Multiple Fano Resonances in a Metal–Insulator–Metal Waveguide for Nano-Sensing of Multiple Biological Parameters and Tunable Slow Light
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Mechanism of Fano Resonance and Distribution of Magnetic Fields
3.2. Refractive Index Sensing
3.3. Multi-Biological Parameter Sensing
3.4. Tunable Slow Light
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fano, U. Effects of Configuration Interaction on Intensities and Phase Shifts. Phys. Rev. 1961, 124, 1866–1878. [Google Scholar] [CrossRef]
- Dai, X.; Ruan, B.; Xiang, Y. Self-Referenced Refractive Index Biosensing with Graphene Fano Resonance Modes. Biosensors 2021, 11, 400. [Google Scholar] [CrossRef]
- Limonov, M.F.; Rybin, M.V.; Poddubny, A.N.; Kivshar, Y.S. Fano resonances in photonics. Nat. Photonics 2017, 11, 543–554. [Google Scholar] [CrossRef]
- Luk’yanchuk, B.; Zheludev, N.I.; Maier, S.A.; Halas, N.J.; Nordlander, P.; Giessen, H.; Chong, C.T. The Fano resonance in plasmonic nanostructures and metamaterials. Nat. Mater. 2010, 9, 707–715. [Google Scholar] [CrossRef]
- Wan, F.; Qian, G.; Li, R.; Tang, J.; Zhang, T. High sensitivity optical waveguide accelerometer based on Fano resonance. Appl. Opt. 2016, 55, 6644–6648. [Google Scholar] [CrossRef]
- Li, J.; Chen, J.; Liu, X.; Tian, H.; Wang, J.; Cui, J.; Rohimah, S. Optical sensing based on multimode Fano resonances in metal-insulator-metal waveguide systems with X-shaped resonant cavities. Appl. Opt. 2021, 60, 5312–5319. [Google Scholar] [CrossRef] [PubMed]
- Ziauddin, J.R.; Chaung, Y.-L.; Rahmatullah. Tunable Fano resonances via optomechanical effect and gain -loss ratio in coupled microresonators. Laser Phys. 2018, 28, 116003. [Google Scholar] [CrossRef]
- Li, J.; Yu, R.; Wu, Y. Actively tunable double-Fano and Ramsey-Fano resonances in photonic molecules and improved sensing performance. Phys. Rev. A 2016, 94, 063822. [Google Scholar] [CrossRef]
- Deng, Y.; Cao, G.; Yang, H. Tunable Fano resonance and high-sensitivity sensor with high figure of merit in plasmonic coupled cavities. Photonics Nanostruct. Fundam. Appl. 2018, 28, 45–51. [Google Scholar] [CrossRef]
- Liu, G.; Cheng, D.; Zhang, B.; Shu, G.; Wang, J. A microwave biosensor based on spoof surface plasmon polaritons for in vivo measurement of the water content of human skin tissues. J. Phys. D Appl. Phys. 2019, 52, 205401. [Google Scholar] [CrossRef]
- Chen, Z.-Q.; Yin, Z.-X.; Xia, G.-Q.; Hong, L.-L.; Hu, Y.-L.; Liu, M.-H.; Hu, X.-W.; Kudryavtsev, A.A. Pulsed microwave-driven argon plasma jet with distinctive plume patterns resonantly excited by surface plasmon polaritons. Chin. Phys. B 2015, 24, 025203. [Google Scholar] [CrossRef]
- Balevicius, Z. Photonic Sensors in Chemical and Biological Applications. Biosensors 2022, 12, 1021. [Google Scholar] [CrossRef] [PubMed]
- Tong, L.; Wei, H.; Zhang, S.; Xu, H. Recent Advances in Plasmonic Sensors. Sensors 2014, 14, 7959–7973. [Google Scholar] [CrossRef] [Green Version]
- Xia, S.; Zhai, X.; Wang, L.; Wen, S. Plasmonically induced transparency in double-layered graphene nanoribbons. Photonics Res. 2018, 6, 692–702. [Google Scholar] [CrossRef]
- Ruffato, G.; Pasqualotto, E.; Sonato, A.; Zacco, G.; Silvestri, D.; Morpurgo, M.; De Toni, A.; Romanato, F. Implementation and testing of a compact and high-resolution sensing device based on grating-coupled surface plasmon resonance with polarization modulation. Sens. Actuators B Chem. 2013, 185, 179–187. [Google Scholar] [CrossRef]
- Wang, Y.; Jia, S.; Qin, J. Tunable Fano Resonance and Enhanced Sensing in Terahertz Metamaterial. Front. Phys. 2021, 8, 605125. [Google Scholar] [CrossRef]
- Choi, H.; Pile, D.F.P.; Nam, S.; Bartal, G.; Zhang, X. Compressing surface plasmons for nano-scale optical focusing. Opt. Express 2009, 17, 7519–7524. [Google Scholar] [CrossRef] [Green Version]
- Rohimah, S.; Tian, H.; Wang, J.; Chen, J.; Li, J.; Liu, X.; Cui, J.; Hao, Y. Tunable multiple Fano resonances based on a plasmonic metal-insulator-metal structure for nano-sensing and plasma blood sensing applications. Appl. Opt. 2022, 61, 1275–1283. [Google Scholar] [CrossRef]
- Kong, Y.; Cao, J.; Qian, W.; Liu, C.; Wang, S. Multiple Fano Resonance Based Optical Refractive Index Sensor Composed Of Micro-Cavity and Micro-Structure. IEEE Photonics J. 2018, 10, 6804410. [Google Scholar] [CrossRef]
- Zhang, D.; Cheng, L.; Shen, Z. Formation Laws of Direction of Fano Line-Shape in a Ring MIM Plasmonic Waveguide Side-Coupled with a Rectangular Resonator and Nano-Sensing Analysis of Multiple Fano Resonances. Crystals 2021, 11, 819. [Google Scholar] [CrossRef]
- Chen, J.; Li, J.; Liu, X.; Rohimah, S.; Tian, H.; Qi, D. Fano resonance in a MIM waveguide with double symmetric rectangular stubs and its sensing characteristics. Opt. Commun. 2021, 482, 126563. [Google Scholar] [CrossRef]
- Xia, S.; Zhai, X.; Wang, L.; Xiang, Y.; Wen, S. Plasmonically induced transparency in phase-coupled graphene nanoribbons. Phys. Rev. B 2022, 106, 075401. [Google Scholar] [CrossRef]
- Wang, T.-B.; Wen, X.-W.; Yin, C.-P.; Wang, H.-Z. The transmission characteristics of surface plasmon polaritons in ring resonator. Opt. Express 2009, 17, 24096–24101. [Google Scholar] [CrossRef]
- Park, J.; Kim, H.; Lee, B. High order plasmonic Bragg reflection in the metal-insulator-metal waveguide Bragg grating. Opt. Express 2008, 16, 413–425. [Google Scholar] [CrossRef]
- Rohimah, S.; Tian, H.; Wang, J.; Chen, J.; Li, J.; Liu, X.; Cui, J.; Xu, Q.; Hao, Y. Fano Resonance in the Plasmonic Structure of MIM Waveguide with r-Shaped Resonator for Refractive Index Sensor. Plasmonics 2022, 17, 1681–1689. [Google Scholar] [CrossRef]
- Wu, T.; Liu, Y.; Yu, Z.; Peng, Y.; Shu, C.; Ye, H. The sensing characteristics of plasmonic waveguide with a ring resonator. Opt. Express 2014, 22, 7669–7677. [Google Scholar] [CrossRef]
- Zhang, Q.; Huang, X.-G.; Lin, X.-S.; Tao, J.; Jin, X.-P. A subwavelength coupler-type MIM optical filter. Opt. Express 2009, 17, 7549–7555. [Google Scholar] [CrossRef]
- Lin, X.-S.; Huang, X.-G. Tooth-shaped plasmonic waveguide filters with nanometeric sizes. Opt. Lett. 2008, 33, 2874–2876. [Google Scholar] [CrossRef] [Green Version]
- Yun, B.; Hu, G.; Cui, Y. Theoretical analysis of a nanoscale plasmonic filter based on a rectangular metal-insulator-metal waveguide. J. Phys. D Appl. Phys. 2010, 43, 385102. [Google Scholar] [CrossRef]
- Feng, C.; Ying, Z.; Zhao, Z.; Gu, J.; Pan, D.Z.; Chen, R.T. Wavelength-division-multiplexing (WDM)-based integrated electronic-photonic switching network (EPSN) for high-speed data processing and transportation. Nanophotonics 2020, 9, 4579–4588. [Google Scholar] [CrossRef]
- Liu, X.; Li, J.; Chen, J.; Rohimah, S.; Tian, H.; Wang, J. Fano resonance based on D-shaped waveguide structure and its application for human hemoglobin detection. Appl. Opt. 2020, 59, 6424–6430. [Google Scholar] [CrossRef]
- Petrovszki, D.; Krekic, S.; Valkai, S.; Heiner, Z.; Der, A. All-Optical Switching Demonstrated with Photoactive Yellow Protein Films. Biosensors 2021, 11, 432. [Google Scholar] [CrossRef]
- Jiang, C.; Jiang, L.; Yu, H.; Cui, Y.; Li, X.; Chen, G. Fano resonance and slow light in hybrid optomechanics mediated by a two-level system. Phys. Rev. A 2017, 96, 053821. [Google Scholar] [CrossRef]
- Yi, X.; Tian, J.; Yang, R. Tunable Fano resonance in MDM plasmonic waveguide with a T-shaped resonator coupled to ring resonator. Mater. Res. Express 2019, 6, 035021. [Google Scholar] [CrossRef]
- Liu, Y.; Tian, H.; Zhang, X.; Wang, M.; Hao, Y. Quadruple Fano resonances in MIM waveguide structure with ring cavities for multisolution concentration sensing. Appl. Opt. 2022, 61, 10548–10555. [Google Scholar] [CrossRef]
- Liang, Z.; Wen, Y.; Zhang, Z.; Liang, Z.; Xu, Z.; Lin, Y.-S. Plasmonic metamaterial using metal-insulator-metal nanogratings for high-sensitive refraction index sensor. Results Phys. 2019, 15, 102602. [Google Scholar] [CrossRef]
- Rakhshani, M.R.; Mansouri-Birjandi, M.A. High-Sensitivity Plasmonic Sensor Based on Metal-Insulator-Metal Waveguide and Hexagonal-Ring Cavity. IEEE Sens. J. 2016, 16, 3041–3046. [Google Scholar] [CrossRef]
- Chen, J.; Lian, X.; Zhao, M.; Xie, C. Multimode Fano Resonances Sensing Based on a Non-Through MIM Waveguide with a Square Split-Ring Resonance Cavity. Biosensors 2022, 12, 306. [Google Scholar] [CrossRef]
- Qi, J.; Chen, Z.; Chen, J.; Li, Y.; Qiang, W.; Xu, J.; Sun, Q. Independently tunable double Fano resonances in asymmetric MIM waveguide structure. Opt. Express 2014, 22, 14688–14695. [Google Scholar] [CrossRef] [PubMed]
- Fang, Y.; Wen, K.; Qin, Y.; Li, Z.; Wu, B. Multiple fano resonances in an end-coupled MIM waveguide system. Opt. Commun. 2019, 452, 12–17. [Google Scholar] [CrossRef]
- Wang, M.; Tian, H.; Liu, X.; Li, J.; Liu, Y. Multiparameter Sensing Based on Tunable Fano Resonances in MIM Waveguide Structure with Square-Ring and Triangular Cavities. Photonics 2022, 9, 291. [Google Scholar] [CrossRef]
- Duc Duy, N.; Zhao, S. A new high order dispersive FDTD method for Drude material with complex interfaces. J. Comput. Appl. Math. 2015, 285, 1–14. [Google Scholar] [CrossRef]
- Gugger, H.; Jurich, M.; Swalen, J.D.; Sievers, A.J. Reply to “Comment on ‘Observation of an index-of-refraction-induced change in the Drude parameters of Ag films’”. Phys. Rev. B Condens. Matter 1986, 34, 1322–1324. [Google Scholar] [CrossRef] [PubMed]
- Wen, K.; Chen, L.; Zhou, J.; Lei, L.; Fang, Y. A Plasmonic Chip-Scale Refractive Index Sensor Design Based on Multiple Fano Resonances. Sensors 2018, 18, 3181. [Google Scholar] [CrossRef] [Green Version]
- Dong, S.; Liu, H.; Zheng, Y.; Zhang, J.; Xia, S.; Dong, C.; Shen, K.; Deng, C.; Luo, W.; Su, M.; et al. Numerical study on the biosensing in mid-infrared based on multiple Fano-resonance plasmonic waveguide. Optik 2022, 270, 170042. [Google Scholar] [CrossRef]
- Wang, Q.; Ouyang, Z.; Lin, M.; Liu, Q. Independently Tunable Fano Resonances Based on the Coupled Hetero-Cavities in a Plasmonic MIM System. Materials 2018, 11, 1675. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Li, J.; Chen, J.; Rohimah, S.; Tian, H.; Wang, J. Independently tunable triple Fano resonances based on MIM waveguide structure with a semi-ring cavity and its sensing characteristics. Opt. Express 2021, 29, 20829–20838. [Google Scholar] [CrossRef]
- Al-Naib, I. Terahertz Asymmetric S-Shaped Complementary Metasurface Biosensor for Glucose Concentration. Biosensors 2022, 12, 609. [Google Scholar] [CrossRef]
- Zhang, Y.; Kuang, Y.; Zhang, Z.; Tang, Y.; Han, J.; Wang, R.; Cui, J.; Hou, Y.; Liu, W. High-sensitivity refractive index sensors based on Fano resonance in the plasmonic system of splitting ring cavity-coupled MIM waveguide with tooth cavity. Appl. Phys. A 2019, 125, 13. [Google Scholar] [CrossRef]
- Chen, Z.; Cao, X.; Song, X.; Wang, L.; Yu, L. Side-Coupled Cavity-Induced Fano Resonance and Its Application in Nanosensor. Plasmonics 2016, 11, 307–313. [Google Scholar] [CrossRef]
- Xiao, G.; Xu, Y.; Yang, H.; Ou, Z.; Chen, J.; Li, H.; Liu, X.; Zeng, L.; Li, J. High Sensitivity Plasmonic Sensor Based on Fano Resonance with Inverted U-Shaped Resonator. Sensors 2021, 21, 1164. [Google Scholar] [CrossRef]
- Wen, K.; Hu, Y.; Chen, L.; Zhou, J.; He, M.; Lei, L.; Meng, Z.; Wu, Y.; Li, J. Fano Resonance Based on End-Coupled Cascaded-Ring MIM Waveguides Structure. Plasmonics 2017, 12, 1875–1880. [Google Scholar] [CrossRef]
- Rakhshani, M.R. Refractive index sensor based on concentric triple racetrack resonators side-coupled to metal-insulator-metal waveguide for glucose sensing. J. Opt. Soc. Am. B Opt. Phys. 2019, 36, 2834–2842. [Google Scholar] [CrossRef]
- Yahya, M.; Saghir, M.Z. Empirical modelling to predict the refractive index of human blood. Phys. Med. Biol. 2016, 61, 1405–1415. [Google Scholar] [CrossRef] [PubMed]
- El-Khozondar, H.J.; Mahalakshmi, P.; El-Khozondar, R.J.; Ramanujam, N.R.; Amiri, I.S.; Yupapin, P. Design of one dimensional refractive index sensor using ternary photonic crystal waveguide for plasma blood samples applications. Phys. E Low Dimens. Syst. Nanostruct. 2019, 111, 29–36. [Google Scholar] [CrossRef]
Parameter | Symbol | Quantity | Unit |
---|---|---|---|
Length of the side of the external square of the SSRCSC | 440 | nm | |
Split length of SSRCSC | 10 | nm | |
Length of the side of the internal square of the SSRCSC | 300 | nm | |
The separation between the bus waveguide and the SSRCSC | 10 | nm | |
The radius of the external circle of the CRCSC | 110 | nm | |
Length of the side of the internal square of the CRCSC | 140 | nm | |
The separation between the bus waveguide and the CRCSC | 10 | nm | |
The size of the bus waveguide | 50 | nm | |
The size of the bus waveguide’s silver baffle | 10 | nm | |
Index of refractive of bus waveguide | 1 | ||
Index of refractive of SSRCSC | 1 | ||
Index of refractive of CRCSC | 1 |
Reference | Waveguide | Sensitivity |
---|---|---|
[6] | Baffle and an X-shaped cavity make up the MIM waveguide | 1303 nm/RIU |
[38] | MIM waveguide containing a rectangular split-ring resonance cavity | 1290.2 nm/RIU |
[47] | MIM waveguide containing a semi-ring cavity | 1550.38 nm/RIU |
[49] | MIM waveguide containing ring-splitting cavity and tooth cavity coupling | 1200 nm/RIU |
[50] | MIM waveguide-coupled structure-based simple and small plasmonic sensor | 1820 nm/RIU |
[51] | Inverted U-shaped resonator | 840 nm/RIU |
[52] | A MIM waveguide with an end-coupled ring-groove junction | 1050 nm/RIU |
[53] | Three-racetrack resonators in two concentric rings with plasmonic MIM waveguides | 1618 nm/RIU |
This paper | MIM waveguide consisting of square split-ring and circular ring cavities | 2453.33 nm/RIU |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, R.; Tian, H.; Liu, Y.; Cui, S. Multiple Fano Resonances in a Metal–Insulator–Metal Waveguide for Nano-Sensing of Multiple Biological Parameters and Tunable Slow Light. Photonics 2023, 10, 703. https://doi.org/10.3390/photonics10070703
Zhang R, Tian H, Liu Y, Cui S. Multiple Fano Resonances in a Metal–Insulator–Metal Waveguide for Nano-Sensing of Multiple Biological Parameters and Tunable Slow Light. Photonics. 2023; 10(7):703. https://doi.org/10.3390/photonics10070703
Chicago/Turabian StyleZhang, Ruiqi, He Tian, Yang Liu, and Shihang Cui. 2023. "Multiple Fano Resonances in a Metal–Insulator–Metal Waveguide for Nano-Sensing of Multiple Biological Parameters and Tunable Slow Light" Photonics 10, no. 7: 703. https://doi.org/10.3390/photonics10070703
APA StyleZhang, R., Tian, H., Liu, Y., & Cui, S. (2023). Multiple Fano Resonances in a Metal–Insulator–Metal Waveguide for Nano-Sensing of Multiple Biological Parameters and Tunable Slow Light. Photonics, 10(7), 703. https://doi.org/10.3390/photonics10070703