterotoxin Production of Staphylococcus aureus Strains Isolated from Artisanal Cheeses in Belgium
by Raphaëlle Minutillo, Barbara Pirard, Abdelhak Fatihi, Marina Cavaiuolo, Donatien Lefebvre, Amaury Gérard, Bernard Taminiau, Yacine Nia, Jacques-Antoine Hennekinne, Georges Daube and Antoine Clinquart
Foods 2023, 12(21), 4019; https://doi.org/10.3390/foods12214019 - 3 Nov 2023
Cited by 8 | Viewed by 2935
Abstract
A Staphyloccoccus aureus is one of the leading causes of food poisoning outbreaks (FPOs) worldwide. Staphylococcal food poisoning (SFP) is induced by the ingestion of food containing sufficient levels of staphylococcal enterotoxins (SEs). Currently, 33 SEs and SE-like toxins (SEls) have been described [...] Read more.
A Staphyloccoccus aureus is one of the leading causes of food poisoning outbreaks (FPOs) worldwide. Staphylococcal food poisoning (SFP) is induced by the ingestion of food containing sufficient levels of staphylococcal enterotoxins (SEs). Currently, 33 SEs and SE-like toxins (SEls) have been described in the literature, but only five named “classical” enterotoxins are commonly investigated in FPOs due to lack of specific routine analytical techniques. The aims of this study were to (i) establish the genetic profile of strains in a variety of artisanal cheeses (n = 30) in Belgium, (ii) analyze the expression of the SE(l)s by these strains and (iii) compare the output derived from the different analytical tools. Forty-nine isolates of S. aureus were isolated from ten Belgian artisanal cheeses and were analyzed via microbiological, immunological, liquid chromatography mass spectrometry, molecular typing and genetic methods. The results indicated that classical SEs were not the dominant SEs in the Belgian artisanal cheeses that were analyzed in this study, and that all S. aureus isolates harbored at least one gene encoding a new SE(l). Among the new SE(l)s genes found, some of them code for enterotoxins with demonstrated emetic activity and ecg-enterotoxins. It is worth noting that the involvement of some of these new SEs has been demonstrated in SFP outbreaks. Thus, this study highlighted the importance of the development of specific techniques for the proper investigation of SFP outbreaks. Full article
(This article belongs to the Section Dairy)
31 pages, 3760 KiB  
Article
Microcalorimetric Investigations of Reversible Staphylococcal Enterotoxin Unfolding
by Susan C. Berry, Odbert A. Triplett, Li-Rong Yu, Mark E. Hart, Lauren S. Jackson and William H. Tolleson
Toxins 2022, 14(8), 554; https://doi.org/10.3390/toxins14080554 - 15 Aug 2022
Cited by 5 | Viewed by 3575
Abstract
Staphylococcal food poisoning (SFP) is a common food-borne illness often associated with contamination during food handling. The genes for Staphylococcal enterotoxin (SE) isoforms SEA and SEB are frequently detected in human nasal Staphylococcus aureus isolates and these toxins are commonly associated with SFP. [...] Read more.
Staphylococcal food poisoning (SFP) is a common food-borne illness often associated with contamination during food handling. The genes for Staphylococcal enterotoxin (SE) isoforms SEA and SEB are frequently detected in human nasal Staphylococcus aureus isolates and these toxins are commonly associated with SFP. Past studies described the resistance of preformed SE proteins to heat inactivation and their reactivation upon cooling in foods. Full thermodynamic analyses for these processes have not been reported, however. The thermal stabilities of SEA, SEB, and SEH and reversibility of unfolding in simple buffers were investigated at pH 4.5 and pH 6.8 using differential scanning calorimetry (DSC). SEA and SEB unfolding was irreversible at pH 6.8 and at least partially reversible at pH 4.5 while SEH unfolding was irreversible at pH 4.5 and reversible at pH 6.8. Additional studies showed maximum refolding for SEB at pH 3.5–4.0 and diminished refolding at pH 4.5 with increasing ionic strength. SE-stimulated secretion of interferon-gamma by human peripheral blood mononuclear cells was used to assess residual SE biological activity following heat treatments using conditions matching those used for DSC studies. The biological activities of SEB and SEH exhibited greater resistance to heat inactivation than that of SEA. The residual activities of heat-treated SEB and SEH were measurable but diminished further in the presence of reconstituted nonfat dry milk adjusted to pH 4.5 or pH 6.8. To different extents, the pH and ionic strengths typical for foods influenced the thermal stabilities of SEA, SEB, and SEH and their potentials to renature spontaneously after heat treatments. Full article
(This article belongs to the Section Bacterial Toxins)
Show Figures

Graphical abstract

16 pages, 333 KiB  
Article
Staphylococcal Enterotoxin Genes in Coagulase-Negative Staphylococci—Stability, Expression, and Genomic Context
by Sylwia Banaszkiewicz, Ewa Wałecka-Zacharska, Justyna Schubert, Aleksandra Tabiś, Jarosław Król, Tadeusz Stefaniak, Ewelina Węsierska and Jacek Bania
Int. J. Mol. Sci. 2022, 23(5), 2560; https://doi.org/10.3390/ijms23052560 - 25 Feb 2022
Cited by 14 | Viewed by 2912
Abstract
In the current study, we screened a collection of coagulase-negative staphylococci (CoNS) isolates for orthologues of staphylococcal enterotoxins (SEs) involved in S. aureus-related staphylococcal food poisoning (SFP). The amplicons corresponding to SEs were detected in S. chromogenes, S. epidermidis, S. [...] Read more.
In the current study, we screened a collection of coagulase-negative staphylococci (CoNS) isolates for orthologues of staphylococcal enterotoxins (SEs) involved in S. aureus-related staphylococcal food poisoning (SFP). The amplicons corresponding to SEs were detected in S. chromogenes, S. epidermidis, S. haemolyticus, S. borealis, S. pasteuri, S. saprophyticus, S. vitulinus, S. warneri, and S. xylosus. All amplicons were sequenced and identified as parts of known S. aureus or S. epidermidis SE genes. Quantitative real-time PCR allowed determining the relative copy number of each SE amplicon. A significant portion of the amplicons of the sea, seb, sec, and seh genes occurred at low copy numbers. Only the amplicons of the sec gene identified in three isolates of S. epidermidis displayed relative copy numbers comparable to sec in the reference enterotoxigenic S. aureus and S. epidermidis strains. Consecutive passages in microbiological media of selected CoNS isolates carrying low copy numbers of sea, seb, sec, and seh genes resulted in a decrease of gene copy number. S. epidermidis isolates harbored a high copy number of sec, which remained stable over the passages. We demonstrated that enterotoxin genes may occur at highly variable copy numbers in CoNS. However, we could identify enterotoxin genes only in whole-genome sequences of CoNS carrying them in a stable form at high copy numbers. Only those enterotoxins were expressed at the protein level. Our results indicate that PCR-based detection of enterotoxin genes in CoNS should always require an additional control, like analysis of their presence in the bacterial genome. We also demonstrate S. epidermidis as a CoNS species harboring SE genes in a stable form at a specific chromosome site and expressing them as a protein. Full article
(This article belongs to the Special Issue Advances in Microbial Genomics and Evolution)
Show Figures

Graphical abstract

13 pages, 2590 KiB  
Article
Development of a Double Nanobody-Based Sandwich Immunoassay for the Detecting Staphylococcal Enterotoxin C in Dairy Products
by Yanwei Ji, Lili Chen, Yingying Wang, Kaihui Zhang, Haofen Wu, Yuan Liu, Yanru Wang and Jianlong Wang
Foods 2021, 10(10), 2426; https://doi.org/10.3390/foods10102426 - 13 Oct 2021
Cited by 18 | Viewed by 3433
Abstract
Staphylococcal enterotoxins (SEs) represent the leading reason for staphylococcal food poisoning (SFP) and various other diseases. Reports often indicate Staphylococcal enterotoxin C (SEC) as the most frequently found enterotoxin in dairy products. To minimize consumer exposure to SEC, this paper aimed to create [...] Read more.
Staphylococcal enterotoxins (SEs) represent the leading reason for staphylococcal food poisoning (SFP) and various other diseases. Reports often indicate Staphylococcal enterotoxin C (SEC) as the most frequently found enterotoxin in dairy products. To minimize consumer exposure to SEC, this paper aimed to create a sandwich enzyme-linked immunosorbent assay (ELISA) based on nanobodies (sandwich Nbs-ELISA) to accurately detect SEC in dairy products without the influence of staphylococcal protein A (SpA). Therefore, after inoculating a Bactrian camel with SEC, a phage display Nb library was created. Eleven Nbs against SEC were identified in three biopanning steps. Based on their affinity and pairing level, a sandwich Nbs-ELISA was developed using the C6 anti-SEC Nb as the capture antibody, while the detection antibody was represented by the C11 phage display anti-SEC Nb. In optimal conditions, the quantitative range of the present sandwich ELISA was 4-250 ng/mL with a detection limit (LOD) of 2.47 ng/mL, obtained according to the blank value plus three standard deviations. The developed technique was subjected to specific measurements, revealing minimal cross-reactivity with Staphylococcus aureus (S. aureus), Staphylococcal enterotoxin A (SEA), Staphylococcal enterotoxin B (SEB), and SpA. The proposed method exhibited high specificity and an excellent recovery rate of 84.52~108.06% in dairy products. Therefore, the sandwich Nbs-ELISA showed significant potential for developing a specific, sensitive technique for SEC detection in dairy products. Full article
(This article belongs to the Topic Future Food Analysis and Detection)
Show Figures

Graphical abstract

11 pages, 721 KiB  
Article
Effect of Temperature on the Expression of Classical Enterotoxin Genes among Staphylococci Associated with Bovine Mastitis
by Theeyathart Homsombat, Sukolrat Boonyayatra, Nattakarn Awaiwanont and Duangporn Pichpol
Pathogens 2021, 10(8), 975; https://doi.org/10.3390/pathogens10080975 - 2 Aug 2021
Cited by 10 | Viewed by 2660
Abstract
Staphylococcal food poisoning (SFP), caused by the contamination of staphylococcal enterotoxins, is a common foodborne disease worldwide. The aims of this study were: (1) to investigate classical staphylococcal enterotoxin genes, sea, seb, sec, sed, and see, among Staphylococcus aureus and [...] Read more.
Staphylococcal food poisoning (SFP), caused by the contamination of staphylococcal enterotoxins, is a common foodborne disease worldwide. The aims of this study were: (1) to investigate classical staphylococcal enterotoxin genes, sea, seb, sec, sed, and see, among Staphylococcus aureus and coagulase-negative staphylococci (CNS) associated with bovine mastitis; (2) to determine the effect of temperature on the expression of classical staphylococcal enterotoxin genes in staphylococci in milk. The detection of classical staphylococcal enterotoxin genes was performed using S. aureus (n = 51) and CNS (n = 47). The expression of classical enterotoxin genes, including sea, seb, sec, and see, was determined during the growth of staphylococci in milk subjected to ultra-high-temperature processing at two different temperatures: 8 °C and room temperature. Classical staphylococcal enterotoxin genes were expressed more frequently in S. aureus (35.30%) than in CNS (12.77%). The sec gene was most frequently detected in S. aureus (29.41%) and CNS (6.38%). Moreover, the expression of sea and sec was significantly higher at room temperature than at 8 °C after 16 h of incubation (p < 0.05). These results emphasize the importance of maintaining the storage temperature of milk below 8 °C to reduce the risk of SFP. Full article
(This article belongs to the Section Bacterial Pathogens)
Show Figures

Figure 1

30 pages, 5427 KiB  
Article
Highly Sensitive and Specific Detection of Staphylococcal Enterotoxins SEA, SEG, SEH, and SEI by Immunoassay
by Cécile Féraudet Tarisse, Céline Goulard-Huet, Yacine Nia, Karine Devilliers, Dominique Marcé, Chloé Dambrune, Donatien Lefebvre, Jacques-Antoine Hennekinne and Stéphanie Simon
Toxins 2021, 13(2), 130; https://doi.org/10.3390/toxins13020130 - 9 Feb 2021
Cited by 22 | Viewed by 5047
Abstract
Staphylococcal food poisoning (SFP) is one of the most common foodborne diseases worldwide, resulting from the ingestion of staphylococcal enterotoxins (SEs), primarily SE type A (SEA), which is produced in food by enterotoxigenic strains of staphylococci, mainly S. aureus. Since newly identified [...] Read more.
Staphylococcal food poisoning (SFP) is one of the most common foodborne diseases worldwide, resulting from the ingestion of staphylococcal enterotoxins (SEs), primarily SE type A (SEA), which is produced in food by enterotoxigenic strains of staphylococci, mainly S. aureus. Since newly identified SEs have been shown to have emetic properties and the genes encoding them have been found in food involved in poisoning outbreaks, it is necessary to have reliable tools to prove the presence of the toxins themselves, to clarify the role played by these non-classical SEs, and to precisely document SFP outbreaks. We have produced and characterized monoclonal antibodies directed specifically against SE type G, H or I (SEG, SEH or SEI respectively) or SEA. With these antibodies, we have developed, for each of these four targets, highly sensitive, specific, and reliable 3-h sandwich enzyme immunoassays that we evaluated for their suitability for SE detection in different matrices (bacterial cultures of S. aureus, contaminated food, human samples) for different purposes (strain characterization, food safety, biological threat detection, diagnosis). We also initiated and described for the first time the development of monoplex and quintuplex (SEA, SE type B (SEB), SEG, SEH, and SEI) lateral flow immunoassays for these new staphylococcal enterotoxins. The detection limits in buffer were under 10 pg/mL (0.4 pM) by enzyme immunoassays and at least 300 pg/mL (11 pM) by immunochromatography for all target toxins with no cross-reactivity observed. Spiking studies and/or bacterial supernatant analysis demonstrated the applicability of the developed methods, which could become reliable detection tools for the routine investigation of SEG, SEH, and SEI. Full article
(This article belongs to the Special Issue Antibodies for Toxins: From Detection to Therapeutics)
Show Figures

Figure 1

6 pages, 501 KiB  
Brief Report
Investigation and Follow-Up of a Staphylococcal Food Poisoning Outbreak Linked to the Consumption of Traditional Hand-Crafted Alm Cheese
by Virginia Filipello, Emanuela Bonometti, Massimo Campagnani, Irene Bertoletti, Angelo Romano, Fabio Zuccon, Chiara Campanella, Marina Nadia Losio and Guido Finazzi
Pathogens 2020, 9(12), 1064; https://doi.org/10.3390/pathogens9121064 - 19 Dec 2020
Cited by 14 | Viewed by 3449
Abstract
Staphylococcal food poisoning (SFP) is one of the most important foodborne diseases. This work describes a SFP event linked to the consumption of alm cheese and involved three people belonging to the same family. Leftovers of the consumed cheese, samples from the grocery [...] Read more.
Staphylococcal food poisoning (SFP) is one of the most important foodborne diseases. This work describes a SFP event linked to the consumption of alm cheese and involved three people belonging to the same family. Leftovers of the consumed cheese, samples from the grocery store and the producing alm were collected and tested for Coagulase positive staphylococci (CPS) enumeration and for the presence of staphylococcal enterotoxins (SEs). Isolates were typed with MLST, spa typing, and tested for SEs and methicillin resistance genes. An in vitro test evaluated SEs production in relation to bacterial growth. The presence of CPS and SEs was detected in all cheese samples and all isolates belonged to the same methicillin sensitive ST8/t13296 strain harbouring sed, ser and sej genes. The in vitro test showed the production of enterotoxins started from 105 CFU/mL. The farmer was prescribed with corrective actions that led to eradication of the contaminating strain. Full article
(This article belongs to the Special Issue Staphylococcus Infections in Humans and Animals)
Show Figures

Figure 1

18 pages, 1104 KiB  
Review
Staphylococcus aureus Exotoxins and Their Detection in the Dairy Industry and Mastitis
by Ana G. Abril, Tomás G. Villa, Jorge Barros-Velázquez, Benito Cañas, Angeles Sánchez-Pérez, Pilar Calo-Mata and Mónica Carrera
Toxins 2020, 12(9), 537; https://doi.org/10.3390/toxins12090537 - 20 Aug 2020
Cited by 132 | Viewed by 16307
Abstract
Staphylococcus aureus constitutes a major food-borne pathogen, as well as one of the main causative agents of mastitis in dairy ruminants. This pathogen can produce a variety of extracellular toxins; these include the shock syndrome toxin 1 (TSST-1), exfoliative toxins, staphylococcal enterotoxins (SE), [...] Read more.
Staphylococcus aureus constitutes a major food-borne pathogen, as well as one of the main causative agents of mastitis in dairy ruminants. This pathogen can produce a variety of extracellular toxins; these include the shock syndrome toxin 1 (TSST-1), exfoliative toxins, staphylococcal enterotoxins (SE), hemolysins, and leukocidins. S. aureus expresses many virulence proteins, involved in evading the host defenses, hence facilitating microbial colonization of the mammary glands of the animals. In addition, S. aureus exotoxins play a role in the development of both skin infections and mastitis. Indeed, if these toxins remain in dairy products for human consumption, they can cause staphylococcal food poisoning (SFP) outbreaks. As a result, there is a need for procedures to identify the presence of exotoxins in human food, and the methods used must be fast, sensitive, reliable, and accurate. It is also essential to determine the best medical therapy for human patients suffering from S. aureus infections, as well as establishing the relevant veterinary treatment for infected ruminants, to avoid economic losses in the dairy industry. This review summarizes the role of S. aureus toxins in the development of mastitis in ruminants, their negative effects in the food and dairy industries, and the different methods used for the identification of these toxins in food destined for human consumption. Full article
(This article belongs to the Special Issue Staphylococcus aureus Toxins: Promoter or Handicap during Infection)
Show Figures

Figure 1

11 pages, 7061 KiB  
Article
Development of an Immunoassay for Detection of Staphylococcal Enterotoxin-Like J, A Non-Characterized Toxin
by Hisaya K. Ono, Nobuaki Hachiya, Yasunori Suzuki, Ikunori Naito, Shouhei Hirose, Krisana Asano, Katsuhiko Omoe, Akio Nakane and Dong-Liang Hu
Toxins 2018, 10(11), 458; https://doi.org/10.3390/toxins10110458 - 6 Nov 2018
Cited by 8 | Viewed by 4240
Abstract
Staphylococcal enterotoxins (SEs) are the cause of staphylococcal food poisoning (SFP) outbreaks. Recently, many new types of SEs and SE-like toxins have been reported, but it has not been proved whether these new toxins cause food poisoning. To develop an immunoassay for detection [...] Read more.
Staphylococcal enterotoxins (SEs) are the cause of staphylococcal food poisoning (SFP) outbreaks. Recently, many new types of SEs and SE-like toxins have been reported, but it has not been proved whether these new toxins cause food poisoning. To develop an immunoassay for detection of SE-like J (SElJ), a non-characterized toxin in SFP, a mutant SElJ with C-terminus deletion (SElJ∆C) was expressed and purified in an E. coli expression system. Anti-SElJ antibody was produced in rabbits immunized with the SElJ∆C. Western blotting and sandwich enzyme-linked immunosorbent assay (ELISA) detection systems were established and showed that the antibody specifically recognizes SElJ without cross reaction to other SEs tested. The limit of detection for the sandwich ELISA was 0.078 ng/mL, showing high sensitivity. SElJ production in S. aureus was detected by using the sandwich ELISA and showed that selj-horboring isolates produced a large amount of SElJ in the culture supernatants, especially in that of the strain isolated from a food poisoning outbreak in Japan. These results demonstrate that the immunoassay for detection of SElJ is specific and sensitive and is useful for determining the native SElJ production in S. aureus isolated from food poisoning cases. Full article
(This article belongs to the Special Issue Foodborne Toxins: Pathogenesis and Novel Control Measures)
Show Figures

Figure 1

13 pages, 671 KiB  
Article
Food-Borne Outbreak Investigation and Molecular Typing: High Diversity of Staphylococcus aureus Strains and Importance of Toxin Detection
by Sarah Denayer, Laurence Delbrassinne, Yacine Nia and Nadine Botteldoorn
Toxins 2017, 9(12), 407; https://doi.org/10.3390/toxins9120407 - 20 Dec 2017
Cited by 100 | Viewed by 9718
Abstract
Staphylococcus aureus is an important aetiological agent of food intoxications in the European Union as it can cause gastro-enteritis through the production of various staphylococcal enterotoxins (SEs) in foods. Reported enterotoxin dose levels causing food-borne illness are scarce and varying. Three food poisoning [...] Read more.
Staphylococcus aureus is an important aetiological agent of food intoxications in the European Union as it can cause gastro-enteritis through the production of various staphylococcal enterotoxins (SEs) in foods. Reported enterotoxin dose levels causing food-borne illness are scarce and varying. Three food poisoning outbreaks due to enterotoxin-producing S. aureus strains which occurred in 2013 in Belgium are described. The outbreaks occurred in an elderly home, at a barbecue event and in a kindergarten and involved 28, 18, and six cases, respectively. Various food leftovers contained coagulase positive staphylococci (CPS). Low levels of staphylococcal enterotoxins ranging between 0.015 ng/g and 0.019 ng/g for enterotoxin A (SEA), and corresponding to 0.132 ng/g for SEC were quantified in the food leftovers for two of the reported outbreaks. Molecular typing of human and food isolates using pulsed-field gel electrophoresis (PFGE) and enterotoxin gene typing, confirmed the link between patients and the suspected foodstuffs. This also demonstrated the high diversity of CPS isolates both in the cases and in healthy persons carrying enterotoxin genes encoding emetic SEs for which no detection methods currently exist. For one outbreak, the investigation pointed out to the food handler who transmitted the outbreak strain to the food. Tools to improve staphylococcal food poisoning (SFP) investigations are presented. Full article
(This article belongs to the Collection Staphylococcus aureus Toxins)
Show Figures

Graphical abstract

9 pages, 263 KiB  
Review
Expression of Staphylococcal Enterotoxins under Stress Encountered during Food Production and Preservation
by Jenny Schelin, Yusak Budi Susilo and Sophia Johler
Toxins 2017, 9(12), 401; https://doi.org/10.3390/toxins9120401 - 15 Dec 2017
Cited by 47 | Viewed by 6088
Abstract
Staphylococcal food poisoning (SFP) is the most prevalent cause of food-borne intoxications worldwide. Consumption of enterotoxins preformed in food causes violent vomiting and can be fatal in children and the elderly. While being repressed by competing bacteria in most matrices, Staphylococcus aureus benefits [...] Read more.
Staphylococcal food poisoning (SFP) is the most prevalent cause of food-borne intoxications worldwide. Consumption of enterotoxins preformed in food causes violent vomiting and can be fatal in children and the elderly. While being repressed by competing bacteria in most matrices, Staphylococcus aureus benefits from crucial competitive advantages in foods with high osmolarity or low pH. During recent years, the long-standing belief in the feasibility of assessing SFP risk based on colony-forming units of S. aureus present in food products has been disproven. Instead, researchers and food business operators are acutely aware of the imminent threat arising from unforeseeable enterotoxin production under stress conditions. This paradigm shift led to a variety of new publications enabling an improved understanding of enterotoxin expression under stress conditions encountered in food. The wealth of data provided by these studies is extremely diverse, as it is based on different methodological approaches, staphylococcal strains, stressors, and enterotoxins. Therefore, in this review, we aggregated and critically evaluated the complex findings of these studies, to provide readers with a current overview of the state of research in the field. Full article
(This article belongs to the Special Issue Heat-Stable Enterotoxins)
11 pages, 786 KiB  
Article
Reduced Enterotoxin D Formation on Boiled Ham in Staphylococcus aureus Δagr Mutant
by Yusak Budi Susilo, Henna-Maria Sihto, Peter Rådström, Roger Stephan, Sophia Johler and Jenny Schelin
Toxins 2017, 9(9), 263; https://doi.org/10.3390/toxins9090263 - 25 Aug 2017
Cited by 7 | Viewed by 5780
Abstract
Staphylococcal food poisoning (SFP) is a common cause of foodborne illness worldwide, and enterotoxin D (SED) is one of the most frequent Staphylococcus aureus enterotoxins associated with it. It has been reported that the expression and formation of SED in S. aureus is [...] Read more.
Staphylococcal food poisoning (SFP) is a common cause of foodborne illness worldwide, and enterotoxin D (SED) is one of the most frequent Staphylococcus aureus enterotoxins associated with it. It has been reported that the expression and formation of SED in S. aureus is regulated by the quorum sensing Agr system. In this study, the effect of agr deletion on sed expression in S. aureus grown on boiled ham was investigated. Growth, sed mRNA and SED protein levels in an S. aureus wild type strain and its isogenic Δagr mutant were monitored for 14 days at 22 °C. The results showed that although deletion of the agr gene did not affect the growth rate or maximum cell density of S. aureus on boiled ham, it had a pronounced effect on SED formation during the first 5 days of incubation. The SED concentration was not reflected in the amount of preceding sed transcripts, suggesting that sed transcription levels may not always reflect SED formation. The expression of RNAIII transcript, the regulatory signal of the Agr system, was also monitored. Similar transcription patterns were observed for RNAIII and sed. Surprisingly, in the Δagr mutant, sed expression was comparable to that in the wild type strain, and was thus unaffected by deletion of the Agr system. These results demonstrate that the Agr system appears to only partially affect SED formation, even in a real food environment. Full article
(This article belongs to the Special Issue Heat-Stable Enterotoxins)
Show Figures

Figure 1

20 pages, 1491 KiB  
Review
A Review of the Methods for Detection of Staphylococcus aureus Enterotoxins
by Shijia Wu, Nuo Duan, Huajie Gu, Liling Hao, Hua Ye, Wenhui Gong and Zhouping Wang
Toxins 2016, 8(7), 176; https://doi.org/10.3390/toxins8070176 - 24 Jun 2016
Cited by 139 | Viewed by 18480
Abstract
Food safety has attracted extensive attention around the world, and food-borne diseases have become one of the major threats to health. Staphylococcus aureus is a major food-borne pathogen worldwide and a frequent contaminant of foodstuffs. Staphylococcal enterotoxins (SEs) produced by some S. aureus [...] Read more.
Food safety has attracted extensive attention around the world, and food-borne diseases have become one of the major threats to health. Staphylococcus aureus is a major food-borne pathogen worldwide and a frequent contaminant of foodstuffs. Staphylococcal enterotoxins (SEs) produced by some S. aureus strains will lead to staphylococcal food poisoning (SFP) outbreaks. The most common symptoms caused by ingestion of SEs within food are nausea, vomiting, diarrhea and cramps. Children will suffer SFP by ingesting as little as 100 ng of SEs, and only a few micrograms of SEs are enough to cause SPF in vulnerable populations. Therefore, it is a great challenge and of urgent need to detect and identify SEs rapidly and accurately for governmental and non-governmental agencies, including the military, public health departments, and health care facilities. Herein, an overview of SE detection has been provided through a comprehensive literature survey. Full article
(This article belongs to the Collection Staphylococcus aureus Toxins)
Show Figures

Graphical abstract

Back to TopTop