Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (5,330)

Search Parameters:
Keywords = square root measurement

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 2018 KB  
Article
A Universal Method for Identifying and Correcting Induced Heave Error in Multi-Beam Bathymetric Surveys
by Xiaohan Yu, Yang Cui, Jintao Feng, Shaohua Jin, Na Chen and Yuan Wei
Sensors 2026, 26(2), 618; https://doi.org/10.3390/s26020618 - 16 Jan 2026
Abstract
Addressing the difficulty of intuitively identifying and effectively correcting induced heave error in multibeam measurements, this paper proposes a two-stage methodology comprising error identification and correction. This scheme includes an error discrimination method based on regression diagnostics and an error correction method based [...] Read more.
Addressing the difficulty of intuitively identifying and effectively correcting induced heave error in multibeam measurements, this paper proposes a two-stage methodology comprising error identification and correction. This scheme includes an error discrimination method based on regression diagnostics and an error correction method based on Partial Least Squares Regression (PLSR). By establishing a mathematical model between bathymetric discrepancies and attitude parameters, statistical diagnosis and effective identification of the error are achieved. To further mitigate the impact of induced heave error on bathymetric data, an elimination model based on PLSR is developed, enabling high-precision prediction and compensation of the induced heave error. Validation using field survey data demonstrates that this method can effectively estimate the installation offset parameters of the attitude sensor. After correction, the root mean square of bathymetric discrepancies between adjacent survey lines is reduced by approximately 78.8%, periodic stripe-shaped distortions along the track direction are essentially eliminated, and the quality of terrain mosaicking is significantly improved. This provides an effective solution for controlling induced heave error under complex topographic conditions. Full article
18 pages, 1383 KB  
Article
Development of Low-Power Forest Fire Water Bucket Liquid Level and Fire Situation Monitoring Device
by Xiongwei Lou, Shihong Chen, Linhao Sun, Xinyu Zheng, Siqi Huang, Chen Dong, Dashen Wu, Hao Liang and Guangyu Jiang
Forests 2026, 17(1), 126; https://doi.org/10.3390/f17010126 - 16 Jan 2026
Abstract
A portable and integrated monitoring device was developed to digitally assess both water levels and surrounding fire-related conditions in forest firefighting water buckets using multi-sensor fusion. The system integrates a hydrostatic liquid-level sensor with temperature–humidity and smoke sensors. Validation was performed through field-oriented [...] Read more.
A portable and integrated monitoring device was developed to digitally assess both water levels and surrounding fire-related conditions in forest firefighting water buckets using multi-sensor fusion. The system integrates a hydrostatic liquid-level sensor with temperature–humidity and smoke sensors. Validation was performed through field-oriented experiments conducted under semi-controlled conditions. Water-level measurements were collected over a three-month period under simulated forest conditions and benchmarked against conventional steel-ruler readings. Early-stage fire monitoring experiments were carried out using dry wood and leaf litter under varying wind speeds, wind directions, and representative extreme weather conditions. The device achieved a mean water-level bias of −0.60%, a root-mean-square error of 0.64%, and an overall accuracy of 99.36%. Fire monitoring reached a maximum detection distance of 7.30 m under calm conditions and extended to 16.50 m under strong downwind conditions, with performance decreasing toward crosswind directions. Stable operation was observed during periods of strong winds associated with typhoon events, as well as prolonged high-temperature exposure. The primary novelty of this work lies in the conceptualization of a Collaborative Forest Resource–Hazard Monitoring Architecture. Unlike traditional isolated sensors, our proposed framework utilizes a dual-domain decision-making model that simultaneously assesses water-bucket storage stability and micro-scale fire threats. By implementing a robust ‘sensing–logic–alert’ framework tailored for rugged environments, this study offers a new methodological reference for the intelligent management of forest firefighting resources. Full article
24 pages, 5886 KB  
Article
Bayesian Model Averaging Method for Merging Multiple Precipitation Products over the Arid Region of Northwest China
by Yong Yang, Rensheng Chen, Xinyu Lu, Weiyi Mao, Zhangwen Liu and Xueliang Wang
Atmosphere 2026, 17(1), 94; https://doi.org/10.3390/atmos17010094 - 16 Jan 2026
Abstract
Accurate precipitation estimation is essential for hydrological modeling and water resource management in arid regions; however, complex terrain and sparse meteorological station networks introduce substantial uncertainties into gridded precipitation datasets. This study evaluates the performance of nine widely used precipitation products in the [...] Read more.
Accurate precipitation estimation is essential for hydrological modeling and water resource management in arid regions; however, complex terrain and sparse meteorological station networks introduce substantial uncertainties into gridded precipitation datasets. This study evaluates the performance of nine widely used precipitation products in the arid region of Northwest China (ARNC) at both the meteorological station scale and the sub-basin scale, and applies the Bayesian Model Averaging (BMA) approach to merge multi-source precipitation estimates. The results reveal pronounced spatial heterogeneity and significant differences in performance among datasets, with the Integrated Multi-Satellite Retrievals for the Global Precipitation Measurement mission performing best at the station scale and the Famine Early Warning Systems Network Land Data Assimilation System performing best at the sub-basin scale. Compared with individual products, the BMA-merged precipitation demonstrates substantial improvements at both scales, providing higher coefficients of determination and agreement indices, and lower relative mean absolute error and relative root mean square error, indicating enhanced accuracy and robustness. The BMA-merged precipitation product generally exhibits superior and more spatially consistent performance than the individual datasets across the ARNC, thereby providing a more reliable basis for regional hydrological and climate-related applications. The merged dataset shows that the mean annual precipitation in the ARNC during 2000–2024 is approximately 230.4 mm, exhibiting a statistically significant increasing trend of 1.4 mm per year, with the strongest increases occurring in the Tianshan and Qilian Mountains. This study provides a reliable foundation for hydrological modeling and climate-change assessments in data-limited arid environments. Full article
(This article belongs to the Section Meteorology)
23 pages, 5058 KB  
Article
Research on State of Health Assessment of Lithium-Ion Batteries Using Actual Measurement Data Based on Hybrid LSTM–Transformer Model
by Hanyu Zhang and Jifei Wang
Symmetry 2026, 18(1), 169; https://doi.org/10.3390/sym18010169 - 16 Jan 2026
Abstract
An accurate assessment of the state of health (SOH) of lithium-ion batteries (LIBs) is crucial for ensuring the safety and reliability of energy storage systems and electric vehicles. However, existing methods face challenges: physics-based models are computationally complex, traditional data-driven methods rely heavily [...] Read more.
An accurate assessment of the state of health (SOH) of lithium-ion batteries (LIBs) is crucial for ensuring the safety and reliability of energy storage systems and electric vehicles. However, existing methods face challenges: physics-based models are computationally complex, traditional data-driven methods rely heavily on manual feature engineering, and single models lack the ability to capture both local and global degradation patterns. To address these issues, this paper proposes a novel hybrid LSTM–Transformer model for LIB SOH estimation using actual measurement data. The model integrates Long Short-Term Memory (LSTM) networks to capture local temporal dependencies with the Trans-former architecture to model global degradation trends through self-attention mechanisms. Experimental validation was conducted using eight 18650 Nickel Cobalt Manganese (NCM) LIBs subjected to 750 charge–discharge cycles under room temperature conditions. Sixteen statistical features were extracted from voltage and current data during constant current–constant voltage (CC-CV) phases, with feature selection based on the Pearson correlation coefficient and maximum information coefficient analysis. The proposed LSTM–Transformer model demonstrated superior performance compared to the standalone LSTM and Transformer models, achieving a mean absolute error (MAE) as low as 0.001775, root mean square error (RMSE) of 0.002147, and mean absolute percentage error (MAPE) of 0.196% for individual batteries. Core features including cumulative charge (CC Q), charging time, and voltage slope during the constant current phase showed a strong correlation with the SOH (absolute PCC > 0.8). The hybrid model exhibited excellent generalization across different battery cells with consistent error distributions and nearly overlapping prediction curves with actual SOH trajectories. The symmetrical LSTM–Transformer hybrid architecture provides an accurate, robust, and generalizable solution for LIB SOH assessment, effectively overcoming the limitations of traditional methods while offering potential for real-time battery management system applications. This approach enables health feature learning without manual feature engineering, representing an advancement in data-driven battery health monitoring. Full article
(This article belongs to the Section Engineering and Materials)
Show Figures

Figure 1

25 pages, 2339 KB  
Article
An Operational Ground-Based Vicarious Radiometric Calibration Method for Thermal Infrared Sensors: A Case Study of GF-5A WTI
by Jingwei Bai, Yunfei Bao, Guangyao Zhou, Shuyan Zhang, Hong Guan, Mingmin Zhang, Yongchao Zhao and Kang Jiang
Remote Sens. 2026, 18(2), 302; https://doi.org/10.3390/rs18020302 - 16 Jan 2026
Abstract
High-resolution TIR missions require sustained and well-characterized radiometric accuracy to support applications such as land surface temperature retrieval, drought monitoring, and surface energy budget analysis. To address this need, we develop an operational and automated ground-based vicarious radiometric calibration framework for TIR sensors [...] Read more.
High-resolution TIR missions require sustained and well-characterized radiometric accuracy to support applications such as land surface temperature retrieval, drought monitoring, and surface energy budget analysis. To address this need, we develop an operational and automated ground-based vicarious radiometric calibration framework for TIR sensors and demonstrate its performance using the Wide-swath Thermal Infrared Imager (WTI) onboard Gaofen-5 01A (GF-5A). Three arid Gobi calibration sites were selected by integrating Moderate Resolution Imaging Spectroradiometer (MODIS) cloud products, Shuttle Radar Topography Mission (SRTM)-derived topography, and WTI-based radiometric uniformity metrics to ensure low cloud cover, flat terrain, and high spatial homogeneity. Automated ground stations deployed at Golmud, Dachaidan, and Dunhuang have continuously recorded 1 min contact surface temperature since October 2023. Field-measured emissivity spectra, Integrated Global Radiosonde Archive (IGRA) radiosonde profiles, and MODTRAN (MODerate resolution atmospheric TRANsmission) v5.2 simulations were combined to compute top-of-atmosphere (TOA) radiances, which were subsequently collocated with WTI imagery. After data screening and gain-stratified regression, linear calibration coefficients were derived for each TIR band. Based on 189 scenes from February–July 2024, all four bands exhibit strong linearity (R-squared greater than 0.979). Validation using 45 independent scenes yields a mean brightness–temperature root-mean-square error (RMSE) of 0.67 K. A full radiometric-chain uncertainty budget—including contact temperature, emissivity, atmospheric profiles, and radiative transfer modeling—results in a combined standard uncertainty of 1.41 K. The proposed framework provides a low-maintenance, traceable, and high-frequency solution for the long-term on-orbit radiometric calibration of GF-5A WTI and establishes a reproducible pathway for future TIR missions requiring sustained calibration stability. Full article
(This article belongs to the Special Issue Radiometric Calibration of Satellite Sensors Used in Remote Sensing)
Show Figures

Figure 1

20 pages, 2313 KB  
Article
Estimating Carbon Sequestration of Urban Street Trees Using UAV-Derived 3D Green Quantity and the Simpson Model
by Xiaoxiao Ma and Tianyi Liu
Forests 2026, 17(1), 125; https://doi.org/10.3390/f17010125 - 16 Jan 2026
Abstract
Accurately measuring the three-dimensional green quantity (3DGQ) of urban trees is crucial for quantifying carbon sequestration benefits (CSB) in high-density cities. In this study, 540 street trees across 18 species (30 per species) in Shanghai were analyzed to evaluate an Improved Simpson Model [...] Read more.
Accurately measuring the three-dimensional green quantity (3DGQ) of urban trees is crucial for quantifying carbon sequestration benefits (CSB) in high-density cities. In this study, 540 street trees across 18 species (30 per species) in Shanghai were analyzed to evaluate an Improved Simpson Model (ISM) for UAV-derived crown volume estimation against a traditional Approximate Geometry Model (AGM) and a LiDAR-based point cloud method (PCM). The ISM integrates UAV imagery, edge-based canopy profiling, and Simpson’s numerical integration to account for irregular crown shapes and internal leaf-stem gaps. Results show that ISM achieved consistently lower estimation errors than the benchmark methods. Overall, ISM’s 3DGQ estimates had a root mean square error (RMSE) of approximately 5.2 m3 and a mean absolute error (MAE) of about 4.1 m3, indicating a close match with PCM reference values. This represents a dramatic error reduction, on the order of 90%–95% improvement in RMSE, compared to the conventional AGM approach. Broadleaf species with dense, regular canopies (e.g., Cinnamomum camphora and Platanus × acerifolia) exhibited the highest accuracy, with ISM-predicted volumes deviating only ~1%–2% from field measurements. Even for species with more irregular or porous crowns, the ISM maintained robust performance, yielding smaller errors than AGM and nearly matching the LiDAR-based PCM “ground truth.” These findings demonstrate that the proposed ISM can provide highly accurate 3D crown volume and carbon sequestration estimates in complex urban environments, outperforming existing geometric models and offering a practical, efficient alternative to labor-intensive LiDAR surveys. Full article
Show Figures

Figure 1

23 pages, 3909 KB  
Article
Development and Application of a “Decomposition–Denoising”-Based Vibration-Signal Denoising System for Radial Steel Gates Under Discharge Excitation
by Chen Wang, Yakun Liu, Wenqi Wang, Yuan Wang, Di Zhang and Kaixuan Zhang
Appl. Sci. 2026, 16(2), 929; https://doi.org/10.3390/app16020929 - 16 Jan 2026
Abstract
To mitigate the pervasive noise interference present in the measured vibration signals of radial steel gates and to address the limitations of conventional wavelet-threshold denoising, this study proposes a coupled “decomposition–denoising” theoretical framework for vibration-signal purification. The key novelty lies in a smooth [...] Read more.
To mitigate the pervasive noise interference present in the measured vibration signals of radial steel gates and to address the limitations of conventional wavelet-threshold denoising, this study proposes a coupled “decomposition–denoising” theoretical framework for vibration-signal purification. The key novelty lies in a smooth and tunable thresholding strategy that enables controlled filtering while preserving key structural characteristics within an integrated denoising workflow. In the proposed approach, the measured signal is decomposed into intrinsic mode components using a data-driven decomposition method, noise-dominated components are identified using multiscale permutation entropy, and only these components are selectively denoised before signal reconstruction. Both qualitative and quantitative analyses conducted on synthetic signals demonstrate the effectiveness of the proposed framework and confirm the enhanced smoothness and robustness of the improved thresholding scheme. Performance is evaluated using objective measures such as signal-to-noise ratio and root-mean-square error, together with spectral-consistency checks for field measurements. Furthermore, two field-measured engineering cases involving radial steel gates substantiate the engineering applicability and generalization capability of the proposed method, showing clearer signals and more stable diagnostic-relevant indicators. Finally, the study integrates the decomposition, denoising, and parameter-selection modules into a user-oriented vibration-signal denoising system, establishing an efficient workflow for engineering signal processing and subsequent structural-health monitoring applications. Full article
(This article belongs to the Special Issue Novel Advances in Noise and Vibration Control)
Show Figures

Figure 1

29 pages, 8973 KB  
Article
High-Resolution Daily Evapotranspiration Estimation in Arid Agricultural Regions Based on Remote Sensing via an Improved PT-JPL and CUWFM Fusion Framework
by Hongwei Liu, Xiaoqin Wang, Hongyu Zhang, Mengmeng Li and Qunyong Wu
Remote Sens. 2026, 18(2), 291; https://doi.org/10.3390/rs18020291 - 15 Jan 2026
Abstract
Evapotranspiration (ET) plays a crucial role in the terrestrial water cycle, especially in arid and semi-arid agricultural regions where precise water management is essential. However, the limited spatial resolution and temporal frequency of existing ET products hinder their application in fine-scale agricultural monitoring. [...] Read more.
Evapotranspiration (ET) plays a crucial role in the terrestrial water cycle, especially in arid and semi-arid agricultural regions where precise water management is essential. However, the limited spatial resolution and temporal frequency of existing ET products hinder their application in fine-scale agricultural monitoring. In this study, we first improved the Priestley–Taylor Jet Propulsion Laboratory (PT-JPL) model by replacing the relative humidity-based soil moisture constraint with the land surface water index (LSWI), aiming to enhance model performance in water-limited environments. Second, we developed a Crop Unmixing and Weight Fusion Model for ET (CUWFM) to generate daily ET products at a 30 m spatial resolution by integrating high-resolution but infrequent PT-JPL-ET data with coarse-resolution but frequent PML-V2-ET data. The CUWFM employs a hybrid approach combining sub-pixel crop fraction decomposition with similarity-weighted regression, allowing for more accurate ET estimation over heterogeneous agricultural landscapes. The proposed methods were evaluated in the Changji region of Xinjiang, China, using field-measured ET data from two-flux-tower sites. The results show that the improved PT-JPL model increased ET estimation accuracy compared with the original version, with higher R2 and Nash–Sutcliffe efficiency (NSE), and lower root mean square error (RMSE). The CUWFM outperformed benchmark spatiotemporal fusion methods, including STARFM, ESTARFM, and Fit-FC, in both pixel- and field-scale assessments, achieving the highest overall performance scores based on the All-round Performance Assessment (APA) framework. This study demonstrates the potential of integrating vegetation indices and crop-specific spatial decomposition into ET modeling, providing a feasible pathway for producing high spatiotemporal resolution ET datasets to support precision agriculture in arid and semi-arid regions. Full article
(This article belongs to the Special Issue Remote Sensing for Hydrological Management)
Show Figures

Graphical abstract

21 pages, 10154 KB  
Article
Sea Ice Concentration Retrieval in the Arctic and Antarctic Using FY-3E GNSS-R Data
by Tingyu Xie, Cong Yin, Weihua Bai, Dongmei Song, Feixiong Huang, Junming Xia, Xiaochun Zhai, Yueqiang Sun, Qifei Du and Bin Wang
Remote Sens. 2026, 18(2), 285; https://doi.org/10.3390/rs18020285 - 15 Jan 2026
Abstract
Recognizing the critical role of polar Sea Ice Concentration (SIC) in climate feedback mechanisms, this study presents the first comprehensive investigation of China’s Fengyun-3E(FY-3E) GNOS-II Global Navigation Satellite System Reflectometry (GNSS-R) for bipolar SIC retrieval. Specifically, reflected signals from multiple Global Navigation Satellite [...] Read more.
Recognizing the critical role of polar Sea Ice Concentration (SIC) in climate feedback mechanisms, this study presents the first comprehensive investigation of China’s Fengyun-3E(FY-3E) GNOS-II Global Navigation Satellite System Reflectometry (GNSS-R) for bipolar SIC retrieval. Specifically, reflected signals from multiple Global Navigation Satellite Systems (GNSS) are utilized to extract characteristic parameters from Delay Doppler Maps (DDMs). By integrating regional partitioning and dynamic thresholding for sea ice detection, a Random Forest Regression (RFR) model incorporating a rolling-window training strategy is developed to estimate SIC. The retrieved SIC products are generated at the native GNSS-R observation resolution of approximately 1 × 6 km, with each SIC estimate corresponding to an individual GNSS-R observation time. Owing to the limited daily spatial coverage of GNSS-R measurements, the retrieved SIC results are further aggregated into monthly composites for spatial distribution analysis. The model is trained and validated across both polar regions, including targeted ice–water boundary zones. Retrieved SIC estimates are compared with reference data from the OSI SAF Special Sensor Microwave Imager Sounder (SSMIS), demonstrating strong agreement. Based on an extensive dataset, the average correlation coefficient (R) reaches 0.9450 in the Arctic and 0.9602 in the Antarctic for the testing set, with corresponding Root Mean Squared Error (RMSE) of 0.1262 and 0.0818, respectively. Even in the more challenging ice–water transition zones, RMSE values remain within acceptable ranges, reaching 0.1486 in the Arctic and 0.1404 in the Antarctic. This study demonstrates the feasibility and accuracy of GNSS-R-based SIC retrieval, offering a robust and effective approach for cryospheric monitoring at high latitudes in both polar regions. Full article
Show Figures

Figure 1

24 pages, 7140 KB  
Article
Performance Analysis of Boosting-Based Machine Learning Models for Predicting the Compressive Strength of Biochar-Cementitious Composites
by Jinwoong Kim, Daehee Ryu, Heojeong Hwan and Heeyoung Lee
Materials 2026, 19(2), 338; https://doi.org/10.3390/ma19020338 - 14 Jan 2026
Viewed by 10
Abstract
Biochar, a carbon-rich material produced through the pyrolysis of wood residues and agricultural byproducts, has carbon storage capacity and potential as a low-carbon construction material. This study predicts the compressive strength of cementitious composites in which cement is partially replaced with biochar using [...] Read more.
Biochar, a carbon-rich material produced through the pyrolysis of wood residues and agricultural byproducts, has carbon storage capacity and potential as a low-carbon construction material. This study predicts the compressive strength of cementitious composites in which cement is partially replaced with biochar using machine learning models. A total of 716 data samples were analyzed, including 480 experimental measurements and 236 literature-derived values. Input variables included the water-to-cement ratio (W/C), biochar content, cement, sand, aggregate, silica fume, blast furnace slag, superplasticizer, and curing conditions. Predictive performance was evaluated using Multiple Linear Regression (MLR), Elastic Net Regression (ENR), Support Vector Regression (SVR), and Gradient Boosting Machine (GBM), with GBM showing the highest accuracy. Further optimization was conducted using XGBoost, Light Gradient-Boosting Machine (LightGBM), CatBoost, and NGBoost with GridSearchCV and Optuna. LightGBM achieved the best predictive performance (mean absolute error (MAE) = 3.3258, root mean squared error (RMSE) = 4.6673, mean absolute percentage error (MAPE) = 11.19%, and R2 = 0.8271). SHAP analysis identified the W/C and cement content as dominant predictors, with fresh water curing and blast furnace slag also exerting strong influence. These results support the potential of biochar as a partial cement replacement in low-carbon construction material. Full article
Show Figures

Graphical abstract

24 pages, 4100 KB  
Article
Design and Error Calibration of a Machine Vision-Based Laser 2D Tracking System
by Dabao Lao, Xiaojian Wang and Tianqi Chen
Sensors 2026, 26(2), 570; https://doi.org/10.3390/s26020570 - 14 Jan 2026
Viewed by 20
Abstract
A laser tracker is an essential tool in the field of precise geometric measurement. Its fundamental operating idea is a dual-axis rotating device that propels the laser beam to continuously align and measure the attitude of a collaborating target. Such systems provide numerous [...] Read more.
A laser tracker is an essential tool in the field of precise geometric measurement. Its fundamental operating idea is a dual-axis rotating device that propels the laser beam to continuously align and measure the attitude of a collaborating target. Such systems provide numerous benefits, including a broad measuring range, high precision, outstanding real-time performance, and ease of use. To solve the issue of low beam recovery efficiency in typical laser trackers, this research offers a two-dimensional laser tracking system that incorporates a machine vision module. The system uses a unique off-axis optical design in which the distance measuring and laser tracking paths are independent, decreasing the system’s dependency on optical coaxiality and mechanical processing precision. A tracking head error calibration method based on singular value decomposition (SVD) is introduced, using optical axis point cloud data obtained from experiments on various components for geometric fitting. A complete prototype system was constructed and subjected to accuracy testing. Experimental results show that the proposed system achieves a relative positioning accuracy of less than 0.2 mm (spatial root mean square error (RMSE) = 0.189 mm) at the maximum working distance of 1.5 m, providing an effective solution for the design of high-precision laser tracking systems. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Figure 1

26 pages, 5612 KB  
Article
Dynamics Parameter Calibration for Performance Enhancement of Heavy-Duty Servo Press
by Jian Li, Shuaiyi Ma, Bingqing Liu, Tao Liu and Zhen Wang
Appl. Sci. 2026, 16(2), 847; https://doi.org/10.3390/app16020847 - 14 Jan 2026
Viewed by 32
Abstract
The accuracy of dynamics parameters in the transmission system is essential for high-performance motion trajectory planning and stable operation of heavy-duty servo presses. To mitigate the performance degradation and potential overload risks caused by deviations between theoretical and actual parameters, this paper proposes [...] Read more.
The accuracy of dynamics parameters in the transmission system is essential for high-performance motion trajectory planning and stable operation of heavy-duty servo presses. To mitigate the performance degradation and potential overload risks caused by deviations between theoretical and actual parameters, this paper proposes a dynamics model accuracy enhancement method that integrates multi-objective global sensitivity analysis and ant colony optimization-based calibration. First, a nonlinear dynamics model of the eight-bar mechanism was constructed based on Lagrange’s equations, which systematically incorporates generalized external force models consistent with actual production, including gravity, friction, balance force, and stamping process load. Subsequently, six key sensitive parameters were identified from 28 system parameters using Sobol global sensitivity analysis, with response functions defined for torque prediction accuracy, transient overload risk, thermal load, and work done. Based on the sensitivity results, a parameter calibration model was formulated to minimize torque prediction error and transient overload risk, and solved by the ant colony algorithm. Experimental validation showed that, after calibration, the root mean square error between predicted and measured torque decreased significantly from 1366.9 N·m to 277.7 N·m (a reduction of 79.7%), the peak error dropped by 72.7%, and the servo motor’s effective torque prediction error was reduced from 7.6% to 1.4%. In an automotive door panel stamping application on a 25,000 kN heavy-duty servo press, the production rate increased from 11.4 to 11.6 strokes per minute, demonstrating enhanced performance without operational safety. This study provides a theoretical foundation and an effective engineering solution for high-precision modeling and performance optimization of heavy-duty servo presses. Full article
Show Figures

Figure 1

17 pages, 2669 KB  
Article
Multimodal Guidewire 3D Reconstruction Based on Magnetic Field Data
by Wenbin Jiang, Qian Zheng, Dong Yang, Jiaqian Li and Wei Wei
Sensors 2026, 26(2), 545; https://doi.org/10.3390/s26020545 - 13 Jan 2026
Viewed by 72
Abstract
Accurate 3D reconstruction of guidewires is crucial in minimally invasive surgery and interventional procedures. Traditional biplanar X-ray–based reconstruction methods can achieve reasonable accuracy but involve high radiation doses, limiting their clinical applicability; meanwhile, single-view images inherently lack reliable depth cues. To address these [...] Read more.
Accurate 3D reconstruction of guidewires is crucial in minimally invasive surgery and interventional procedures. Traditional biplanar X-ray–based reconstruction methods can achieve reasonable accuracy but involve high radiation doses, limiting their clinical applicability; meanwhile, single-view images inherently lack reliable depth cues. To address these issues, this paper proposes a multimodal guidewire 3D reconstruction approach that integrates magnetic field information. The method first employs the MiDaS v3 network to estimate an initial depth map from a single image and then incorporates tri-axial magnetic field measurements to enrich and refine the spatial information. To effectively fuse the two modalities, we design a multi-stage strategy combining nearest-neighbor matching (KNN) with a cross-modal attention mechanism (Cross-Attention), enabling accurate alignment and fusion of image and magnetic features. The fused representation is subsequently fed into a PointNet-based regressor to generate the final 3D coordinates of the guidewire. Experimental results demonstrate that our method achieves a root-mean-square error of 2.045 mm, a mean absolute error of 1.738 mm, and a z-axis MAE of 0.285 mm on the test set. These findings indicate that the proposed multimodal framework improves 3D reconstruction accuracy under single-view imaging and offers enhanced visualization support for interventional procedures. Full article
(This article belongs to the Section Biomedical Sensors)
Show Figures

Figure 1

33 pages, 3113 KB  
Article
Hierarchical Role-Based Multi-Agent Reinforcement Learning for UHF Radiation Source Localization with Heterogeneous UAV Swarms
by Yuanqiang Sun, Xueqing Zhang, Menglin Wang, Yangqiang Yang, Tao Xia, Xuan Zhu and Tonghe Cui
Drones 2026, 10(1), 54; https://doi.org/10.3390/drones10010054 - 12 Jan 2026
Viewed by 91
Abstract
With the continuous proliferation of radio frequency devices, electromagnetic environments in various regions are becoming increasingly complex. Effective monitoring of the electromagnetic environment and identification of interference sources have thus become critical tasks for maintaining order in the electromagnetic spectrum. In recent years, [...] Read more.
With the continuous proliferation of radio frequency devices, electromagnetic environments in various regions are becoming increasingly complex. Effective monitoring of the electromagnetic environment and identification of interference sources have thus become critical tasks for maintaining order in the electromagnetic spectrum. In recent years, rapid advances in UAV technology have spurred exploration of UAV-based electromagnetic spectrum monitoring as a novel approach. However, the limited payload capacity and endurance of UAVs constrain their monitoring capabilities. To address these challenges, we propose HMUDRL, a distributed heterogeneous multi-agent deep reinforcement learning algorithm. By leveraging cooperative operation between cluster-head UAVs (CH) and cluster-monitoring UAVs (CM) within a heterogeneous UAV swarm, HMUDRL enables high-precision detection and wide-area localization of UHF radiation source. Furthermore, we integrate a minimum-gap localization algorithm that exploits the spatial distribution of multiple CM to accurately pinpoint anomalous radiation sources. Simulation results validate the effectiveness of HMUDRL: in the later stages of training, the success rate of localizing target radiation sources converges to 96.1%, representing an average improvement of 1.8% over baseline algorithms; localization accuracy, measured by root mean square error (RMSE), is enhanced by approximately 87.3% compared to baselines; and communication overhead is reduced by more than 80% relative to homogeneous architectures. These results demonstrate that HMUDRL effectively addresses the challenges of data transmission control and sensing-localization performance faced by UAVs in UHF spectrum monitoring. Full article
(This article belongs to the Special Issue Cooperative Perception, Planning, and Control of Heterogeneous UAVs)
Show Figures

Figure 1

13 pages, 1168 KB  
Article
Translation and Population-Based Validation of the Arabic Version of the Fullerton Advanced Balance Scale
by Fayaz Khan
Healthcare 2026, 14(2), 187; https://doi.org/10.3390/healthcare14020187 - 12 Jan 2026
Viewed by 119
Abstract
Background/Objective: This study aimed to translate the Fullerton Advanced Balance Scale (FAB) into Arabic and assess the instrument’s reliability and validity. Methods: The study was carried out in two distinct stages: (i) the translation and adaptation process utilizing the ‘forward-back’ translation method and [...] Read more.
Background/Objective: This study aimed to translate the Fullerton Advanced Balance Scale (FAB) into Arabic and assess the instrument’s reliability and validity. Methods: The study was carried out in two distinct stages: (i) the translation and adaptation process utilizing the ‘forward-back’ translation method and (ii) the psychometric evaluation of the Arabic version of the FAB-A among a sample of 68 older persons residing in the community. Results: The internal consistency of the FAB-A was excellent (Cronbach’s alpha = 0.86). The Intraclass Correlation Coefficient (ICC) for the inter-rater tests (ICC = 0.96, p ≤ 0.001) and the intra-rater tests (ICC = 0.95, p ≤ 0.001) were excellent and significant. The scale showed a strong correlation with the Berg Balance Scale (r = 0.75). The sampling adequacy for factor analysis was proven by a Kaiser–Meyer–Olkin value of 0.84. The goodness of fit (GFI) statistics for the model were in the acceptable range (Chi-square/Degree of freedom (CMIN/DF) = 1.38, Goodness-of-Fit Index (GFI) = 0.88, Comparative Fit Index (CFI) = 0.95, Root Mean Square Error of Approximation (RMSEA) = 0.07). Conclusions: The FAB-A has demonstrated excellent psychometric qualities for measuring balance in older adults. Full article
Show Figures

Figure 1

Back to TopTop