The Enterotoxin Gene Profiles and Enterotoxin Production of Staphylococcus aureus Strains Isolated from Artisanal Cheeses in Belgium
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling
2.2. Isolates and S. aureus Identification
Stock Suspension Culture
2.3. Quantification of S. aureus in Positive Cheese Samples
2.3.1. DNA Extraction
2.3.2. Quantitative PCR Amplification
2.3.3. Calibration Curves
2.4. Toxigenic Profiles of Isolates
2.4.1. DNA Extraction
2.4.2. SEs Production
2.4.3. Isolates Characterization
Rapid Screening Tests
Liquid Chromatography–Mass Spectrometry (LC-MS) Analysis
Whole Genome Sequencing (WGS)
3. Results and Discussion
3.1. S. aureus Isolated from the Three Types of Cheese at D0 and DE
3.1.1. Cheeses with Positive Culture at D0 and DE
3.1.2. Quantification of S. aureus Strains in Cheeses at D0 and DE
3.2. Methods Comparison and Performance
3.3. Toxin Production and SE Gene Profiles in Belgian Cheese Varieties
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fisher, E.L.; Otto, M.; Cheung, G.Y.C. Basis of virulence in enterotoxin-mediated staphylococcal food poisoning. Front. Microbiol. 2018, 9, 436. [Google Scholar] [CrossRef] [PubMed]
- Argudín, M.Á.; Mendoza, M.C.; Rodicio, M.R. Food poisoning and Staphylococcus aureus enterotoxins. Toxins 2010, 2, 1751–1773. [Google Scholar] [CrossRef] [PubMed]
- Cardozo, M.V.; Nespolo, N.; Delfino, T.C.; Almeida, C.C.D.; Pizauro, L.J.L.; Valmorbida, M.K.; Pereira, N.; Ávila, F.A.D. Raw milk cheese as a potential infection source of pathogenic and toxigenic food born pathogens. Food Sci. Technol. 2021, 41, 355–358. [Google Scholar] [CrossRef]
- Viçosa, G.N.; Le Loir, A.; Le Loir, Y.; de Carvalho, A.F.; Nero, L.A. Egc Characterization of enterotoxigenic Staphylococcus aureus isolates obtained from raw milk and cheese. Int. J. Food Microbiol. 2013, 165, 227–230. [Google Scholar] [CrossRef] [PubMed]
- Asao, T.; Kumeda, Y.; Kawai, T.; Shibata, T.; Oda, H.; Haruki, K.; Nakazawa, H.; Kozaki, S. An extensive outbreak of staphylococcal food poisoning due to low-fat milk in Japan: Estimation of enterotoxin A in the incriminated milk and powdered Skim Milk. Epidemiol. Infect. 2003, 130, 33–40. [Google Scholar] [CrossRef]
- Le, H.H.T.; Dalsgaard, A.; Andersen, P.S.; Nguyen, H.M.; Ta, Y.T.; Nguyen, T.T. Large-scale Staphylococcus aureus foodborne disease poisoning outbreak among primary school children. Microbiol. Res. 2021, 12, 43–52. [Google Scholar] [CrossRef]
- Kadariya, J.; Smith, T.C.; Thapaliya, D. Staphylococcus aureus and staphylococcal food-borne disease: An ongoing challenge in public health. BioMed Res. Int. 2014, 2014, 827965. [Google Scholar] [CrossRef]
- Abril, G.A.; Villa, G.T.; Barros-Velázquez, J.; Cañas, B.; Sánchez-Pérez, A.; Calo-Mata, P.; Carrera, M. Staphylococcus aureus exotoxins and their detection in the dairy industry and mastitis. Toxins 2020, 12, 537. [Google Scholar] [CrossRef]
- Ertas, N.; Gonulalan, Z.; Yildirim, Y.; Kum, E. Detection of Staphylococcus aureus enterotoxins in sheep cheese and dairy desserts by multiplex PCR technique. Int. J. Food Microbiol. 2010, 142, 74–77. [Google Scholar] [CrossRef]
- Jakobsen, R.A.; Heggebø, R.; Sunde, E.B.; Skjervheim, M. Staphylococcus aureus and Listeria monocytogenes in Norwegian raw milk cheese production. Food Microbiol. 2011, 28, 492–496. [Google Scholar] [CrossRef]
- Spanu, V.; Scarano, C.; Cossu, F.; Pala, C.; Spanu, C.; De Santis, E.P.L. Antibiotic resistance traits and molecular subtyping of Staphylococcus aureus isolated from raw sheep milk cheese: Staphylococcus aureus drug resistance. J. Food Sci. 2014, 79, M2066–M2071. [Google Scholar] [CrossRef]
- Viçosa, G.N.; Moraes, P.M.; Yamazi, A.K.; Nero, L.A. Enumeration of coagulase and thermonuclease-positive Staphylococcus spp. in raw milk and fresh soft cheese: An evaluation of Baird-Parker agar, rabbit plasma fibrinogen agar and the Petrifilm Staph Express Count System. Food Microbiol. 2010, 27, 447–452. [Google Scholar] [CrossRef]
- Carneiro Aguiar, R.A.; Ferreira, F.A.; Dias, R.S.; Nero, L.A.; Miotto, M.; Verruck, S.; De Marco, I.; De Dea Lindner, J. Graduate Student Literature Review: Enterotoxigenic potential and antimicrobial resistance of Staphylococci from Brazilian artisanal raw milk cheeses. J. Dairy Sci. 2022, 105, 5685–5699. [Google Scholar] [CrossRef]
- Lawrynowicz-Paciorek, M.; Kochman, M.; Piekarska, K.; Grochowska, A.; Windyga, B. The Distribution of enterotoxin and enterotoxin-like genes in Staphylococcus aureus strains isolated from nasal carriers and food samples. Int. J. Food Microbiol. 2007, 117, 319–323. [Google Scholar] [CrossRef] [PubMed]
- Farkye, N.Y. Cheese Technology. Int. J. Dairy Technol. 2004, 57, 91–98. [Google Scholar] [CrossRef]
- Gérard, A.; El-Hajjaji, S.; Burteau, S.; Fall, P.A.; Pirard, B.; Taminiau, B.; Daube, G.; Sindic, M. Study of the microbial diversity of a panel of Belgian artisanal cheeses associated with challenge studies for Listeria monocytogenes. Food Microbiol. 2021, 100, 103861. [Google Scholar] [CrossRef]
- Blaiotta, G.; Marrone, R.; Aponte, M.; Peruzy, M.F.; Smaldone, G.; Vollano, L.; Murru, N. Characterisation of conciato romano: One of the oldest Italian cheeses. Int. Dairy J. 2021, 120, 105077. [Google Scholar] [CrossRef]
- Rajkovic, A. Staphylococcus: Food poisoning. In The Encyclopedia of Food and Health; Academic Press: Oxford, UK, 2016; Volume 5, pp. 133–139. ISBN 978-0-12-384953-3. [Google Scholar]
- Filipello, V.; Bonometti, E.; Campagnani, M.; Bertoletti, I.; Romano, A.; Zuccon, F.; Campanella, C.; Losio, M.N.; Finazzi, G. Investigation and follow-up of a staphylococcal food poisoning outbreak linked to the consumption of traditional hand-crafted alm cheese. Pathogens 2020, 9, 1064. [Google Scholar] [CrossRef]
- Necidová, L.; Šťástková, Z.; Pospíšilová, M.; Janštová, B.; Strejček, J.; Dušková, M.; Karpíšková, R. Influence of soft cheese technology on the growth and enterotoxin production of Staphylococcus aureus. Czech J. Food Sci. 2009, 27, 127–133. [Google Scholar] [CrossRef]
- Pelisser, M.R.; Klein, C.S.; Ascoli, K.R.; Zotti, T.R.; Arisi, A.C.M. Ocurrence of Staphylococcus aureus and multiplex PCR detection of classic enterotoxin genes in cheese and meat products. Braz. J. Microbiol. 2009, 40, 145–148. [Google Scholar] [CrossRef]
- Akineden, O.; Hassan, A.A.; Schneider, E.; Usleber, E. Enterotoxigenic properties of Staphylococcus aureus isolated from goats’ milk cheese. Int. J. Food Microbiol. 2008, 124, 211–216. [Google Scholar] [CrossRef] [PubMed]
- Wieneke, A.A.; Roberts, D.; Gilbert, R.J. Staphylococcal food poisoning in the United Kingdom, 1969–1990. Epidemiol. Infect. 1993, 110, 519–531. [Google Scholar] [CrossRef] [PubMed]
- Johler, S.; Giannini, P.; Jermini, M.; Hummerjohann, J.; Baumgartner, A.; Stephan, R. Further evidence for staphylococcal food poisoning outbreaks caused by egc-encoded enterotoxins. Toxins 2015, 7, 997–1004. [Google Scholar] [CrossRef] [PubMed]
- Rola, J.G.; Korpysa-Dzirba, W.; Osek, J. Prevalence of Staphylococcus aureus and staphylococcal enterotoxins at different stages of production of raw milk Cheeses—Preliminary results. Bull. Vet. Inst. Pulawy 2013, 57, 341–345. [Google Scholar] [CrossRef]
- Teague, N.S.; Grigg, S.S.; Peterson, J.C.; Gómez, G.A.; Talkington, D.F. Outbreak of staphylococcal food poisoning from a military unit lunch party—United States, July 2012. Morb. Mortal. Wkly. Rep. 2013, 62, 1026–1028. [Google Scholar]
- Bens, C.C.P.M.; Voss, A.; Klaassen, C.H.W. Presence of a novel DNA methylation enzyme in methicillin-resistant Staphylococcus aureus isolates associated with pig farming leads to uninterpretable results in standard pulsed-field gel electrophoresis analysis. J. Clin. Microbiol. 2006, 44, 1875–1876. [Google Scholar] [CrossRef]
- Rabello, R.F.; Moreira, B.M.; Lopes, R.M.M.; Teixeira, L.M.; Riley, L.W.; Castro, A.C.D. Multilocus sequence typing of Staphylococcus aureus isolates recovered from cows with mastitis in brazilian dairy herds. J. Med. Microbiol. 2007, 56, 1505–1511. [Google Scholar] [CrossRef]
- Sobral, D.; Schwarz, S.; Bergonier, D.; Brisabois, A.; Feßler, A.T.; Gilbert, F.B.; Kadlec, K.; Lebeau, B.; Loisy-Hamon, F.; Treilles, M.; et al. High Throughput multiple locus variable number of tandem repeat analysis (MLVA) of Staphylococcus aureus from human, animal and food sources. PLoS ONE 2012, 7, e33967. [Google Scholar] [CrossRef]
- Roussel, S.; Felix, B.; Vingadassalon, N.; Grout, J.; Hennekinne, J.-A.; Guillier, L.; Brisabois, A.; Auvray, F. Staphylococcus aureus strains associated with food poisoning outbreaks in France: Comparison of different molecular typing methods, including MLVA. Front. Microbiol. 2015, 6, 882. [Google Scholar] [CrossRef]
- Merda, D.; Felten, A.; Vingadassalon, N.; Denayer, S.; Titouche, Y.; Decastelli, L.; Hickey, B.; Kourtis, C.; Daskalov, H.; Mistou, M.-Y.; et al. NAuRA: Genomic tool to identify staphylococcal enterotoxins in Staphylococcus aureus strains responsible for foodborne outbreaks. Front. Microbiol. 2020, 11, 1483. [Google Scholar] [CrossRef]
- Lefebvre, D.; Blanco-Valle, K.; Hennekinne, J.-A.; Simon, S.; Fenaille, F.; Becher, F.; Nia, Y. Multiplex detection of 24 staphylococcal enterotoxins in culture supernatant using liquid chromatography coupled to high-resolution mass spectrometry. Toxins 2022, 14, 249. [Google Scholar] [CrossRef] [PubMed]
- Madahi, H.; Rostami, F.; Rahimi, E.; Safarpoor Dehkordi, F. Prevalence of enterotoxigenic Staphylococcus aureus isolated from chicken nugget in Iran. Jundishapur J. Microbiol. 2014, 7, e10237. [Google Scholar] [CrossRef]
- Hait, J.; Tallent, S.; Melka, D.; Keys, C.; Bennett, R. Prevalence of enterotoxins and toxin gene profiles of Staphylococcus aureus isolates recovered from a bakery involved in a second staphylococcal food poisoning occurrence. J. Appl. Microbiol. 2014, 117, 866–875. [Google Scholar] [CrossRef] [PubMed]
- Johler, S.; Weder, D.; Bridy, C.; Huguenin, M.-C.; Robert, L.; Hummerjohann, J.; Stephan, R. Outbreak of staphylococcal food poisoning among children and staff at a swiss boarding school due to soft cheese made from raw milk. J. Dairy Sci. 2015, 98, 2944–2948. [Google Scholar] [CrossRef] [PubMed]
- Féraudet Tarisse, C.; Goulard-Huet, C.; Nia, Y.; Devilliers, K.; Marcé, D.; Dambrune, C.; Lefebvre, D.; Hennekinne, J.-A.; Simon, S. Highly sensitive and specific detection of staphylococcal enterotoxins SEA, SEG, SEH, and SEI by immunoassay. Toxins 2021, 13, 130. [Google Scholar] [CrossRef] [PubMed]
- Umeda, K.; Ono, H.K.; Wada, T.; Motooka, D.; Nakamura, S.; Nakamura, H.; Hu, D.-L. High production of egc2-related staphylococcal enterotoxins caused a food poisoning outbreak. Int. J. Food Microbiol. 2021, 357, 109366. [Google Scholar] [CrossRef]
- Dicks, J.; Turnbull, J.D.; Russell, J.; Parkhill, J.; Alexander, S. Genome sequencing of a historic Staphylococcus aureus collection reveals new enterotoxin genes and sheds light on the evolution and genomic organization of this key virulence gene family. J. Bacteriol. 2021, 203, e00587-20. [Google Scholar] [CrossRef]
- Omoe, K.; Hu, D.-L.; Ono, H.K.; Shimizu, S.; Takahashi-Omoe, H.; Nakane, A.; Uchiyama, T.; Shinagawa, K.; Imanishi, K. Emetic Potentials of newly identified staphylococcal enterotoxin-like toxins. Infect. Immun. 2013, 81, 3627–3631. [Google Scholar] [CrossRef]
- Ono, H.K.; Hirose, S.; Naito, I.; Sato’o, Y.; Asano, K.; Hu, D.-L.; Omoe, K.; Nakane, A. The emetic activity of staphylococcal enterotoxins, SEK, SEL, SEM, SEN and SEO in a small emetic animal model, the house musk shrew. Microbiol. Immunol. 2017, 61, 12–16. [Google Scholar] [CrossRef]
- Zeaki, N.; Budi Susilo, Y.; Pregiel, A.; Rådström, P.; Schelin, J. Prophage-encoded staphylococcal enterotoxin A: Regulation of production in Staphylococcus aureus strains representing different sea regions. Toxins 2015, 7, 5359–5376. [Google Scholar] [CrossRef]
- Varshney, A.K.; Mediavilla, J.R.; Robiou, N.; Guh, A.; Wang, X.; Gialanella, P.; Levi, M.H.; Kreiswirth, B.N.; Fries, B.C. Diverse enterotoxin gene profiles among clonal complexes of Staphylococcus aureus isolates from the Bronx, New York. Appl. Environ. Microbiol. 2009, 75, 6839–6849. [Google Scholar] [CrossRef]
- Kläui, A.J.; Boss, R.; Graber, H.U. Characterization and comparative analysis of the Staphylococcus aureus genomic island vSaβ: An in silico approach. J. Bacteriol. 2019, 201, e00777-18. [Google Scholar] [CrossRef]
- Schwendimann, L.; Berger, T.; Graber, H.-U.; Meier, S.; Hummerjohann, J.; Jakob, E. Effect of scalding temperature on growth of Staphylococcus aureus and formation of staphylococcal enterotoxin during the production of alpine cheese in a laboratory cheesemaking Model. J. Food Prot. 2020, 83, 1822–1828. [Google Scholar] [CrossRef]
- Bianchi, D.M.; Gallina, S.; Bellio, A.; Chiesa, F.; Civera, T.; Decastelli, L. Enterotoxin gene profiles of Staphylococcus aureus isolated from milk and dairy products in Italy. Lett. Appl. Microbiol. 2014, 58, 190–196. [Google Scholar] [CrossRef]
- Hwang, S.Y.; Kim, S.H.; Jang, E.J.; Kwon, N.H.; Park, Y.K.; Koo, H.C.; Jung, W.K.; Kim, J.M.; Park, Y.H. Novel multiplex PCR for the detection of the Staphylococcus aureus superantigen and its application to raw meat isolates in Korea. Int. J. Food Microbiol. 2007, 117, 99–105. [Google Scholar] [CrossRef]
- Grispoldi, L.; Karama, M.; Armani, A.; Hadjicharalambous, C.; Cenci-Goga, B.T. Staphylococcus aureus enterotoxin in food of animal origin and staphylococcal food poisoning risk assessment from farm to table. Ital. J. Anim. Sci. 2021, 20, 677–690. [Google Scholar] [CrossRef]
- Roque, A.C.A.; Lowe, C.R.; Taipa, M.A. Antibodies and genetically engineered related molecules: Production and purification. Biotechnol. Prog. 2004, 20, 639–654. [Google Scholar] [CrossRef] [PubMed]
- NF EN ISO 6887-5:2020; Microbiology of the Food Chain—Preparation of Test Samples, Initial Suspension and Decimal Dilutions for Microbiological Examination—Part 5: Specific Rules for the Preparation of Milk and Milk Products. International Organization for Standardization: Geneva, Switzerland, 2020.
- NF EN ISO 6888-2:1999; Microbiology of the Food Chain—Horizontal Method for Counting Positive Coagulase Staphylococci (Staphylococcus aureus and Other Species)—Part 2: Technique Using Rabbit Plasma and Fibrinogen Agar Medium. International Organization for Standardization: Geneva, Switzerland, 1999.
- Kadiroğlu, P.; Korel, F.; Ceylan, C. Quantification of Staphylococcus aureus in white cheese by the improved DNA extraction strategy combined with TaqMan and LNA Probe-Based qPCR. J. Microbiol. Methods 2014, 105, 92–97. [Google Scholar] [CrossRef] [PubMed]
- NF EN ISO 8261:2001; Files Provides General Guidelines for the Preparation of Test Samples, Primary Dilutions and Decimal Dilutions, for the Microbiological Examination of Milk and Dairy Products, Including Infant Formula Foods. International Organization for Standardization: Geneva, Switzerland, 2001.
- Agence Nationale de la Sécurité Sanitaire Alomentation, Environnement, Travail (ANSES), Version 2—List of Methods Used in the Field of ANSES National Reference Laboratory’s Missions—Positive coagulase Staphylococci (PCS). Available online: https://www.anses.fr/fr/system/files/Liste%20des%20m%C3%A9thodes-LNR%20SCP.pdf (accessed on 12 June 2022).
- Bankevich, A.; Nurk, S.; Antipov, D.; Gurevich, A.A.; Dvorkin, M.; Kulikov, A.S.; Lesin, V.M.; Nikolenko, S.I.; Pham, S.; Prjibelski, A.D.; et al. SPAdes: A New Genome Assembly Algorithm and Its Applications to Single-Cell Sequencing. J. Comput. Biol. J. Comput. Mol. Cell Biol. 2012, 19, 455–477. [Google Scholar] [CrossRef]
- Geneious Biologics, Version 10.2.3. 2023. Available online: https://www.geneious.com (accessed on 5 June 2023).
- Seemann, T. Prokka: Rapid Prokaryotic Genome Annotation. Bioinformatics 2014, 30, 2068–2069. [Google Scholar] [CrossRef]
- Benkerroum, N. Staphylococcal enterotoxins and enterotoxin-like toxins with special reference to dairy products: An overview. Crit. Rev. Food Sci. Nutr. 2018, 58, 1943–1970. [Google Scholar] [CrossRef] [PubMed]
- Omoe, K.; Imanishi, K.; Hu, D.-L.; Kato, H.; Fugane, Y.; Abe, Y.; Hamaoka, S.; Watanabe, Y.; Nakane, A.; Uchiyama, T.; et al. Characterization of novel staphylococcal enterotoxin-like toxin type P. Infect. Immun. 2005, 73, 5540–5546. [Google Scholar] [CrossRef] [PubMed]
- Hennekinne, J.-A.; Guillier, F.; Perelle, S.; De Buyser, M.-L.; Dragacci, S.; Krys, S.; Lombard, B. Intralaboratory validation according to the EN ISO 16 140 Standard of the Vidas SET2 detection Kit for use in official controls of staphylococcal enterotoxins in milk products. J. Appl. Microbiol. 2007, 102, 1261–1272. [Google Scholar] [CrossRef]
- Vernozy-Rozand, C.; Mazuy-Cruchaudet, C.; Bavai, C.; Richard, Y. Comparison of three immunological methods for detecting staphylococcal enterotoxins from food. Lett. Appl. Microbiol. 2004, 39, 490–494. [Google Scholar] [CrossRef] [PubMed]
- Ono, H.K.; Hirose, S.; Narita, K.; Sugiyama, M.; Asano, K.; Hu, D.-L.; Nakane, A. Histamine Release from Intestinal Mast Cells Induced by staphylococcal enterotoxin A (SEA) evokes vomiting reflex in common marmoset. PLoS Pathog. 2019, 15, e1007803. [Google Scholar] [CrossRef]
- Bennett, R.W. Staphylococcal enterotoxin and its Rapid identification in foods by enzyme-linked immunosorbent assay–based Methodology. J. Food Prot. 2005, 68, 1264–1270. [Google Scholar] [CrossRef] [PubMed]
- Derzelle, S.; Dilasser, F.; Duquenne, M.; Deperrois, V. Differential temporal expression of the staphylococcal enterotoxins genes during cell growth. Food Microbiol. 2009, 26, 896–904. [Google Scholar] [CrossRef]
- Collery, M.M.; Smyth, D.S.; Tumilty, J.J.G.; Twohig, J.M.; Smyth, C.J. Associations between enterotoxin gene cluster types egc1, egc2 and egc3, agr types, enterotoxin and enterotoxin-like gene profiles, and molecular typing characteristics of human nasal carriage and animal isolates of Staphylococcus aureus. J. Med. Microbiol. 2009, 58, 13–25. [Google Scholar] [CrossRef]
- Omoe, K.; Ishikawa, M.; Shimoda, Y.; Hu, D.-L.; Ueda, S.; Shinagawa, K. Detection of seg, seh, and sei genes in Staphylococcus aureus isolates and determination of the enterotoxin productivities of S. aureus isolates harboring seg, seh, or sei genes. J. Clin. Microbiol. 2002, 40, 857–862. [Google Scholar] [CrossRef]
- Chieffi, D.; Fanelli, F.; Cho, G.-S.; Schubert, J.; Blaiotta, G.; Franz, C.M.A.P.; Bania, J.; Fusco, V. Novel insights into the enterotoxigenic potential and genomic background of Staphylococcus aureus isolated from raw milk. Food Microbiol. 2020, 90, 103482. [Google Scholar] [CrossRef]
- Mekhloufi, O.A.; Chieffi, D.; Hammoudi, A.; Bensefia, S.A.; Fanelli, F.; Fusco, V. Prevalence, enterotoxigenic potential and antimicrobial resistance of Staphylococcus aureus and methicillin-resistant Staphylococcus aureus (MRSA) isolated from Algerian ready to eat foods. Toxins 2021, 13, 835. [Google Scholar] [CrossRef] [PubMed]
- Hummerjohann, J.; Naskova, J.; Baumgartner, A.; Graber, H.U. Enterotoxin-producing Staphylococcus aureus Genotype B as a major contaminant in Swiss raw milk cheese. J. Dairy Sci. 2014, 97, 1305–1312. [Google Scholar] [CrossRef] [PubMed]
Variety n° | Type of Milk | Origin of Milk | Type of Cheese | End of Production (D0) | Expiry Date (DE) | ||
---|---|---|---|---|---|---|---|
Log CFU/mL in SS at D0 | Number of Positives Samples and Number of Isolates * | Log CFU/mL in SS at DE | Number of Positives Samples and Number of Isolates * | ||||
1 | R | cow | SC | ||||
2 | R | cow | FC | ||||
3 | R | cow | FC | 4 | 3 (2, 2, 2) | 4.2 | 1 (1, 0, 0) |
4 | P | cow | FC | ||||
5 | P | ewe | FC | ||||
6 | R | goat | SC | ||||
7 | R | cow | FC | ||||
8 | R | cow | FC | ||||
9 | P | ewe | SHC | ||||
10 | R | ewe | SHC | ||||
11 | R | cow | SHC | ||||
12 | R | cow | SHC | ||||
13 | R | goat | FC | 3.9 | 1 (1, 0, 0) | 4.7 | 2 (1, 0, 1) |
14 | P | cow | SHC | ||||
15 | P | cow | SHC | ||||
16 | R | goat | FC | ||||
17 | R | cow | FC | ||||
18 | R | cow | SHC | ND | 1 (0, 0, 1) | ||
19 | P | cow | SC | ||||
20 | R | cow | SC | ||||
21 | R | cow | SHC | ||||
23 | R | cow | SHC | 4 | 3 (2, 2, 1) | 4 | 3 (2, 2, 2) |
24 | R | cow | SHC | 3.5 | 1 (0, 1, 0) | ||
25 | R | cow | FC | ||||
26 | R | cow | SHC | 3.2 | 1 (0, 0, 1) | ||
27 | R | cow | SC | 4.4 | 3 (2, 2, 2) | ||
28 | R | cow | FC | 3.6 | 2 (1, 2, 0) | ||
29 | R | cow | SC | 3.7 | 3 (2, 2, 2) | 4.3 | 2 (2, 0, 2) |
31 | R | cow | SC | ||||
32 | R | cow | SHC | 4.8 | 3 (2, 2, 2) | ||
TOTAL | positive | samples | (isolates) | 19 (34) | 10 (15) |
Type of Cheese | Type of Milk | Profiles of SE Genes (NaURA) | Frequency of SE Genes in Strains Characterized | Frequency of SE Genes Profiles in Cheeses Varieties (ID) | Toxins Produced by the Strain in BHI Culture (LC-MS) |
---|---|---|---|---|---|
FC | Goat | sea, sec, sel, sex, sew, tsst1 | 2/49 | 1/24 (13) | SEA, SEC, SEL, TSST1 |
FC | Goat | sec, sel, sex, sew, tsst1 | 1/49 | 1/24 (13) | SEC, SEL, SElX, TSST1 |
FC-SC | Cow | selx | 19/49 | 3/24 (03, 28, 29) | SElX |
SHC | Cow | segT, sei, sen, seo, selu, sex, sey, sez | 6/49 | 1/24 (32) | SEG, SEI, SElX, SEY, SElZ SEG, SEY, SElZ |
FC | Cow | seg, sei, sem, sen, seo, sep, selu, sex | 1/49 | 1/24 (03) | SEG, SEI, SEM, SEN, SEO, SEP, SElX |
SHC | Cow | seg, sei, sem, sen, seo, selu, sex, sew | 2/49 | 2/24 (18, 26) | SEI, SEM, SElU, SElX SEI, SEM, SEO, SElU, SElX |
SC | Cow | sec, segT, sei, sel, sen, seo, selu, sex, sey, sez, tsst1 | 6/49 | 1/24 (27) | SEL, SEY, SEZ, TSST1 SEC, SEI, SEL, SEX, SEY, SEZ, TSST1 SEC, SEL, SEX, SEY, SEZ, TSST1 |
SHC | Cow | segT, sei, sem, sen, seo, selu, sex, sey, sez | 12/49 | 2/24 (23, 24) | SEG, SEM, SEO, SEY, SEZ SEG, SEI, SEX, SEY, SEZ SEG, SEY, SEZ SEX, SEY, SEZ SEI, SEX, SEY, SEZ SEY, SEZ |
SE Genes | sea | sec | seg | segT | sei | sel | sem | sen | seo | sep | selu | sew | selx | sey | selz | tsst1 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Number of variety of Belgian cheese containing the SE gene | 1 | 2 | 3 | 4 | 7 | 2 | 5 | 7 | 7 | 1 | 6 | 3 | 10 | 4 | 4 | 2 |
% raw milk cheese containing the SE gene (a) (n = 24) | 4.1 | 8.3 | 12.5 | 16.7 | 29.2 | 8.3 | 20.8 | 29.2 | 29.2 | 4.1 | 25 | 12.5 | 41.7 | 16.7 | 16.7 | 8.3 |
Number of strains containing the SE gene (n = 49) | 2 | 9 | 3 | 24 | 27 | 9 | 15 | 27 | 27 | 1 | 26 | 5 | 49 | 24 | 24 | 9 |
Occurrence of toxin detection via LC-MS and via ELISA when gene toxin is present (%) | 100 (b) 100 (c) | 88.9 (b) 88.9 (c) | 33.3 (b) | 33.3 (b) | 55.5 (b) 100 (c) | 100 (b) | 26.7 (b) | 3.7 (b) | 11.1 (b) | 100 (b) | 7.7 (b) | NA | 81.6 (b) | 100 (b) | 100 (b) | 100 (b) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Minutillo, R.; Pirard, B.; Fatihi, A.; Cavaiuolo, M.; Lefebvre, D.; Gérard, A.; Taminiau, B.; Nia, Y.; Hennekinne, J.-A.; Daube, G.; et al. The Enterotoxin Gene Profiles and Enterotoxin Production of Staphylococcus aureus Strains Isolated from Artisanal Cheeses in Belgium. Foods 2023, 12, 4019. https://doi.org/10.3390/foods12214019
Minutillo R, Pirard B, Fatihi A, Cavaiuolo M, Lefebvre D, Gérard A, Taminiau B, Nia Y, Hennekinne J-A, Daube G, et al. The Enterotoxin Gene Profiles and Enterotoxin Production of Staphylococcus aureus Strains Isolated from Artisanal Cheeses in Belgium. Foods. 2023; 12(21):4019. https://doi.org/10.3390/foods12214019
Chicago/Turabian StyleMinutillo, Raphaëlle, Barbara Pirard, Abdelhak Fatihi, Marina Cavaiuolo, Donatien Lefebvre, Amaury Gérard, Bernard Taminiau, Yacine Nia, Jacques-Antoine Hennekinne, Georges Daube, and et al. 2023. "The Enterotoxin Gene Profiles and Enterotoxin Production of Staphylococcus aureus Strains Isolated from Artisanal Cheeses in Belgium" Foods 12, no. 21: 4019. https://doi.org/10.3390/foods12214019
APA StyleMinutillo, R., Pirard, B., Fatihi, A., Cavaiuolo, M., Lefebvre, D., Gérard, A., Taminiau, B., Nia, Y., Hennekinne, J.-A., Daube, G., & Clinquart, A. (2023). The Enterotoxin Gene Profiles and Enterotoxin Production of Staphylococcus aureus Strains Isolated from Artisanal Cheeses in Belgium. Foods, 12(21), 4019. https://doi.org/10.3390/foods12214019