Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (39)

Search Parameters:
Keywords = square split-ring resonator

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 2801 KB  
Article
Square Split-Ring Resonator as a Sensor for Detection of Nanoparticles in PVDF-Based Nanocomposites at Ultra-HighFrequencies: MXenes and MoS2 Concentrations
by Jorge Simon, Jacobo Jimenez-Rodriguez, Emmanuel Hernandez-Gonzalez, Jose L. Alvarez-Flores, Walter A. Mata-Lopez, John A. Franco-Villafañe, J. R. Gomez-Rodriguez, Marco Cardenas-Juarez, Oscar F. Olea-Mejia, Ana L. Martinez-Hernandez and Carlos Velasco Santos
Sensors 2026, 26(3), 1028; https://doi.org/10.3390/s26031028 - 4 Feb 2026
Abstract
The performance of a printed square split-ring resonator as a sensor for quantifying nanoparticle concentrations in PVDF-based nanocomposites was evaluated at UHF frequencies. The sensing mechanism was based on the frequency response of parameter S21, observing the shift in the resonant [...] Read more.
The performance of a printed square split-ring resonator as a sensor for quantifying nanoparticle concentrations in PVDF-based nanocomposites was evaluated at UHF frequencies. The sensing mechanism was based on the frequency response of parameter S21, observing the shift in the resonant frequency and a variation in S21 level, while samples were placed on the ring split and compared to the sensor without a sample. Experiments with samples of PVDF-based nanocomposites combined with different concentrations of both MoS2 and MXenes, ranging from 0.01% to 0.2%, were conducted. In general, considering both types of samples studied, it was observed that, as the concentration increases, S21 (dB) increases from-.35 to −6 dB. At the same time, the resonance frequency in the S21 plot went from 500.4 to 498.25 MHz. Although the concentrations and their variations were relatively low, shifts in the resonance frequency of S21 were evident, demonstrating the ability of the sensor to detect low concentrations and variations of MoS2 and MXenes, being the detection of samples with higher concentrations feasible as future work, and concluding that the sensor had a relatively acceptable performance. In this study, MXenes were the concentrations that produced more noticeable shifts in the resonance frequency of S21. Likewise, characterizations based on SEM and TEM were performed to corroborate the ones at UHF frequencies. Full article
(This article belongs to the Special Issue Advanced Microwave Sensors and Their Applications in Measurement)
21 pages, 3571 KB  
Article
A Linear and High-Sensitivity Microwave Biosensor on a FR-4 Substrate for Aqueous Glucose Monitoring Using a Concentric Square-Shaped Split-Ring Resonator
by Khouloud Jomaa, Sehmi Saad, Darine Kaddour, Pierre Lemaître-Auger and Hatem Garrab
Sensors 2026, 26(1), 131; https://doi.org/10.3390/s26010131 - 24 Dec 2025
Viewed by 526
Abstract
Non-invasive glucose monitoring remains a significant challenge in diabetes management, with existing approaches often limited by poor accuracy, high cost, or patient discomfort. Microwave-based biosensors offer a promising label-free alternative by exploiting the dielectric contrast between glucose and water. This paper presents a [...] Read more.
Non-invasive glucose monitoring remains a significant challenge in diabetes management, with existing approaches often limited by poor accuracy, high cost, or patient discomfort. Microwave-based biosensors offer a promising label-free alternative by exploiting the dielectric contrast between glucose and water. This paper presents a compact, dual-band concentric square-shaped split-ring resonator (SRR-type) biosensor fabricated on a low-cost FR-4 substrate for aqueous glucose detection. The sensor leverages electric field confinement in inter-ring gaps to transduce glucose-induced permittivity changes into measurable shifts in resonance frequency and reflection coefficient. Experimental results demonstrate a linear, monotonic response across the clinical range up to 250 mg/dL, with a frequency-domain sensitivity of 1.964 MHz/(mg/dL) and amplitude-domain sensitivity of 0.0332 dB/(mg/dL), achieving high coefficients of determination (R2 = 0.9956 and 0.9927, respectively). The design achieves a normalized size of 0.137 λg2, combining high sensitivity and compact size within a scalable platform. Operating in the UWB-adjacent band (2.76–3.25 GHz), the proposed biosensor provides a practical, reproducible, and PCB-compatible solution for next-generation label-free glucose monitoring. Full article
(This article belongs to the Section Biosensors)
Show Figures

Figure 1

11 pages, 3327 KB  
Article
Coupled Split-Ring Resonators for Isolation Improvement in a 1 × 2 Microstrip Patch Antenna Array
by Kam Eucharist Kedze, Wenyu Zhou, Eqab Almajali, Hojjat Jamshidi-Zarmehri, Nima Javanbakht, Gaozhi (George) Xiao, Jafer Shaker and Rony E. Amaya
Electronics 2025, 14(17), 3340; https://doi.org/10.3390/electronics14173340 - 22 Aug 2025
Viewed by 977
Abstract
In this paper, a method to reduce mutual coupling between an E-plane and H-plane coupled microstrip patch antenna is presented. Two dual differentially fed square patches are designed in a 1 × 2 antenna array configuration. To minimize mutual coupling and its effects, [...] Read more.
In this paper, a method to reduce mutual coupling between an E-plane and H-plane coupled microstrip patch antenna is presented. Two dual differentially fed square patches are designed in a 1 × 2 antenna array configuration. To minimize mutual coupling and its effects, coupled split-ring resonators (SRRs) are designed, characterized and positioned between the patches. Circular SRRs are designed and coupled to produce a band-stop response to suppress surface waves propagating within the dielectric substrate while enhancing isolation. Mutual coupling interactions and the suppression mechanism are discussed in relation to the patches and SRRs. The patch radiators are dual differentially fed to achieve polarization diversity. E- and H-planes decoupling is achieved between the two patches throughout their bandwidth while maintaining good antenna performance. A prototype of the antenna array and the SRR is fabricated and measured to validate the decoupling approach. With a separation distance of 0.49λ between the patches, the measured S-parameters show an impedance bandwidth of |S11|≤−10 dB, covering 9.27–9.46 GHz, and −38 dB and −35 dB mutual coupling for E- and H-planes, respectively, are observed throughout the antenna operating bandwidth. Full article
Show Figures

Figure 1

14 pages, 2802 KB  
Article
Quasi-Bound States in the Continuum-Enabled Wideband Terahertz Molecular Fingerprint Sensing Using Graphene Metasurfaces
by Jing Zhao and Jiaxian Wang
Nanomaterials 2025, 15(15), 1178; https://doi.org/10.3390/nano15151178 - 30 Jul 2025
Viewed by 1052
Abstract
The unique molecular fingerprint spectral characteristics in the terahertz (THz) band provide distinct advantages for non-destructive and rapid biomolecular detection. However, conventional THz metasurface biosensors still face significant challenges in achieving highly sensitive and precise detection. This study proposes a sensing platform based [...] Read more.
The unique molecular fingerprint spectral characteristics in the terahertz (THz) band provide distinct advantages for non-destructive and rapid biomolecular detection. However, conventional THz metasurface biosensors still face significant challenges in achieving highly sensitive and precise detection. This study proposes a sensing platform based on quasi-bound states in the continuum (Quasi-BIC), which enhances molecular fingerprint recognition through resonance amplification. We designed a symmetric graphene double-split square ring metasurface structure. By modulating the Fermi level of graphene, this system generated continuously tunable Quasi-BIC resonance peaks across a broad THz spectral range, achieving precise spectral overlap with the characteristic absorption lines of lactose (1.19 THz and 1.37 THz) and tyrosine (0.958 THz). The results demonstrated a remarkable 763-fold enhancement in absorption peak intensity through envelope analysis for analytes with 0.1 μm thickness, compared to conventional bare substrate detection. This terahertz BIC metasurface sensor demonstrates high detection sensitivity, holding significant application value in fields such as biomedical diagnosis, food safety, and pharmaceutical testing. Full article
(This article belongs to the Special Issue Advanced Low-Dimensional Materials for Sensing Applications)
Show Figures

Graphical abstract

15 pages, 3286 KB  
Article
Enhanced Sensitivity Microfluidic Microwave Sensor for Liquid Characterization
by Kim Ho Yeap, Kai Bor Tan, Foo Wei Lee, Han Kee Lee, Nuraidayani Effendy, Wei Chun Chin and Pek Lan Toh
Processes 2025, 13(7), 2183; https://doi.org/10.3390/pr13072183 - 8 Jul 2025
Viewed by 1192
Abstract
This paper presents the development and analysis of a planar microfluidic microwave sensor featuring three circular complementary split-ring resonators (CSRRs) fabricated on an RO3035 substrate. The sensor demonstrates enhanced sensitivity in characterizing liquids contained in a fine glass capillary tube by leveraging a [...] Read more.
This paper presents the development and analysis of a planar microfluidic microwave sensor featuring three circular complementary split-ring resonators (CSRRs) fabricated on an RO3035 substrate. The sensor demonstrates enhanced sensitivity in characterizing liquids contained in a fine glass capillary tube by leveraging a novel configuration: a central 5-split-ring CSRR with a drilled hole to suspend the capillary, flanked by two 2-split-ring CSRRs to improve the band-stop filtering effect. The sensor’s performance is benchmarked against another CSRR-based microwave sensor with a similar configuration. High linearity is observed (R2 > 0.99), confirming its capability for precise ethanol concentration prediction. Compared to the replicated square CSRR design from the literature, the proposed sensor achieves a 35.22% improvement in sensitivity, with a frequency shift sensitivity of 567.41 kHz/% ethanol concentration versus 419.62 kHz/% for the reference sensor. The enhanced sensitivity is attributed to several key design strategies: increasing the intrinsic capacitance by enlarging the effective area and radial slot width to amplify edge capacitive effects, adding more split rings to intensify the resonance dip, placing additional CSRRs to improve energy extraction at resonance, and adopting circular CSRRs for superior electric field confinement. Additionally, the proposed design operates at a lower resonant frequency (2.234 GHz), which not only reduces dielectric and radiation losses but also enables the use of more cost-effective and power-efficient RF components. This advantage makes the sensor highly suitable for integration into portable and standalone sensing platforms. Full article
(This article belongs to the Special Issue Development of Smart Materials for Chemical Sensing)
Show Figures

Figure 1

14 pages, 11937 KB  
Article
A Refractive Index-Based Dual-Band Metamaterial Sensor Design and Analysis for Biomedical Sensing Applications
by Lakshmi Darsi and Goutam Rana
Sensors 2025, 25(1), 232; https://doi.org/10.3390/s25010232 - 3 Jan 2025
Cited by 11 | Viewed by 2711
Abstract
We propose herein a metamaterial (MM) dual-band THz sensor for various biomedical sensing applications. An MM is a material engineered to have a particular property that is rarely observed in naturally occurring materials with an aperiodic subwavelength arrangement. MM properties across a wide [...] Read more.
We propose herein a metamaterial (MM) dual-band THz sensor for various biomedical sensing applications. An MM is a material engineered to have a particular property that is rarely observed in naturally occurring materials with an aperiodic subwavelength arrangement. MM properties across a wide range of frequencies, like high sensitivity and quality factors, remain challenging to obtain. MM-based sensors are useful for the in vitro, non-destructive testing (NDT) of samples. The challenge lies in designing a narrow band resonator such that higher sensitivities can be achieved, which in turn allow for the sensing of ultra-low quantities. We propose a compact structure, consisting of a basic single-square split ring resonator (SRR) with an integrated inverted Z-shaped unit cell. The projected structure provides dual-band frequencies resonating at 0.75 THz and 1.01 THz with unity absorption at resonant peaks. The proposed structure exhibits a narrow bandwidth of 0.022 THz and 0.036 THz at resonances. The resonant frequency exhibits a shift in response to variations in the refractive index of the surrounding medium. This enables the detection of various biomolecules, including cancer cells, glucose, HIV-1, and M13 viruses. The refractive index varies between 1.35 and 1.40. Furthermore, the sensor is characterized by its performance, with an average sensitivity of 2.075 THz and a quality factor of 24.35, making it suitable for various biomedical sensing applications. Full article
(This article belongs to the Section Optical Sensors)
Show Figures

Figure 1

11 pages, 853 KB  
Article
A Terahertz Programmable Digital Metasurface Based on Vanadium Dioxide
by Tianrui Pan, Chenxi Liu, Shuang Peng, Haiying Lu, Han Zhang, Xiaoming Xu and Fei Yang
Photonics 2024, 11(6), 527; https://doi.org/10.3390/photonics11060527 - 1 Jun 2024
Cited by 2 | Viewed by 1866
Abstract
Metasurfaces can realize the flexible manipulation of electromagnetic waves, which have the advantages of a low profile and low loss. In particular, the coding metasurface can flexibly manipulate electromagnetic waves through controllable sequence encoding of the coding units to achieve different functions. In [...] Read more.
Metasurfaces can realize the flexible manipulation of electromagnetic waves, which have the advantages of a low profile and low loss. In particular, the coding metasurface can flexibly manipulate electromagnetic waves through controllable sequence encoding of the coding units to achieve different functions. In this paper, a three-layer active coding metasurface is designed based on vanadium dioxide (VO2), which has an excellent phase transition. For the designed unit cell, the top patterned layer is composed of two split square resonant rings (SSRRs), whose gaps are in opposite directions, and each SSRR is composed of gold and VO2. When VO2 changes from the dielectric state to the metal state, the resonant mode changes from microstrip resonance to LC resonance, correspondingly. According to the Pancharatnam-Berry (P-B) phase, the designed metasurface can actively control terahertz circularly polarized waves in the near field. The metasurface can manipulate the order of the generated orbital angular momentum (OAM) beams: when the dielectric VO2 changes to metal VO2, the order l of the OAM beams generated by the metasurface changes from −1 to −2, and the purity of the generated OAM beams is relatively high. It is expected to have important application values in terahertz wireless communication, radar, and other fields. Full article
(This article belongs to the Special Issue Emerging Trends in Metamaterials and Metasurfaces Research)
Show Figures

Figure 1

17 pages, 4739 KB  
Communication
Highly Sensitive Microwave Sensors Based on Open Complementary Square Split-Ring Resonator for Sensing Liquid Materials
by Chandu Ds, K. B. S. Sri Nagini, Rusan Kumar Barik and Slawomir Koziel
Sensors 2024, 24(6), 1840; https://doi.org/10.3390/s24061840 - 13 Mar 2024
Cited by 11 | Viewed by 3859
Abstract
This paper presents high-sensitivity sensors based on an open complementary square split-ring resonator and a modified open complementary split-ring resonator operating at 4.5 GHz and 3.4 GHz, respectively. The sensors are designed for the detection of multiple liquid materials, including distilled water, methanol, [...] Read more.
This paper presents high-sensitivity sensors based on an open complementary square split-ring resonator and a modified open complementary split-ring resonator operating at 4.5 GHz and 3.4 GHz, respectively. The sensors are designed for the detection of multiple liquid materials, including distilled water, methanol, and ethanol. The liquid under test is filled in a glass container loaded using a pipette. Compared to the conventional OCSSRR, the modified OCSSRR with multiple rings exhibits a higher frequency shift of 1200 MHz, 1270 MHz, and 1520 MHz for ethanol, methanol, and distilled water, respectively. The modified sensor also demonstrates a high sensitivity of 308 MHz/RIU for ethanol concentration which is the highest among the existing microwave sensors. The sensors in this manuscript are suitable for multiple liquid-material-sensing applications. Full article
Show Figures

Figure 1

10 pages, 3077 KB  
Article
Dual-Band and Multi-State Polarization Conversion Using aTerahertz Symmetry-Breaking Metadevice
by Yuwang Deng, Qingli Zhou, Xuteng Zhang, Pujing Zhang, Wanlin Liang, Tingyin Ning, Yulei Shi and Cunlin Zhang
Nanomaterials 2023, 13(21), 2844; https://doi.org/10.3390/nano13212844 - 27 Oct 2023
Viewed by 1512
Abstract
We numerically and experimentally demonstrate a terahertz metadevice consisting of split-ring resonators (SRRs) present within square metallic rings. This device can function as a dual-band polarization converter by breaking the symmetry of SRRs. Under x-polarized incidence, the metastructure is able to convert [...] Read more.
We numerically and experimentally demonstrate a terahertz metadevice consisting of split-ring resonators (SRRs) present within square metallic rings. This device can function as a dual-band polarization converter by breaking the symmetry of SRRs. Under x-polarized incidence, the metastructure is able to convert linearly polarized (LP) light into a left-hand circular-polarized (LCP) wave. Intriguingly, under y-polarized incidence, frequency-dependent conversion from LP to LCP and right-hand circular-polarized (RCP) states can be achieved at different frequencies. Furthermore, reconfigurable LCP-to-LP and RCP-to-LP switching can be simulated by integrating the device with patterned graphene and changing its Fermi energy. This dual-band and multi-state polarization control provides an alternative solution to developing compact and multifunctional components in the terahertz regime. Full article
Show Figures

Figure 1

14 pages, 12562 KB  
Article
High-Linearity Wireless Passive Temperature Sensor Based on Metamaterial Structure with Rotation-Insensitive Distance-Based Warning Ability
by Chenying Wang, Luntao Chen, Bian Tian and Zhuangde Jiang
Nanomaterials 2023, 13(17), 2482; https://doi.org/10.3390/nano13172482 - 3 Sep 2023
Cited by 5 | Viewed by 2262
Abstract
A wireless passive temperature sensor based on a metamaterial structure is proposed that is capable of measuring the temperature of moving parts. The sensor structure consists of an alumina ceramic substrate with a square metal double split-ring resonator fixed centrally on the ceramic [...] Read more.
A wireless passive temperature sensor based on a metamaterial structure is proposed that is capable of measuring the temperature of moving parts. The sensor structure consists of an alumina ceramic substrate with a square metal double split-ring resonator fixed centrally on the ceramic substrate. Since the dielectric constant of the alumina ceramic substrate is temperature sensitive, the resonant frequency of the sensor is altered due to changes in temperature. A wireless antenna is used to detect the change in the resonant frequency of the sensor using a wireless antenna, thereby realizing temperature sensing operation of the sensor. The temperature sensitivity of the sensor is determined to be 205.22 kHz/°C with a strong linear response when tested over the temperature range of 25–135 °C, which is evident from the R2 being 0.995. Additionally, the frequency variation in this sensor is insensitive to the angle of rotation and can be used for temperature measurement of rotating parts. The sensor also has a distance warning functionality, which offers additional safety for the user by providing early warning signals when the heating equipment overheats after operating for extended durations. Full article
Show Figures

Figure 1

12 pages, 7656 KB  
Communication
Multiple Fano Resonances in a Metal–Insulator–Metal Waveguide for Nano-Sensing of Multiple Biological Parameters and Tunable Slow Light
by Ruiqi Zhang, He Tian, Yang Liu and Shihang Cui
Photonics 2023, 10(7), 703; https://doi.org/10.3390/photonics10070703 - 21 Jun 2023
Cited by 9 | Viewed by 2354
Abstract
A surface plasmonic waveguide made of metal–insulator–metal (MIM) capable of generating triple Fano resonances is proposed and numerically investigated for multi-biological parameter sensing as well as tunable slow light. The waveguide is made up of a bus waveguide with a silver baffle, a [...] Read more.
A surface plasmonic waveguide made of metal–insulator–metal (MIM) capable of generating triple Fano resonances is proposed and numerically investigated for multi-biological parameter sensing as well as tunable slow light. The waveguide is made up of a bus waveguide with a silver baffle, a square split-ring cavity with a square center (SSRCSC), and a circular ring cavity with a square center (CRCSC). Based on the triple Fano resonances, human blood temperature and plasma concentration are measured simultaneously at different locations in the waveguide, and the maximum sensitivities were 0.25 nm/°C and 0.2 nm·L/g, respectively. Furthermore, the two biological parameters can be used to achieve tunable slow light, and it was found that the group delay responses to human blood temperature and plasma concentration all conformed to cubic functions. The MIM waveguide may have great applications in future nano-sensing of multiple biological parameters and information processing of optical chips or bio-optical chips. Full article
Show Figures

Figure 1

23 pages, 9959 KB  
Article
Microstrip Sensor Based on Ring Resonator Coupled with Double Square Split Ring Resonator for Solid Material Permittivity Characterization
by Khuzairi Masrakin, Siti Zuraidah Ibrahim, Hasliza A. Rahim, Saidatul Norlyana Azemi, Ping Jack Soh and Sugchai Tantiviwat
Micromachines 2023, 14(4), 790; https://doi.org/10.3390/mi14040790 - 31 Mar 2023
Cited by 20 | Viewed by 6181
Abstract
This paper analyzes a microwave resonator sensor based on a square split-ring resonator operating at 5.122 GHz for permittivity characterization of a material under test (MUT). A single-ring square resonator edge (S-SRR) is coupled with several double-split square ring resonators to form the [...] Read more.
This paper analyzes a microwave resonator sensor based on a square split-ring resonator operating at 5.122 GHz for permittivity characterization of a material under test (MUT). A single-ring square resonator edge (S-SRR) is coupled with several double-split square ring resonators to form the structure (D-SRR). The function of the S-SRR is to generate a resonant at the center frequency, whereas D-SRRs function as sensors, with their resonant frequency being very sensitive to changes in the MUT’s permittivity. In a traditional S-SRR, a gap emerges between the ring and the feed line to improve the Q-factor, but the loss increases as a result of the mismatched coupling of the feed lines. To provide adequate matching, the microstrip feed line is directly connected to the single-ring resonator in this article. The S-SRR’s operation switches from passband to stopband by generating edge coupling with dual D-SRRs located vertically on both sides of the S-SRR. The proposed sensor was designed, fabricated, and tested to effectively identify the dielectric properties of three MUTs (Taconic-TLY5, Rogers 4003C, and FR4) by measuring the microwave sensor’s resonant frequency. When the MUT is applied to the structure, the measured findings indicate a change in resonance frequency. The primary constraint of the sensor is that it can only be modeled for materials with a permittivity ranging from 1.0 to 5.0. The proposed sensors’ acceptable performance was achieved through simulation and measurement in this paper. Although the simulated and measured resonance frequencies have shifted, mathematical models have been developed to minimize the difference and obtain greater accuracy with a sensitivity of 3.27. Hence, resonance sensors offer a mechanism for characterizing the dielectric characteristics of varied permittivity of solid materials. Full article
(This article belongs to the Special Issue Advances in Microwave/Millimeter-Wave Devices and Antennas)
Show Figures

Figure 1

23 pages, 12309 KB  
Article
Flexible Metamaterial-Based Frequency Selective Surface with Square and Circular Split Ring Resonators Combinations for X-Band Applications
by Nagandla Prasad, Pokkunuri Pardhasaradhi, Boddapati Taraka Phani Madhav, Sudipta Das, Wahaj Abbas Awan and Niamat Hussain
Mathematics 2023, 11(4), 800; https://doi.org/10.3390/math11040800 - 4 Feb 2023
Cited by 16 | Viewed by 3720
Abstract
To meet the demand for modern communication technology, the development of satellite communications has been consistently investigated. In this article, a rectangle-type SRR is attached to circular-type SRR for obtaining two frequencies in X-band operation. The designed structure exhibits negative metamaterial properties (Epsilon, [...] Read more.
To meet the demand for modern communication technology, the development of satellite communications has been consistently investigated. In this article, a rectangle-type SRR is attached to circular-type SRR for obtaining two frequencies in X-band operation. The designed structure exhibits negative metamaterial properties (Epsilon, mu and refractive index are negative) and the design was fabricated on a polyimide dielectric material with a 10 × 10 mm2 size. The polyimide dielectric material is chosen with a thickness of 0.1 mm and a dielectric constant of 0.0027. The proposed unit cell is designed and simulated by using one of the numerical simulation tools, CSTMW studio, in which the frequency limit is chosen from 7 to 12 GHz. From the results, we can observe that the proposed design resonates at two X-band frequencies at 9.84 GHz and 11.46 GHz and the measurement results of the proposed design resonate at 9.81 GHz and 11.61 GHz. It is worth noting that the simulation and measurement findings both obtain the same X-band frequencies, with only a minor difference in the frequency values. Thus, the recommended design is very much useful for X-band applications. Full article
(This article belongs to the Special Issue Computational Methods in Electromagnetics)
Show Figures

Figure 1

18 pages, 6075 KB  
Article
Rapid Design Optimization and Calibration of Microwave Sensors Based on Equivalent Complementary Resonators for High Sensitivity and Low Fabrication Tolerance
by Tanveerul Haq and Slawomir Koziel
Sensors 2023, 23(2), 1044; https://doi.org/10.3390/s23021044 - 16 Jan 2023
Cited by 20 | Viewed by 4157
Abstract
This paper presents the design, optimization, and calibration of multivariable resonators for microwave dielectric sensors. An optimization technique for the circular complementary split ring resonator (CC-SRR) and square complementary split ring resonator (SC-SRR) is presented to achieve the required transmission response in a [...] Read more.
This paper presents the design, optimization, and calibration of multivariable resonators for microwave dielectric sensors. An optimization technique for the circular complementary split ring resonator (CC-SRR) and square complementary split ring resonator (SC-SRR) is presented to achieve the required transmission response in a precise manner. The optimized resonators are manufactured using a standard photolithographic technique and measured for fabrication tolerance. The fabricated sensor is presented for the high-resolution characterization of dielectric substrates and oil samples. A three-dimensional dielectric container is attached to the sensor and acts as a pool for the sample under test (SUT). In the presented technique, the dielectric substrates and oil samples can interact directly with the electromagnetic (EM) field emitted from the resonator. For the sake of sensor calibration, a relation between the relative permittivity of the dielectric samples and the resonant frequency of the sensor is established in the form of an inverse regression model. Comparisons with state-of-the-art sensors indicate the superiority of the presented design in terms of oil characterization reliability. The significant technical contributions of this work include the employment of the rigorous optimization of geometry parameters of the sensor, leading to its superior performance, and the development and application of the inverse-model-based calibration procedure. Full article
(This article belongs to the Special Issue Microwave Sensors for Industrial Applications)
Show Figures

Figure 1

9 pages, 2330 KB  
Article
Radio Frequency Identification Temperature/CO2 Sensor Using Carbon Nanotubes
by Ayesha Habib, Safia Akram, Mohamed R. Ali, Taseer Muhammad, Sajeela Zainab and Shafia Jehangir
Nanomaterials 2023, 13(2), 273; https://doi.org/10.3390/nano13020273 - 9 Jan 2023
Cited by 14 | Viewed by 2961
Abstract
In the world of digitization, different objects cooperate with the Internet of Things (IoT); these objects also amplify using sensing and data processing structures. Radio frequency identification (RFID) has been identified as a key enabler technology for IoT. RFID technology has been used [...] Read more.
In the world of digitization, different objects cooperate with the Internet of Things (IoT); these objects also amplify using sensing and data processing structures. Radio frequency identification (RFID) has been identified as a key enabler technology for IoT. RFID technology has been used in different conventional applications for security, goods storage, transportation and asset management. In this paper, a fully inkjet-printed chipless radio frequency identification (RFID) sensor tag is presented for the wireless identification of tagged objects. The dual polarized tag consists of two resonating structures functioning wirelessly. One resonator works for encoding purpose and other resonator is used as a CO2/temperature sensor. The sensing behavior of the tag relies on the integration of a meandered structure comprising of multi-wall carbon nanotubes (MWCNT). The MWCNT is highly sensitive to CO2 gas. The backscattered response of the square-shaped cascaded split ring resonators (SRR) is analyzed through a radar cross-section (RCS) curve. The overall tag dimension is 42.1 mm × 19.5 mm. The sensing performance of the tag is examined and optimized for two different flexible substrates, i.e., PET and Kapton®HN. The flexible tag structure has the capability to transmit 5-bit data in the frequency bands of 2.36–3.9 GHz and 2.37–3.89 GHz, for PET and Kapton®HN, respectively. The proposed chipless RFID sensor tag does not require any microchip or a power source, so it has a great potential for low-cost and automated temperature/CO2 sensing applications. Full article
(This article belongs to the Special Issue Gas Sensor Based on Carbon Nanomaterials)
Show Figures

Figure 1

Back to TopTop