Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (455)

Search Parameters:
Keywords = spray parameter optimization

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 3901 KB  
Article
Comparison of Microstructure, Mechanical Properties, and Wear Properties of Cold Sprayed and HVOF WC-10Co4Cr Coatings on 4340 Steel Substrates
by Jiamin Zeng, Xiankun Ji, Yingjing Yuan, Yonghong Wang, Li Liu, Nanyang Su, Zhuang Qian, Xin Chu, Yingchun Xie and Chunming Deng
Coatings 2025, 15(10), 1227; https://doi.org/10.3390/coatings15101227 - 20 Oct 2025
Abstract
This paper investigates WC-10Co4Cr coatings on 4340 steel prepared by conventional HVOF and novel cold spraying (CS) under optimal process parameters to address low wear resistance. The results show that the CS WC-10Co4Cr coating porosity is less than 0.1%, while the HVOF WC-10Co4Cr [...] Read more.
This paper investigates WC-10Co4Cr coatings on 4340 steel prepared by conventional HVOF and novel cold spraying (CS) under optimal process parameters to address low wear resistance. The results show that the CS WC-10Co4Cr coating porosity is less than 0.1%, while the HVOF WC-10Co4Cr coating porosity is about 0.3%. The WC phase in the CS coating did not change, whereas the WC phase in the HVOF coating underwent decarburization and a new W2C phase was formed. The microhardness of the CS WC-10Co4Cr coating reaches 1617.2 HV0.3, which is about 50% higher than that of HVOF WC-10Co4Cr coating of 1061.3 HV0.3. The sliding wear rate of the CS WC-10Co4Cr coatings is 0.17 × 10−5 μm3/N·m, which is 40% of that of the HVOF coatings. The CS coating’s fretting wear rate is 1.28 μm3/N·m, which is 40% faster than that of HVOF coating. However, the bond strength of the CS WC-10Co4Cr coating (35 MPa) is lower than that of the HVOF coating (73.5 MPa). Overall, the WC-10Co4Cr coatings prepared by the CS process have higher hardness, denser coating microstructure, and better sliding wear resistance than those prepared by the conventional HVOF process. Full article
Show Figures

Figure 1

11 pages, 1589 KB  
Article
Two-Step Statistical and Physical–Mechanical Optimization of Electric Arc Spraying Parameters for Enhanced Coating Adhesion
by Nurtoleu Magazov, Bauyrzhan Rakhadilov and Moldir Bayandinova
Processes 2025, 13(10), 3349; https://doi.org/10.3390/pr13103349 - 19 Oct 2025
Abstract
This paper presents the development and experimental verification of a second-order polynomial regression model for predicting the adhesion strength of coatings produced by electric arc metallization (EAM). The aim of the study is to optimize three key process parameters: current strength (I), carrier [...] Read more.
This paper presents the development and experimental verification of a second-order polynomial regression model for predicting the adhesion strength of coatings produced by electric arc metallization (EAM). The aim of the study is to optimize three key process parameters: current strength (I), carrier gas pressure (P) and nozzle-to-substrate distance (L) in order to maximize the adhesion strength of the coating to the substrate. Experimental data were obtained from the central composite plan within the response surface method (RSM) and processed using analysis of variance (ANOVA). A pronounced synergistic interaction between pressure and distance was found (P × L), whereas current strength had no statistically significant effect in the range investigated. Optimal parameters (I = 200 A, P = 6.5 bar, L = 190 mm) provided an adhesion strength of ~15.4 kN, which was within 8.5% of the model’s prediction, confirming its accuracy. The proposed two-stage approach—combining statistical modeling with experimental fine-tuning in the global extremum zone—made it possible to improve the accuracy of the forecast and link statistical dependencies with the physical and mechanical mechanisms of adhesion formation (kinetic energy of particles, residual thermoelastic stresses). This method provides engineering-based recommendations for industrial application of EAM, reduces the cost of parameter selection, and improves the reproducibility of coating properties. Full article
(This article belongs to the Section Manufacturing Processes and Systems)
Show Figures

Figure 1

21 pages, 13386 KB  
Article
Enhanced Gas Sensitivity Characteristics of NO2 Sensor Based on a Silicon Micropillar Design Strategy at Room Temperature
by Zhiyuan Zhang, An Ning, Jian-Jun Zhu, Yi-Yu Yue, Zhi-Qiang Fan and Sai Chen
Sensors 2025, 25(20), 6406; https://doi.org/10.3390/s25206406 - 17 Oct 2025
Viewed by 193
Abstract
In this study, two types of gas sensors—silicone-based interdigital electrode and silicon micropillar sensors based on rGO and rGO/SnO2—were fabricated. Their gas-sensing performance was investigated at room temperature. First, interdigital electrodes of different channel widths were fabricated to investigate the impact [...] Read more.
In this study, two types of gas sensors—silicone-based interdigital electrode and silicon micropillar sensors based on rGO and rGO/SnO2—were fabricated. Their gas-sensing performance was investigated at room temperature. First, interdigital electrodes of different channel widths were fabricated to investigate the impact of the channel width parameter. Subsequently, the rGO/SnO2 doping ratio in the composite material was varied to identify the optimal composition for gas sensitivity. Additionally, triangular and square-arrayed silicon micropillar substrates were fabricated via photolithography and inductively coupled plasma etching. The rGO/SnO2-based gas sensor on a silicon micropillar substrate exhibited an ultra-high specific surface area. The triangular micropillar arrangement of rGO/SnO2-160 demonstrates the best performance, showing approximately 14% higher response and a 106 s reduction in response time compared with interdigital electrode sensors spray-coated with the same concentration of rGO/SnO2 when tested at room temperature under 250 ppm NO2. The optimized sensor achieves a detection limit as low as 5 ppm and maintains high responsiveness, even in conditions of 60% relative humidity (RH). Additionally, the repeatability, selectivity, and stability of the sensor were evaluated. Finally, structural and morphological characterization was conducted using XRD, SEM, TEM, and Raman spectroscopy, which confirmed the successful modification of rGO with SnO2. Full article
(This article belongs to the Special Issue Recent Advances in Gas Sensors)
Show Figures

Figure 1

22 pages, 10080 KB  
Article
Laser Fabricated MgO-TiO2 Based Photocatalytic Antifogging and Self-Cleaning Surface in Air
by Zhenze Zhai, Feiyue Zhang, Yongjian Gao, Longze Chen, Jia Liu, Yu Wang, Chaoran Sun and Hongtao Cui
Coatings 2025, 15(10), 1214; https://doi.org/10.3390/coatings15101214 - 15 Oct 2025
Viewed by 277
Abstract
A cost-effective laser marker was employed to fabricate a superhydrophilic, photocatalytic Mg-Ti-based surface on glass under ambient conditions. The photocatalytic layer was first deposited via laser processing, followed by partial laser etching to generate micro/nanostructures on the surface. This method preserves partial photocatalytic [...] Read more.
A cost-effective laser marker was employed to fabricate a superhydrophilic, photocatalytic Mg-Ti-based surface on glass under ambient conditions. The photocatalytic layer was first deposited via laser processing, followed by partial laser etching to generate micro/nanostructures on the surface. This method preserves partial photocatalytic functionality while enhancing surface roughness and introducing unique nanostructures, enabling the sample to simultaneously exhibit antifogging, self-cleaning capabilities, and high light transmittance. The optimal sample was achieved by tuning laser processing parameters, including repetition rate and scanning hatch distance. It maintained a water contact angle (WCA) of 0° after 15 days of outdoor exposure, which only increased to 21.2° after 30 days. In comparison, the WCA of reference glass increased from an initial 23.3° to 63.9° over the same period. Furthermore, the amount of dust accumulated on the optimal sample was significantly lower—by up to 43%—than that on the reference glass over one month under both indoor and outdoor conditions. After a single spray cleaning, the dust removal efficiency of the indoor-stored optimal sample reached 70%, which was 56% higher than that of the reference. For samples stored outdoors, a single spray removed 67% of the dust from the optimal surface, compared to only 26% for the reference, highlighting its excellent self-cleaning performance. Additionally, the optimal also showcased remarkable antifogging property, which had been maintained over the one-month exposure period without visible degradation. Moreover, the optimal sample exhibited a 2% enhancement in broadband light transmittance across the 400–1000 nm wavelength range, demonstrating strong potential for photovoltaic applications. The simultaneous achievement of antireflection, antifogging, and self-cleaning performance under both indoor and outdoor conditions over a one-month period has rarely been reported in the literature. Full article
(This article belongs to the Special Issue Applications of Self-Cleaning Photocatalytic Coatings)
Show Figures

Figure 1

23 pages, 5276 KB  
Article
Design and Simulation of Rotating Spray Nozzles for Greenhouse Hanging Track Spray Robots
by Siyi He, Jialin Yu and Yong Chen
Appl. Syst. Innov. 2025, 8(5), 152; https://doi.org/10.3390/asi8050152 - 14 Oct 2025
Viewed by 188
Abstract
This paper addresses deficiencies in existing spray carts and suspended sprayers regarding operational scenarios, spray coverage, versatility, and wall film thickness adjustment by designing a rail-mounted rotating nozzle application robot. Static analysis of the robot frame verifies compliance with strength and stiffness requirements. [...] Read more.
This paper addresses deficiencies in existing spray carts and suspended sprayers regarding operational scenarios, spray coverage, versatility, and wall film thickness adjustment by designing a rail-mounted rotating nozzle application robot. Static analysis of the robot frame verifies compliance with strength and stiffness requirements. Motor torque calculations ensure stable and reliable nozzle rotation. Geometric modeling derives optimal link parameters for automated nozzle angle control. ANSYS Fluent simulations characterize static spray coverage, analyzing quantitative relationships between nozzle height, angle, and spray distance. SolidWorks Motion establishes a coupled model of nozzle rotation and cart translation to obtain spray trajectories under varying speeds. Coupled Fluent simulations further evaluate wall film thickness distribution patterns under dynamic spraying conditions. The findings provide a theoretical foundation and technical reference for structural optimization and precise spraying control in greenhouse spraying robot systems. Full article
Show Figures

Figure 1

24 pages, 3803 KB  
Review
Review of Preparation and Key Functional Properties of Micro-Arc Oxidation Coatings on Various Metal Substrates
by Ningning Li, Huiyi Wang, Qiuzhen Liu, Zhenjie Hao, Da Xu, Xi Chen, Datian Cui, Lei Xu and Yaya Feng
Coatings 2025, 15(10), 1201; https://doi.org/10.3390/coatings15101201 - 12 Oct 2025
Viewed by 414
Abstract
Micro-arc oxidation (MAO) technology demonstrates remarkable advantages in fabricating ceramic coatings on lightweight alloys. For aluminum alloys, MAO rapidly forms dense, pore-free ceramic layers within minutes, significantly enhancing corrosion and wear resistance at low processing costs. In magnesium alloys, optimized electrolyte compositions and [...] Read more.
Micro-arc oxidation (MAO) technology demonstrates remarkable advantages in fabricating ceramic coatings on lightweight alloys. For aluminum alloys, MAO rapidly forms dense, pore-free ceramic layers within minutes, significantly enhancing corrosion and wear resistance at low processing costs. In magnesium alloys, optimized electrolyte compositions and process parameters enable composite coatings with a combination of high hardness and self-lubrication properties, while post-treatments like laser melting or corrosion inhibitors extend salt spray corrosion resistance. Titanium alloys benefit from MAO coatings with exceptional interfacial bonding strength and mechanical performance, making them ideal for biomedical implants and aerospace components. Notably, dense ceramic oxide films grown in situ via MAO on high-entropy alloys (HEAs) triple surface hardness and enhance wear/corrosion resistance. However, MAO applications on steel require pretreatments like aluminizing, thermal spraying, or ion plating. Current challenges include coating uniformity control, efficiency for complex geometries, and long-term stability. Future research focuses on multifunctional coatings (self-healing, antibacterial) and eco-friendly electrolyte systems to expand engineering applications. Full article
Show Figures

Figure 1

13 pages, 8068 KB  
Article
Application of Water-Sensitive Paper for Spray Performance Evaluation in Aeroponics via a Segmentation-Based Algorithm
by Muhammad Amjad, Yeong-Hyeon Shin, Je-Min Park, Woo-Jae Cho and Uk-Hyeon Yeo
Appl. Sci. 2025, 15(20), 10928; https://doi.org/10.3390/app152010928 - 11 Oct 2025
Viewed by 267
Abstract
Continued population growth demands a significant increase in agricultural production to ensure food security. However, agricultural output is limited by environmental crises and the negative impacts of open-field farm practices. As an alternative, vertical farming techniques, such as aeroponics, can be utilized to [...] Read more.
Continued population growth demands a significant increase in agricultural production to ensure food security. However, agricultural output is limited by environmental crises and the negative impacts of open-field farm practices. As an alternative, vertical farming techniques, such as aeroponics, can be utilized to optimize the use of resources. However, the uneven size and distribution of spray droplets in aeroponics, issues that affect root development and nutrient delivery, continue to be problematic in spray performance analysis. In aeroponics, nutrient solutions are delivered to plant roots through pressurized nozzles, and the effectiveness of this delivery depends on the spray characteristics. Variations in flow rates directly affect droplet size, density, and coverage, which in turn influence nutrient uptake and crop growth. In this study, the flow rate was adjusted (3, 4.5, and 6 L/min) to quantitatively analyze spray performance using water-sensitive paper (WSP) as a deposit collector via a quick assessment method. Subsequently, image-processing techniques such as threshold segmentation and morphological operations were applied to isolate individual spray droplets on the WSP images. This technique enabled the quantification of the droplet’s coverage area, size, density, and uniformity to effectively evaluate spray performance. One-way ANOVA indicated that all the spray parameters varied significantly with respect to the flow rate (p < 0.05): For example, the average diameters of the droplets increased from 0.73 mm at 3 L/min to 1.29 mm at 6 L/min. The droplets’ densities decreased from 85.53 drops/cm2 to 30.00 drops/cm2 across the same flow range. The average uniformity index improved from 30.53 to 15.95 as the flow rate increased. These results indicate that the application of WSP is an effective and scalable approach for analyzing spray performance in aeroponics, as WSP can be rapidly digitized with simple tools, such as a cell phone camera, avoiding the limitations of flatbed scanners or specialized imaging systems. Full article
Show Figures

Figure 1

25 pages, 9184 KB  
Article
Improved Control Algorithm and Experiment for Banana Straw Crushing and Returning to Fields Based on Liquid Nitrogen Cryogenic Pretreatment
by Zhifu Zhang, Yuzhang Lin, Chun Huang, Yue Li and Xirui Zhang
Agriculture 2025, 15(20), 2116; https://doi.org/10.3390/agriculture15202116 - 11 Oct 2025
Viewed by 231
Abstract
In response to the issues of insufficient shredding efficiency, severe straw entanglement with equipment, and prone blade damage in existing banana straw crushing and returning machines, this paper innovatively proposes a liquid nitrogen (LN2) cryo-pretreatment combined with a mechanical incorporation method [...] Read more.
In response to the issues of insufficient shredding efficiency, severe straw entanglement with equipment, and prone blade damage in existing banana straw crushing and returning machines, this paper innovatively proposes a liquid nitrogen (LN2) cryo-pretreatment combined with a mechanical incorporation method by, firstly, conducting shear, tensile, and cooling timeliness mechanical experiments on banana straw sheaths using LN2 low-temperature pretreatment, and then designing a corresponding spray device. Subsequently, an improved BAO-Fuzzy-PID control algorithm is presented, which significantly enhances the control performance of the fuzzy PID controller, with the steady-state error, overshoot, rise time, and settling time being 0, 0, 0.31 s, and 0.25 s, respectively. Finally, field experiments are executed, and the flow control accuracy test results indicated a maximum error of 3.32%, meeting the test requirements. Using spray height and spray angle as experimental factors and banana straw crushing qualification rate as the experimental indicator, a two-factor and five-level banana straw crushing experiment is presented. The optimal spray parameters are determined to be a spray height of 250 mm and a spray angle of 90°. At this point, the banana straw crushing qualification rate is 96.98%, meeting the quality requirements for banana straw crushing and significantly reducing straw entanglement. Full article
(This article belongs to the Section Agricultural Technology)
Show Figures

Figure 1

31 pages, 3879 KB  
Review
Current Status and Future Prospects of Key Technologies in Variable-Rate Spray
by Yuxuan Jiao, Zhu Sun, Yongkui Jin, Longfei Cui, Xuemei Zhang, Shuai Wang, Songchao Zhang, Chun Chang, Suming Ding and Xinyu Xue
Agriculture 2025, 15(20), 2111; https://doi.org/10.3390/agriculture15202111 - 10 Oct 2025
Viewed by 351
Abstract
The traditional continuous, quantitative spraying technology ignores the severity of pests, diseases and grasses, spatial distribution and other differences, resulting in low effective utilization of pesticides, environmental pollution and other problems. Variable-rate spray technology has become an important development direction in the field [...] Read more.
The traditional continuous, quantitative spraying technology ignores the severity of pests, diseases and grasses, spatial distribution and other differences, resulting in low effective utilization of pesticides, environmental pollution and other problems. Variable-rate spray technology has become an important development direction in the field of precision agriculture by dynamically sensing crop canopy morphology, pest and disease distribution, and environmental parameters, adjusting the application amount in real time, and significantly improving pesticide utilization. In this study, we systematically review the core progress of variable-rate spray technology; focus on the technical system of information detection, spray volume model, and control system; analyze the current bottlenecks; and propose an optimization path to adapt to the complex agricultural conditions. At the level of information perception, LiDAR, machine vision, and multi-source sensor fusion technology constitute the main perception architecture, and infrared and ultrasonic sensors assist target recognition in complex scenes. In the construction of the spray volume model, models based on canopy volume, leaf area density, etc., are used to realize dynamic application decision by fusing equipment operating parameters, pest and disease levels, meteorological conditions, and so on. The control system takes the solenoid valve + PID control as the core program, and improves the response speed through PWM regulation and closed-loop feedback. The current technical bottlenecks are mainly concentrated in the sensor dynamic detection accuracy, model environmental adaptability, and the reliability of the execution parts. In the future, it is necessary to further promote anti-jamming multi-source heterogeneous sensor data fusion, multi-factor adaptive spray model development, lightweight edge computing deployment, and solenoid valve structural parameter optimization and other technical research, with a view to promoting the application of variable-rate spray technology to the field on a large scale and providing a theoretical reference and technological support for the green transformation of agriculture. Full article
Show Figures

Figure 1

23 pages, 4035 KB  
Article
Theoretical and Experimental Study on Coating Uniformity in Automatic Spray-Coating of Pipeline Weld Repairs
by Changjiang Wang, Xiuyang Jian, Qi Yang, Kai Sun and Shimin Zhang
Coatings 2025, 15(10), 1193; https://doi.org/10.3390/coatings15101193 - 10 Oct 2025
Viewed by 285
Abstract
Pipeline anticorrosion patch spray coating is a critical process in pipeline construction and maintenance. It directly affects the adhesion between the pipe exterior and the heat-shrink sleeve and indirectly determines the quality of the coating bond. This study employs ANSYS FLUENT numerical simulations, [...] Read more.
Pipeline anticorrosion patch spray coating is a critical process in pipeline construction and maintenance. It directly affects the adhesion between the pipe exterior and the heat-shrink sleeve and indirectly determines the quality of the coating bond. This study employs ANSYS FLUENT numerical simulations, complemented by on-site automated spray-gun experiments, to systematically investigate the influence of two key parameters—spray distance and gun traverse speed—on coating thickness distribution and uniformity. For both flat and cylindrical specimens, response surface methodology (RSM) applies to construct mathematical deposition models and to optimize process parameters. Simulation results indicate that increasing spray distance leads to edge thinning, while excessive traverse speed causes non-uniform thickness. Optimization improves coating uniformity by 18% on flat specimens and up to 15% on cylindrical specimens. Field validation demonstrates that the optimized process reduces process deviation from the target thickness to within ±10%. At the same time, the maximum relative error between simulation and experiment remains within 13.5%, and the deviation from the standard thickness is 12.25%. These findings provide solid theoretical foundations and practical guidance for automated spray-coating optimization, thereby enhancing the anticorrosion performance of pipeline joints. Full article
Show Figures

Figure 1

14 pages, 1879 KB  
Article
Droplet Deposition and Transfer in Coffee Cultivation Under Different Spray Rates and Nozzle Types
by Layanara Oliveira Faria, Cleyton Batista de Alvarenga, Gustavo Moreira Ribeiro, Renan Zampiroli, Fábio Janoni Carvalho, Daniel Passarelli Lupoli Barbosa, Luana de Lima Lopes, João Paulo Arantes Rodrigues da Cunha and Paula Cristina Natalino Rinaldi
AgriEngineering 2025, 7(10), 337; https://doi.org/10.3390/agriengineering7100337 - 8 Oct 2025
Viewed by 368
Abstract
Optimising spraying operations in coffee cultivation can enhance both application efficiency and effectiveness. However, no studies have specifically assessed droplet deposition on leaves adjacent to the spray application band—fraction of droplet deposition referred to as ‘transfer’ in this study. Therefore, this study aimed [...] Read more.
Optimising spraying operations in coffee cultivation can enhance both application efficiency and effectiveness. However, no studies have specifically assessed droplet deposition on leaves adjacent to the spray application band—fraction of droplet deposition referred to as ‘transfer’ in this study. Therefore, this study aimed to quantify droplet deposition and transfer resulting from different application rates and nozzle types in coffee trees. The experiment was conducted in a factorial design including three application rates (200, 400, and 600 L ha−1) and two nozzle types (hollow cone and flat fan), with four replicates. Deposition was quantified at multiple positions: two application sides (left and right), three sections of the plant (upper, middle, and lower), and two branch positions (inner and outer). Thus, all measurements across sides, plant sections, and branch positions were nested, resulting in correlated data that were analysed using linear mixed-effects models (lme4 package), with parameters estimated using the restricted maximum likelihood method. The flat fan nozzle achieved the highest reference deposition, particularly on outer canopy thirds, while spray transfer (~29% of total deposition) was mainly driven by operational factors. Hollow cone nozzles at 200 L ha−1 minimized transfer while maintaining adequate deposition. Optimizing applications requires maximizing reference deposition and minimizing transfer, which can be achieved through operational adjustments, airflow management, and complementary strategies such as adjuvants, electrostatic spraying, or tunnel sprayers. Full article
(This article belongs to the Section Agricultural Mechanization and Machinery)
Show Figures

Figure 1

206 pages, 59845 KB  
Review
The Impact of the Common Rail Fuel Injection System on Performance and Emissions of Modern and Future Compression Ignition Engines
by Alessandro Ferrari and Alberto Vassallo
Energies 2025, 18(19), 5259; https://doi.org/10.3390/en18195259 - 3 Oct 2025
Viewed by 484
Abstract
An overview of the Common Rail (CR) diesel engine challenges and of the promising state-of-the-art solutions for addressing them is provided. The different CR injector driving technologies have been compared, based on hydraulic, spray and engine performance for conventional diesel combustion. Various injection [...] Read more.
An overview of the Common Rail (CR) diesel engine challenges and of the promising state-of-the-art solutions for addressing them is provided. The different CR injector driving technologies have been compared, based on hydraulic, spray and engine performance for conventional diesel combustion. Various injection patterns, high injection pressures and nozzle design features are analyzed with reference to their advantages and disadvantages in addressing engine issues. The benefits of the statistically optimized engine calibrations have also been examined. With regard to the combustion strategy, the role of a CR engine in the implementation of low-temperature combustion (LTC) is reviewed, and the effect of the ECU calibration parameters of the injection on LTC steady-state and transition modes, as well as on an LTC domain, is illustrated. Moreover, the exploitation of LTC in the last generation of CR engines is discussed. The CR apparatus offers flexibility to optimize the engine calibration even for biofuels and e-fuels, which has gained interest in the last decade. The impact of the injection strategy on spray, ignition and combustion is discussed with reference to fuel consumption and emissions for both biodiesel and green diesel. Finally, the electrification of CR diesel engines is reviewed: the effects of electrically heated catalysts, electric supercharging, start and stop functionality and electrical auxiliaries on NOx, CO2, consumption and torque are analyzed. The feasibility of mild hybrid, strong hybrid and plug-in CR diesel powertrains is discussed. For the future, based on life cycle and manufacturing cost analyses, a roadmap for the automotive sector is outlined, highlighting the perspectives of the CR diesel engine for different applications. Full article
(This article belongs to the Topic Advanced Engines Technologies)
Show Figures

Figure 1

24 pages, 4192 KB  
Article
Investigation on Dynamic Thermal Transfer Characteristics of Electromagnetic Rail Spray Cooling in Transient Processes
by Shuo Ma and Hongting Ma
Energies 2025, 18(19), 5254; https://doi.org/10.3390/en18195254 - 3 Oct 2025
Viewed by 279
Abstract
Electromagnetic Railguns Face Severe Ablation and Melting Risks Due to Extremely High Transient Thermal Loads During High-Speed Launching, Directly Impacting Launch Reliability and Service Life. To address this thermal management challenge, this study proposes and validates the effectiveness of spray cooling technology. Leveraging [...] Read more.
Electromagnetic Railguns Face Severe Ablation and Melting Risks Due to Extremely High Transient Thermal Loads During High-Speed Launching, Directly Impacting Launch Reliability and Service Life. To address this thermal management challenge, this study proposes and validates the effectiveness of spray cooling technology. Leveraging its high heat transfer coefficient, exceptional critical heat flux (CHF) carrying capacity, and strong transient cooling characteristics, it is particularly suitable for the unsteady thermal control during the initial launch phase. An experimental platform was established, and a three-dimensional numerical model was developed to systematically analyze the dynamic influence mechanisms of nozzle inlet pressure, flow rate, spray angle, and spray distance on cooling performance. Experimental results indicate that the system achieves maximum critical heat flux (CHF) and rail temperature drop at an inlet pressure of 0.5 MPa and a spray angle of 0°. Numerical simulations further reveal that a 45° spray cone angle simultaneously achieves the maximum temperature drop and optimal wall temperature uniformity. Key parameter sensitivity analysis demonstrates that while increasing spray distance leads to larger droplet diameters, the minimal droplet velocity decay combined with a significant increase in overall momentum markedly enhances convective heat transfer efficiency. Concurrently, increasing spray distance effectively improves rail surface temperature uniformity by optimizing the spatial distribution of droplet size and velocity. Full article
(This article belongs to the Section J: Thermal Management)
Show Figures

Figure 1

15 pages, 900 KB  
Article
Integrating Management and Digital Tools to Reduce Waste in Plant Protection Process
by Marianna Cardi Peccinelli, Marcos Milan and Thiago Libório Romanelli
Agronomy 2025, 15(10), 2276; https://doi.org/10.3390/agronomy15102276 - 25 Sep 2025
Viewed by 266
Abstract
The search for higher efficiency in agribusiness supports the adoption of digital tools and Lean Production principles in agricultural spraying, a crucial operation for crops. Spraying is essential to ensure yield, quality, cost efficiency, and environmental protection. This study analyzed operational data from [...] Read more.
The search for higher efficiency in agribusiness supports the adoption of digital tools and Lean Production principles in agricultural spraying, a crucial operation for crops. Spraying is essential to ensure yield, quality, cost efficiency, and environmental protection. This study analyzed operational data from self-propelled sprayers in soybean and corn fields, classifying hours, calculating efficiencies, and applying statistical process control. Efficiencies were investigated by combining Lean Production principles with CAN-based digital monitoring, which enabled the identification of non-value-adding activities and supported the real-time management of spraying operations. The results showed that productive time accounted for 41.2% of total recorded hours, corresponding to effective operation and auxiliary tasks directly associated with the execution of spraying activities. A high proportion of unrecorded hours (21.2%) was also observed, reflecting discrepancies between administrative work schedules and machine-logged data. Additionally, coefficients of variation for operational speed and fuel consumption were 12.1% and 24.0%, respectively. Correcting special causes increased work capacity (4.9%) and reduced fuel consumption (0.9%). Economic simulations, based on efficiencies, operating parameters of the sprayer, and cost indicators, indicated that increasing scale reduces costs when installed capacity is carefully managed. Integrating telemetry with Lean Production principles enables real-time resource optimization and waste reduction. Full article
Show Figures

Figure 1

17 pages, 3884 KB  
Article
Experimental and CFD Study of Parameters Affecting Glue Spray Atomization
by Zixian Jiang, Shutao Wei and Fuzeng Wang
Fluids 2025, 10(10), 250; https://doi.org/10.3390/fluids10100250 - 25 Sep 2025
Viewed by 255
Abstract
This study investigates the effects of air pressure, glue pressure, and viscosity on atomization characteristics through experimental and simulation methods, aiming to reveal gas–liquid interaction mechanisms and optimize process parameters. The rheological parameters of aqueous polyurethane adhesives with varying viscosities were characterized. Spray [...] Read more.
This study investigates the effects of air pressure, glue pressure, and viscosity on atomization characteristics through experimental and simulation methods, aiming to reveal gas–liquid interaction mechanisms and optimize process parameters. The rheological parameters of aqueous polyurethane adhesives with varying viscosities were characterized. Spray characteristics, including spray angle, cured film diameter, and thickness, were quantitatively measured under different operating conditions. The internal flow field and droplet dynamics were numerically analyzed. The results indicate the following: Increasing the air pressure (from 0.3 to 0.7 MPa) enlarges the spray angle and film diameter while reducing the film thickness. In contrast, increasing the glue pressure enlarges all three parameters: spray angle, film diameter, and film thickness. Furthermore, increasing the viscosity within the test range reduces the spray angle, film diameter, and film thickness. These effects stem from enhanced gas kinetic energy and shear intensity (promoting liquid film fragmentation), an increased fluid flow rate with glue pressure, and strengthened droplet resistance to breakup with suppressed spreading at higher viscosities. This research provides useful criteria for nozzle design and the optimization of industrial atomization processes involving non-Newtonian adhesives. Full article
(This article belongs to the Section Non-Newtonian and Complex Fluids)
Show Figures

Figure 1

Back to TopTop