Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (62)

Search Parameters:
Keywords = spin relaxation rate

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 823 KiB  
Article
Dynamics of Supramolecular Ionic Gels by Means of Nuclear Magnetic Resonance Relaxometry—The Case of [BMIM][Cl]/Propylene Carbonate Gel
by Michał Bielejewski, Robert Kruk and Danuta Kruk
Molecules 2025, 30(12), 2598; https://doi.org/10.3390/molecules30122598 - 15 Jun 2025
Viewed by 435
Abstract
Aiming to obtain insight into the dynamic properties of ionogels, 1H NMR relaxation experiments were performed for an ionogel composed of 1-butyl-3-methyl-imidazolium chloride [BMIM][Cl] and propylene carbonate. The experiments were conducted in the frequency range of 10 kHz to 20 MHz, spanning [...] Read more.
Aiming to obtain insight into the dynamic properties of ionogels, 1H NMR relaxation experiments were performed for an ionogel composed of 1-butyl-3-methyl-imidazolium chloride [BMIM][Cl] and propylene carbonate. The experiments were conducted in the frequency range of 10 kHz to 20 MHz, spanning the temperature range of 273 K to 338 K. The data were analyzed in term s of a relaxation model including two relaxation contributions—one of them associated with anisotropic (two-dimensional) translation diffusion, the second one representing a power law dependence of spin-lattice relaxation rates on the resonance frequency. The power law relaxation term (characterized by a very low power law factor of about 0.1) was attributed to the collective dynamics of the partially immobilized propylene carbonate matrix, while the relaxation contribution associated with anisotropic translation diffusion was attributed to the movement of BMIM cations in the matrix; the translation diffusion coefficient was estimated as varying in the range of 10−13 m2/s–10−12 m2/s. Moreover, other parameters were determined as a result of the analysis, such as the residence lifetime on the matrix surfaces. Subsequently, the temperature dependencies of the determined parameters were assessed. Full article
(This article belongs to the Special Issue Advanced Magnetic Resonance Methods in Materials Chemistry Analysis)
Show Figures

Figure 1

15 pages, 1185 KiB  
Article
Analysis and Suppression of Pump Beam Alignment Error in SERF Co-Magnetometer
by Qi Yuan, Wenfeng Fan, Haoying Pang, Xue Han, Zhuo Wang and Wei Quan
Photonics 2025, 12(6), 550; https://doi.org/10.3390/photonics12060550 - 29 May 2025
Viewed by 423
Abstract
The beam angle error of the pump light in a K-Rb-21Ne spin-exchange relaxation-free atomic co-magnetometer (SERFCM) significantly degrades the efficiency of optical pumping and the system’s ability to suppress magnetic field noise. In this work, a system response model that incorporates [...] Read more.
The beam angle error of the pump light in a K-Rb-21Ne spin-exchange relaxation-free atomic co-magnetometer (SERFCM) significantly degrades the efficiency of optical pumping and the system’s ability to suppress magnetic field noise. In this work, a system response model that incorporates the pump beam alignment error (PBAE) is established. The influence of PBAE on the scale factor, bandwidth, and magnetic noise response of the inertial output is analyzed. Theoretical results show that PBAE increases the internal magnetic field gradient, reduces the efficiency of nuclear spin hyperpolarization, and increases the nuclear spin relaxation rate, ultimately degrading the system’s scale factor, bandwidth, and magnetic noise suppression capability. Experimental results demonstrate that, compared to the original SERFCM with PBAE, aligning the pump laser using the proposed method improves the polarization strength of nuclear spins by approximately 10% and enhances magnetic noise suppression by 40%. Full article
(This article belongs to the Special Issue Quantum Enhanced Devices and Instruments for Sensing Applications)
Show Figures

Figure 1

12 pages, 1552 KiB  
Article
Quantum Sensing of Local Magnetic Phase Transitions and Fluctuations near the Curie Temperature in Tm3Fe5O12 Using NV Centers
by Yuqing Zhu, Mengyuan Cai, Qian Zhang, Peiyang Wang, Yuanjie Yang, Jiaxin Zhao, Wei Zhu and Guanzhong Wang
Micromachines 2025, 16(6), 643; https://doi.org/10.3390/mi16060643 - 28 May 2025
Viewed by 655
Abstract
Thulium iron garnet (Tm3Fe5O12, TmIG) is a promising material for next-generation spintronic and quantum technologies owing to its high Curie temperature and strong perpendicular magnetic anisotropy. However, conventional magnetometry techniques are limited by insufficient spatial resolution and [...] Read more.
Thulium iron garnet (Tm3Fe5O12, TmIG) is a promising material for next-generation spintronic and quantum technologies owing to its high Curie temperature and strong perpendicular magnetic anisotropy. However, conventional magnetometry techniques are limited by insufficient spatial resolution and sensitivity to probe local magnetic phase transitions and critical spin dynamics in thin films. In this study, we present the first quantitative investigation of local magnetic field fluctuations near the Curie temperature in TmIG thin films using nitrogen-vacancy (NV) center-based quantum sensing. By integrating optically detected magnetic resonance (ODMR) and NV spin relaxometry (T1 measurements) with macroscopic techniques such as SQUID magnetometry and Hall effect measurements, we systematically characterize both the static magnetization and dynamic spin fluctuations across the magnetic phase transition. Our results reveal a pronounced enhancement in NV spin relaxation rates near 360 K, providing direct evidence of critical spin fluctuations at the nanoscale. This work highlights the unique advantages of NV quantum sensors for investigating dynamic critical phenomena in complex magnetic systems and establishes a versatile, multimodal framework for studying local phase transition kinetics in high-temperature magnetic insulators. Full article
Show Figures

Figure 1

11 pages, 1690 KiB  
Communication
Temporal Shift When Comparing Contrast-Agent Concentration Curves Estimated Using Quantitative Susceptibility Mapping (QSM) and ΔR2*: The Association Between Vortex Parameters and Oxygen Extraction Fraction
by Ronnie Wirestam, Anna Lundberg, Linda Knutsson and Emelie Lind
Tomography 2025, 11(4), 46; https://doi.org/10.3390/tomography11040046 - 9 Apr 2025
Viewed by 513
Abstract
Background: When plotting data points corresponding to the contrast-agent-induced change in transverse relaxation rate from a dynamic gradient-echo (GRE) magnetic resonance imaging (MRI) study versus a corresponding spin-echo study, a loop or vortex curve rather than a reversible line is formed. The vortex [...] Read more.
Background: When plotting data points corresponding to the contrast-agent-induced change in transverse relaxation rate from a dynamic gradient-echo (GRE) magnetic resonance imaging (MRI) study versus a corresponding spin-echo study, a loop or vortex curve rather than a reversible line is formed. The vortex curve area is likely to reflect vessel architecture and oxygenation level. In this study, the vortex effect seen when using only GRE-based estimates, i.e., contrast-agent concentration based on GRE transverse relaxation rate and contrast-agent concentration based on quantitative susceptibility mapping (QSM), was investigated. Methods: Twenty healthy volunteers were examined using 3 T MRI. Magnitude and phase dynamic contrast-enhanced MRI (DSC-MRI) data were obtained using GRE echo-planar imaging. Vortex curves for grey-matter (GM) regions and for arterial input function (AIF) data were constructed by plotting concentration based on GRE transverse relaxation rate versus concentration based on QSM. Vortex parameters (vortex area and normalised vortex width) were compared with QSM-based whole-brain OEF estimates obtained using 3D GRE. Results: An obvious vortex effect was observed, and both GM vortex parameters showed a moderate and significant correlation with OEF (r = −0.51, p = 0.02). The vortex parameters for AIF data showed no significant correlation with OEF. Conclusions: GRE-based GM vortex parameters correlated significantly with whole-brain OEF. In agreement with expectations, the corresponding AIF data, representing high fractions of arterial blood, showed no significant correlation. Novel parameters, based solely on standard GRE protocols, are of relevance to investigate, considering that GRE-based DSC-MRI is very common in brain tumour applications. Full article
(This article belongs to the Section Brain Imaging)
Show Figures

Figure 1

10 pages, 1848 KiB  
Article
Anion and Cation Dynamics in Mixed-Anion Hydroborate Na3(BH4)(B12H12): 1H, 11B, and 23Na NMR Studies
by Olga A. Babanova, Yolanda Sadikin, Roman V. Skoryunov, Alexei V. Soloninin and Alexander V. Skripov
Inorganics 2024, 12(10), 265; https://doi.org/10.3390/inorganics12100265 - 8 Oct 2024
Viewed by 1455
Abstract
Sodium borohydride-closo-hydroborate Na3(BH4)(B12H12) exhibits high room-temperature ionic conductivity and high electrochemical stability. To study the dynamical properties of this mixed-anion compound at the microscopic level, we have measured the 1H, 11B, [...] Read more.
Sodium borohydride-closo-hydroborate Na3(BH4)(B12H12) exhibits high room-temperature ionic conductivity and high electrochemical stability. To study the dynamical properties of this mixed-anion compound at the microscopic level, we have measured the 1H, 11B, and 23Na nuclear magnetic resonance spectra and nuclear spin-lattice relaxation rates over the temperature range of 8–573 K. Our 1H and 11B spin-lattice relaxation measurements have revealed two types of reorientational jump motion. The faster motional process attributed to reorientations of the [BH4] anions is characterized by an activation energy of 159 meV, and the corresponding reorientational jump rate reaches ~108 s−1 near 130 K. The slower process ascribed to reorientations of the larger [B12H12] anions is characterized by an activation energy of 319 meV, and the corresponding reorientational jump rate reaches ~108 s−1 near 240 K. The results of the 23Na nuclear magnetic resonance measurements are consistent with the fast long-range diffusion of Na+ ions in Na3(BH4)(B12H12). The diffusive jump rate of Na+ is found to reach ~104 s−1 at 300 K and ~8 × 108 s−1 at 530 K. A comparison of these jump rates with the ionic conductivity data suggests the importance of correlations between diffusing ions. Full article
Show Figures

Graphical abstract

14 pages, 7922 KiB  
Article
Synthesis of Ni@SiC/CNFs Composite and Its Microwave-Induced Catalytic Activity
by Haibo Ouyang, Jiaqi Liu, Cuiyan Li, Leer Bao, Tianzhan Shen and Yanlei Li
C 2024, 10(3), 72; https://doi.org/10.3390/c10030072 - 9 Aug 2024
Cited by 1 | Viewed by 2004
Abstract
Carbon nanomaterials are promising microwave catalytic materials due to their abundant inhomogeneous interfaces capable of producing ideal interfacial polarization and multiple relaxation, which are favorable for microwave attenuation and dissipation. However, the microwave absorption performance of carbon materials is not ideal in practical [...] Read more.
Carbon nanomaterials are promising microwave catalytic materials due to their abundant inhomogeneous interfaces capable of producing ideal interfacial polarization and multiple relaxation, which are favorable for microwave attenuation and dissipation. However, the microwave absorption performance of carbon materials is not ideal in practical applications due to poor impedance matching and single dielectric loss. To solve this problem, a ternary system of “carbon-magnetic” Ni@SiC/CNFs (C/Ni, C/SiC) composites was synthesized by electrostatic spinning, and they efficiently degraded methylene blue under microwave radiation. The results imply that the catalyst Ni@SiC/CNFs with a double-shell structure gave a 99.99% removal rate in 90 s for the degradation of methylene blue under microwave irradiation, outperforming the C/Ni and C/SiC and most other reported catalysts in similar studies. On the one hand, the possible mechanism of the methylene blue degradation should be ascribed to the fact that the double-shell structure increases the polarization source of the material, resulting in excellent microwave absorption properties; and on the other, the in situ generation of ·OH and O2 active species under microwave radiation and the synergistic coupling effect of metal plasma greatly improved the degradation efficiency of methylene blue. The findings of this study could provide a valuable reference for the green degradation of industrial dye wastewater and its sustainable development process. Full article
(This article belongs to the Special Issue Carbon-Based Materials Applied in Water and Wastewater Treatment)
Show Figures

Figure 1

16 pages, 5378 KiB  
Article
The Influence of Clustered DNA Damage Containing Iz/Oz and OXOdG on the Charge Transfer through the Double Helix: A Theoretical Study
by Bolesław T. Karwowski
Molecules 2024, 29(12), 2754; https://doi.org/10.3390/molecules29122754 - 9 Jun 2024
Cited by 1 | Viewed by 1450
Abstract
The genome—the source of life and platform of evolution—is continuously exposed to harmful factors, both extra- and intra-cellular. Their activity causes different types of DNA damage, with approximately 80 different types of lesions having been identified so far. In this paper, the influence [...] Read more.
The genome—the source of life and platform of evolution—is continuously exposed to harmful factors, both extra- and intra-cellular. Their activity causes different types of DNA damage, with approximately 80 different types of lesions having been identified so far. In this paper, the influence of a clustered DNA damage site containing imidazolone (Iz) or oxazolone (Oz) and 7,8-dihydro-8-oxo-2′-deoxyguanosine (OXOdG) on the charge transfer through the double helix as well as their electronic properties were investigated. To this end, the structures of oligo-Iz, d[A1Iz2A3OXOG4A5]*d[T5C4T3C2T1], and oligo-Oz, d[A1Oz2A3OXOG4A5]*d[T5C4T3C2T1], were optimized at the M06-2X/6-D95**//M06-2X/sto-3G level of theory in the aqueous phase using the ONIOM methodology; all the discussed energies were obtained at the M06-2X/6-31++G** level of theory. The non-equilibrated and equilibrated solvent–solute interactions were taken into consideration. The following results were found: (A) In all the discussed cases, OXOdG showed a higher predisposition to radical cation formation, and B) the excess electron migration toward Iz and Oz was preferred. However, in the case of oligo-Oz, the electron transfer from Oz2 to complementary C4 was noted during vertical to adiabatic anion relaxation, while for oligo-Iz, it was settled exclusively on the Iz2 moiety. The above was reflected in the charge transfer rate constant, vertical/adiabatic ionization potential, and electron affinity energy values, as well as the charge and spin distribution. It can be postulated that imidazolone moiety formation within the CDL ds-oligo structure and its conversion to oxazolone can significantly influence the charge migration process, depending on the C2 carbon hybridization sp2 or sp3. The above can confuse the single DNA damage recognition and removal processes, cause an increase in mutagenesis, and harm the effectiveness of anticancer therapy. Full article
Show Figures

Graphical abstract

12 pages, 2400 KiB  
Article
Fast Field-Cycling Nuclear Magnetic Resonance Relaxometry of Perfluorosulfonic Acid Ionomers and Their Perfluorosulfonyl Fluoride Precursors Membranes
by Makoto Yamaguchi, Seiichi Kuroda, Takahiko Asaoka and Kazuhiko Shinohara
Molecules 2024, 29(11), 2552; https://doi.org/10.3390/molecules29112552 - 29 May 2024
Cited by 2 | Viewed by 1109
Abstract
The spin-lattice relaxation rates (R1) of fluorine nuclei in perfluorosulfonic acid (PFSA) ionomer membranes and their precursor solid perfluorosulfonyl fluoride (PFSF) were measured by fast field-cycling (FFC) NMR relaxometry. The XRD profiles of PFSA and PFSF are similar and show [...] Read more.
The spin-lattice relaxation rates (R1) of fluorine nuclei in perfluorosulfonic acid (PFSA) ionomer membranes and their precursor solid perfluorosulfonyl fluoride (PFSF) were measured by fast field-cycling (FFC) NMR relaxometry. The XRD profiles of PFSA and PFSF are similar and show a characteristic peak, indicating the alignment of main chains. While the SAXS profiles of the PFSA membranes show two peaks, those of the solid PFSF lack the ionomer peak which is characteristic of hydrophilic side chains in the PFSA ionomer membranes. The Larmor frequency dependence of R1 obeys power law and the indices are dependent on the sample and temperature. The indices of the PFSA membranes change from −1/2 to −1 along with the Larmor frequency and temperature dependence decrease, which is consistent with the generalized defect diffusion model. Estimated activation energies are in good agreement with those obtained from dynamical mechanical analysis and dielectric spectroscopy, indicating the segmental motion of the backbones as the common origin of these observations. On the other hand, the index changes to −3/4 in the case of the PFSFs, which has been predicted by the reptation model. Full article
(This article belongs to the Section Macromolecular Chemistry)
Show Figures

Figure 1

20 pages, 7833 KiB  
Article
Universal 1H Spin–Lattice NMR Relaxation Features of Sugar—A Step towards Quality Markers
by Hafiz Imran Fakhar, Adam Kasparek, Karol Kolodziejski, Leonid Grunin, Mecit Halil Öztop, Muhammad Qasim Hayat, Hussnain A. Janjua and Danuta Kruk
Molecules 2024, 29(11), 2422; https://doi.org/10.3390/molecules29112422 - 21 May 2024
Cited by 1 | Viewed by 1421
Abstract
1H fast field-cycling and time-domain nuclear magnetic resonance relaxometry studies have been performed for 15 samples of sugar of different kinds and origins (brown, white, cane, beet sugar). The extensive data set, including results for crystal sugar and sugar/water mixtures, has been [...] Read more.
1H fast field-cycling and time-domain nuclear magnetic resonance relaxometry studies have been performed for 15 samples of sugar of different kinds and origins (brown, white, cane, beet sugar). The extensive data set, including results for crystal sugar and sugar/water mixtures, has been thoroughly analyzed, with a focus on identifying relaxation contributions associated with the solid and liquid fractions of the systems and non-exponentiality of the relaxation processes. It has been observed that 1H spin–lattice relaxation rates for crystal sugar (solid) vary between 0.45 s−1 and 0.59 s−1, and the relaxation process shows only small deviations from exponentiality (a quantitative measure of the exponentiality has been provided). The 1H spin–lattice relaxation process for sugar/water mixtures has turned out to be bi-exponential, with the relaxation rates varying between about 13 s−1–17 s−1 (for the faster component) and about 2.1 s−1–3.5 s−1 (for the slower component), with the ratio between the amplitudes of the relaxation contributions ranging between 2.8 and 4.2. The narrow ranges in which the parameters vary make them a promising marker of the quality and authenticity of sugar. Full article
Show Figures

Figure 1

24 pages, 9184 KiB  
Article
Contrast Agents Based on Human Serum Albumin and Nitroxides for 1H-MRI and Overhauser-Enhanced MRI
by Dmitry Mitin, Friedemann Bullinger, Sergey Dobrynin, Jörn Engelmann, Klaus Scheffler, Mikhail Kolokolov, Olesya Krumkacheva, Kai Buckenmaier, Igor Kirilyuk and Alexey Chubarov
Int. J. Mol. Sci. 2024, 25(7), 4041; https://doi.org/10.3390/ijms25074041 - 5 Apr 2024
Cited by 8 | Viewed by 2804
Abstract
In cancer diagnostics, magnetic resonance imaging (MRI) uses contrast agents to enhance the distinction between the target tissue and background. Several promising approaches have been developed to increase MRI sensitivity, one of which is Overhauser dynamic nuclear polarization (ODNP)-enhanced MRI (OMRI). In this [...] Read more.
In cancer diagnostics, magnetic resonance imaging (MRI) uses contrast agents to enhance the distinction between the target tissue and background. Several promising approaches have been developed to increase MRI sensitivity, one of which is Overhauser dynamic nuclear polarization (ODNP)-enhanced MRI (OMRI). In this study, a macromolecular construct based on human serum albumin and nitroxyl radicals (HSA-NIT) was developed using a new synthesis method that significantly increased the modification to 21 nitroxide residues per protein. This was confirmed by electron paramagnetic resonance (EPR) spectroscopy and matrix-assisted laser desorption/ionization time-of-flight (MALDI ToF) mass spectrometry. Gel electrophoresis and circular dichroism showed no significant changes in the structure of HSA-NITs, and no oligomers were formed during modification. The cytotoxicity of HSA-NITs was comparable to that of native albumin. HSA-NITs were evaluated as potential “metal-free” organic radical relaxation-based contrast agents for 1H-MRI and as hyperpolarizing contrast agents for OMRI. Relaxivities (longitudinal and transversal relaxation rates r1 and r2) for HSA-NITs were measured at different magnetic field strengths (1.88, 3, 7, and 14 T). Phantoms were used to demonstrate the potential use of HSA-NIT as a T1- and T2-weighted relaxation-based contrast agent at 3 T and 14 T. The efficacy of 1H Overhauser dynamic nuclear polarization (ODNP) in liquids at an ultralow magnetic field (ULF, B0 = 92 ± 0.8 μT) was investigated for HSA-NIT conjugates. The HSA-NITs themselves did not show ODNP enhancement; however, under the proteolysis conditions simulating cancer tissue, HSA-NIT conjugates were cleaved into lower-molecular-weight (MW) protein fragments that activate ODNP capabilities, resulting in a maximum achievable enhancement |Emax| of 40–50 and a radiofrequency power required to achieve half of Emax, P1/2, of 21–27 W. The HSA-NIT with a higher degree of modification released increased the number of spin probes upon biodegradation, which significantly enhanced the Overhauser effect. Thus, HSA-NITs may represent a new class of MRI relaxation-based contrast agents as well as novel cleavable conjugates for use as hyperpolarizing contrast agents (HCAs) in OMRI. Full article
Show Figures

Figure 1

13 pages, 1781 KiB  
Article
Multiparametric Renal Magnetic Resonance Imaging for Prediction and Annual Monitoring of the Progression of Chronic Kidney Disease over Two Years
by Charlotte E. Buchanan, Huda Mahmoud, Eleanor F. Cox, Benjamin L. Prestwich, Rebecca A. Noble, Nicholas M. Selby, Maarten W. Taal and Susan T. Francis
J. Clin. Med. 2023, 12(23), 7282; https://doi.org/10.3390/jcm12237282 - 24 Nov 2023
Cited by 1 | Viewed by 1742
Abstract
Background: Multiparametric renal Magnetic Resonance Imaging (MRI) provides a non-invasive method to assess kidney structure and function, but longitudinal studies are limited. Methods: A total of 22 patients with CKD category G3-4 (estimated glomerular filtration rate (eGFR) 15–59 mL/min/1.73 m2) were [...] Read more.
Background: Multiparametric renal Magnetic Resonance Imaging (MRI) provides a non-invasive method to assess kidney structure and function, but longitudinal studies are limited. Methods: A total of 22 patients with CKD category G3-4 (estimated glomerular filtration rate (eGFR) 15–59 mL/min/1.73 m2) were recruited. Annual 3T multiparametric renal MRI scans were performed, comprising total kidney volume (TKV), longitudinal relaxation time (T1), apparent diffusion coefficient (ADC), Arterial Spin Labelling, and Blood Oxygen Level Dependent relaxation time (T2*), with 15 patients completing a Year 2 scan. CKD progression over 2 years was defined as eGFR_slope ≥ −5 mL/min/1.73 m2/year. Results: At baseline, T1 was higher (cortex p = 0.05, medulla p = 0.03) and cortex perfusion lower (p = 0.015) in participants with subsequent progression versus stable eGFR. A significant decrease in TKV and ADC and an increase in cortex T1 occurred in progressors at Year 1 and Year 2, with a significant decrease in perfusion in progressors only at Year 2. The only decline in the stable group was a reduction in TKV. There was no significant change in cortex or medulla T2* at Year 1 or Year 2 for progressors or stable participants. Conclusion: Lower renal cortex perfusion and higher T1 in the cortex and medulla may predict CKD progression, while renal cortex T1, TKV, and ADC may be useful to monitor progression. This study provides pilot data for future large-scale studies. Full article
(This article belongs to the Special Issue Recent Advances in Kidney Disease Imaging)
Show Figures

Figure 1

18 pages, 4794 KiB  
Article
Aqueous Dispersion of Manganese–Zinc Ferrite Nanoparticles Protected by PEG as a T2 MRI Temperature Contrast Agent
by Dorota Lachowicz, Angelika Kmita, Marta Gajewska, Elżbieta Trynkiewicz, Marek Przybylski, Stephen E. Russek, Karl F. Stupic, David A. Woodrum, Krzysztof R. Gorny, Zbigniew J. Celinski and Janusz H. Hankiewicz
Int. J. Mol. Sci. 2023, 24(22), 16458; https://doi.org/10.3390/ijms242216458 - 17 Nov 2023
Cited by 3 | Viewed by 1734
Abstract
Mixed manganese–zinc ferrite nanoparticles coated with PEG were studied for their potential usefulness in MRI thermometry as temperature-sensitive contrast agents. Particles in the form of an 8.5 nm core coated with a 3.5 nm layer of PEG were fabricated using a newly developed, [...] Read more.
Mixed manganese–zinc ferrite nanoparticles coated with PEG were studied for their potential usefulness in MRI thermometry as temperature-sensitive contrast agents. Particles in the form of an 8.5 nm core coated with a 3.5 nm layer of PEG were fabricated using a newly developed, one-step method. The composition of Mn0.48Zn0.46Fe2.06O4 was found to have a strong thermal dependence of magnetization in the temperature range between 5 and 50 °C. Nanoparticles suspended in an agar gel mimicking animal tissue and showing non-significant impact on cell viability in the biological test were studied with NMR and MRI over the same temperature range. For the concentration of 0.017 mg/mL of Fe, the spin–spin relaxation time T2 increased from 3.1 to 8.3 ms, while longitudinal relaxation time T1 shows a moderate decrease from 149.0 to 125.1 ms. A temperature map of the phantom exposed to the radial temperature gradient obtained by heating it with an 808 nm laser was calculated from T2 weighted spin-echo differential MR images. Analysis of temperature maps yields thermal/spatial resolution of 3.2 °C at the distance of 2.9 mm. The experimental relaxation rate R2 data of water protons were compared with those obtained from calculations using a theoretical model incorporating the motion averaging regime. Full article
Show Figures

Graphical abstract

10 pages, 1031 KiB  
Article
Hyperoxic BOLD-MRI-Based Characterization of Breast Cancer Molecular Subtypes Is Independent of the Supplied Amount of Oxygen: A Preclinical Study
by Silvester J. Bartsch, Viktoria Ehret, Joachim Friske, Vanessa Fröhlich, Daniela Laimer-Gruber, Thomas H. Helbich and Katja Pinker
Diagnostics 2023, 13(18), 2946; https://doi.org/10.3390/diagnostics13182946 - 14 Sep 2023
Cited by 3 | Viewed by 1771
Abstract
Hyperoxic BOLD-MRI targeting tumor hypoxia may provide imaging biomarkers that represent breast cancer molecular subtypes without the use of injected contrast agents. However, the diagnostic performance of hyperoxic BOLD-MRI using different levels of oxygen remains unclear. We hypothesized that molecular subtype characterization with [...] Read more.
Hyperoxic BOLD-MRI targeting tumor hypoxia may provide imaging biomarkers that represent breast cancer molecular subtypes without the use of injected contrast agents. However, the diagnostic performance of hyperoxic BOLD-MRI using different levels of oxygen remains unclear. We hypothesized that molecular subtype characterization with hyperoxic BOLD-MRI is feasible independently of the amount of oxygen. Twenty-three nude mice that were inoculated into the flank with luminal A (n = 9), Her2+ (n = 5), and triple-negative (n = 9) human breast cancer cells were imaged using a 9.4 T Bruker BioSpin system. During BOLD-MRI, anesthesia was supplemented with four different levels of oxygen (normoxic: 21%; hyperoxic: 41%, 71%, 100%). The change in the spin–spin relaxation rate in relation to the normoxic state, ΔR2*, dependent on the amount of erythrocyte-bound oxygen, was calculated using in-house MATLAB code. ΔR2* was significantly different between luminal A and Her2+ as well as between luminal A and triple-negative breast cancer, reflective of the less aggressive luminal A breast cancer’s ability to better deliver oxygen-rich hemoglobin to its tissue. Differences in ΔR2* between subtypes were independent of the amount of oxygen, with robust distinction already achieved with 41% oxygen. In conclusion, hyperoxic BOLD-MRI may be used as a biomarker for luminal A breast cancer identification without the use of exogenous contrast agents. Full article
(This article belongs to the Special Issue New Horizons in Breast Cancer Magnetic Resonance Imaging)
Show Figures

Figure 1

15 pages, 2932 KiB  
Article
Long-Term Characterization of Oxidation Processes in Graphitic Carbon Nitride Photocatalyst Materials via Electron Paramagnetic Resonance Spectroscopy
by Elizaveta Kobeleva, Ekaterina Shabratova, Adi Azoulay, Rowan W. MacQueen, Neeta Karjule, Menny Shalom, Klaus Lips and Joseph E. McPeak
Molecules 2023, 28(18), 6475; https://doi.org/10.3390/molecules28186475 - 6 Sep 2023
Cited by 1 | Viewed by 2061
Abstract
Graphitic carbon nitride (gCN) materials have been shown to efficiently perform light-induced water splitting, carbon dioxide reduction, and environmental remediation in a cost-effective way. However, gCN suffers from rapid charge-carrier recombination, inefficient light absorption, and poor long-term stability which greatly hinders photocatalytic performance. [...] Read more.
Graphitic carbon nitride (gCN) materials have been shown to efficiently perform light-induced water splitting, carbon dioxide reduction, and environmental remediation in a cost-effective way. However, gCN suffers from rapid charge-carrier recombination, inefficient light absorption, and poor long-term stability which greatly hinders photocatalytic performance. To determine the underlying catalytic mechanisms and overall contributions that will improve performance, the electronic structure of gCN materials has been investigated using electron paramagnetic resonance (EPR) spectroscopy. Through lineshape analysis and relaxation behavior, evidence of two independent spin species were determined to be present in catalytically active gCN materials. These two contributions to the total lineshape respond independently to light exposure such that the previously established catalytically active spin system remains responsive while the newly observed, superimposed EPR signal is not increased during exposure to light. The time dependence of these two peaks present in gCN EPR spectra recorded sequentially in air over several months demonstrates a steady change in the electronic structure of the gCN framework over time. This light-independent, slowly evolving additional spin center is demonstrated to be the result of oxidative processes occurring as a result of exposure to the environment and is confirmed by forced oxidation experiments. This oxidized gCN exhibits lower H2 production rates and indicates quenching of the overall gCN catalytic activity over longer reaction times. A general model for the newly generated spin centers is given and strategies for the alleviation of oxidative products within the gCN framework are discussed in the context of improving photocatalytic activity over extended durations as required for future functional photocatalytic device development. Full article
(This article belongs to the Special Issue Applied EPR Spectroscopy)
Show Figures

Graphical abstract

9 pages, 1997 KiB  
Communication
Superconducting Gap Structure of the Noncentrosymmetric Topological Superconductor Candidate HfRuP
by Debarchan Das, Devashibhai Adroja, Rajesh Tripathi, Zurab Guguchia, Fabian Hotz, Hubertus Luetkens, Zhijun Wang, Dayu Yan, Huiqian Luo and Youguo Shi
Magnetochemistry 2023, 9(5), 135; https://doi.org/10.3390/magnetochemistry9050135 - 19 May 2023
Cited by 2 | Viewed by 2095
Abstract
We investigate the gap symmetry of the topological superconductor candidate HfRuP, which crystallizes in a noncentrosymmetric hexagonal crystal structure, using muon spin rotation/relaxation (μSR) measurements in transverse-field (TF) geometry. The temperature and magnetic field dependencies of the superconducting relaxation rate derived [...] Read more.
We investigate the gap symmetry of the topological superconductor candidate HfRuP, which crystallizes in a noncentrosymmetric hexagonal crystal structure, using muon spin rotation/relaxation (μSR) measurements in transverse-field (TF) geometry. The temperature and magnetic field dependencies of the superconducting relaxation rate derived from the TF-μSR spectra can be well described by an isotropic s-wave gap. The superconducting carrier density ns = 1.41(1) × 1026 m3 and the magnetic penetration depth, λ(0) = 603(2) nm, were calculated from the TF-μSR data. Interestingly, the ratio between the superconducting transition temperature and the superfluid density, Tc/λ2(0) ∼ 3.3, is very close to those of unconventional superconductors. Further, our zero-field (ZF) μSR results do not show any considerable change in the muon spin relaxation above and below the superconducting transition temperature, suggesting that time-reversal symmetry is preserved in the superconducting state of this superconductor. Full article
(This article belongs to the Section Applications of Magnetism and Magnetic Materials)
Show Figures

Figure 1

Back to TopTop