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Abstract: Mixed manganese–zinc ferrite nanoparticles coated with PEG were studied for their
potential usefulness in MRI thermometry as temperature-sensitive contrast agents. Particles in
the form of an 8.5 nm core coated with a 3.5 nm layer of PEG were fabricated using a newly
developed, one-step method. The composition of Mn0.48Zn0.46Fe2.06O4 was found to have a strong
thermal dependence of magnetization in the temperature range between 5 and 50 ◦C. Nanoparticles
suspended in an agar gel mimicking animal tissue and showing non-significant impact on cell
viability in the biological test were studied with NMR and MRI over the same temperature range.
For the concentration of 0.017 mg/mL of Fe, the spin–spin relaxation time T2 increased from 3.1 to
8.3 ms, while longitudinal relaxation time T1 shows a moderate decrease from 149.0 to 125.1 ms. A
temperature map of the phantom exposed to the radial temperature gradient obtained by heating it
with an 808 nm laser was calculated from T2 weighted spin-echo differential MR images. Analysis
of temperature maps yields thermal/spatial resolution of 3.2 ◦C at the distance of 2.9 mm. The
experimental relaxation rate R2 data of water protons were compared with those obtained from
calculations using a theoretical model incorporating the motion averaging regime.

Keywords: MnZn ferrite; PEG coating; nuclear relaxation times; MRI thermometry; motion averaging
regime; laser ablations

1. Introduction

The well-known dependence of magnetization on temperature [1] has rarely been
explored for the purpose of utilization of magnetic nanoparticles as a Magnetic Resonance
Imaging (MRI) temperature-sensitive contrast agent [2,3]. This sensitivity may provide
additional functionality to magnetic particles with potential applications in MRI-guided
thermal ablations [4].

Our motivation in this project is to explore thermal sensitivity of magnetic particles to
potentially improve the safety, reliability, and effectiveness of MRI-guided thermal therapies
where real-time temperature monitoring is essential [4–6]. Conventional thermometry is
usually invasive, allows only single-point temperature measurements, and may interfere
with the MRI image formation [7]. The dependence of proton resonance frequency on
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temperature (0.01 ppm/◦C) forms the basis of the so-called proton resonance frequency shift
(PRF) thermometry, which is commonly used clinically to monitor temperature changes in
tissues [8]. In practice, PRF often fails, reducing the use of ablation procedures. PRF can
suffer from artifacts caused by tissue motion, field disturbances caused by systemic static
magnetic field drift, changes in the magnetic susceptibility distribution, and the presence
of adipose tissue [9].

We propose an MRI thermometry method utilizing the magnetic nanoparticles-based
contrast agent that avoids issues inherent to PRF thermometry and produces fast, robust,
spatial temperature maps superimposed on anatomical images within the targeted tissues.
Previously, we have shown that large, micrometer-size, magnetic particles produce a local
temperature-dependent magnetic field, leading to changes in the apparent transverse
relaxation time, T*

2. This results in hypointense regions in T*
2-weighted gradient echo MR

images [10,11]. As the temperature increases, the magnetization of the particles is reduced,
and the signal intensity in the MRI image increases. The difference in image intensity due
to temperature changes allows one to measure the temperature in a specific area.

As large magnetic particles cannot be administered intravenously, we are now ex-
ploring the possibility of using superparamagnetic particles made of mixed ferrites as an
injectable temperature-sensitive contrast agent. The dry magnetic particles suitable for
MRI thermometry must meet the following criteria: the Curie temperature (TC) is near
body temperature (37.0 ◦C), the diameter must be around 10 nm, it must be soluble in
water, and it must be non-toxic. Additionally, in a water solution, one needs a short T1
relaxation time to speed up the MRI acquisition. We recently proposed using mixed CuZn
polyethylene glycol (PEG)-coated nanoparticles as a temperature-sensitive MRI contrast
agent [12]. Unfortunately, the CuZn aqueous solutions possessed a rather long T1 relaxation
time (above 600 ms), and temperature-dependent images required long acquisition times.

In this paper, we describe the results of the fabrication and characterization of mixed
manganese–zinc ferrite nanoparticles. Because of the existence of a strong magnetic dipolar
interaction, ferrite nanoparticles tend to agglomerate, thus preventing them from dissolv-
ing in water. To avoid agglomeration, MnZn ferrite nanoparticles were stabilized by the
formation of a PEG layer on their surfaces during the one-step fabrication process described
earlier [12]. PEG is a biocompatible polymer widely used to increase the nanoparticles’
dispersibility [13]. These coated nanoparticles, dispersed in tissue model hydrogels, pro-
duce temperature-dependent dipolar magnetic fields that change the nuclear spin–spin T2
relaxation of water protons. When T2 is strongly temperature dependent, the T2 weighted
spin-echo MR provides images with intensities that are temperature dependent. The ex-
periments were conducted in a realistic setting with a laser light diffuser used in clinical
MRI-guided laser ablations, which produced a strong radial temperature gradient across
the phantom [14].

We chose manganese ferrite as the base for the particle’s core due to its known high
value of magnetization and relatively low Curie temperature among 3d metal ferrites [15].
Additionally, recent preclinical studies describe Mn-based chelated compounds as suitable
for MRI intravascular contrast enhancement and neuronal connection studies [16–19]. We
hypothesize that doping ferromagnetic manganese ferrites with diamagnetic zinc ions will
modify their properties, making them useful for MRI thermometry. We expected that by
increasing the Zn concentration, due to a reduction in the exchange interactions between
tetrahedral and octahedral sites of the ferrite, the TC will decrease even further [20,21].
We specifically focused on the composition of Mn0.5Zn0.5Fe2O4. For this composition,
TC decreases from 300 ◦C for the pure MnFe2O4 to temperature around 150 ◦C in a bulk
material. In the nanoparticle form of MnZn ferrites, similar trends are observed though
they are modified by surface effects [22,23].

2. Results

PEGyled magnetic nanoparticles (MNPs) were synthesized in a one-step synthesis
(for details, see the Materials and Methods section) through the thermal decomposition
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of organometallic precursors in a polymer matrix (PEG). To obtain stable nanoparticles of
desired compositions, the appropriate quantities of precursor salts (Mn(acac)2, Zn(acac)2,
and Fe(acac)3) and PEG (1000) were mixed. Keeping in mind future applications, a low
molecular weight of PEG 1000 was used to avoid PEG accumulation in the liver and
lysosomes of normal tissues. The synthesized nanoparticles formed a highly colloidally
stable aqueous solution. No particle aggregation or precipitation was observed over a
period of 6 months.

2.1. Chemical and Morphological Characterization

Based on the existing literature on doping iron oxide nanoparticles [24–26], the for-
mation of a ferrite of formula MnxZnyFe2-x-yO4 was expected. The target composition
in our technological effort was Mn0.5Zn0.5Fe2O4 for reported values of high magnetiza-
tion and lowest Curie temperature [27–29]. The final chemical composition of MNPs
determined from the inductively coupled–plasma optical emission spectroscopy (ICP-
OES) measurements was Mn0.48Zn0.46Fe2.06O4. The morphology and size distribution
of the obtained objects were determined using transmission electron microscopy (TEM)
(Figures 1a,b and S3), atomic force microscopy (AFM) (Figure 1c,g) and dynamic light
scattering (DLS) (Figures 1f and S4) methods. The obtained MNPs exhibited an irregular
sphere-like shape. Micrographs and a histogram are presented in Figure 1b and Figure 1e,
respectively. EDX analysis confirmed the presence of iron, manganese and zinc in the
obtained ferrite nanoparticles (Figure S1, Table S1). The obtained nanoparticles were
core–shell structures (Figure 1h) with cores visible in the polymeric matrix.
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image of nanoparticles. (c) Topographic image of nanoparticles deposited on Si plate as measured 
by AFM in air. (d) High-resolution XPS spectra of C1s for obtained nanoparticles. (e) The size dis-
tribution histogram of nanoparticles based on TEM data (red line—Gaussian distribution).(f) Dis-
tribution profiles of the hydrodynamic diameters (dh) obtained from DLS. (g) Nanoparticle’s cross-
section profile (AFM). Measurement of the diameter of an isolated nanoparticle. (h) Cartoon of the 
proposed structure of a nanoparticle showing the nanocrystal core and polymer coating. 
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mogravimetric (DTG) analysis. In the case of the pure PEG sample (see Figure 2a), it was 
found that the beginning of one-stage thermal decomposition occurred at a temperature 
of 352 °C with the maximum weight loss rate at 396.8 °C. The residual weight of 2.37% at 
800 °C is attributed to decomposition products [12,31,32]. 

  

Figure 1. Morphological characterization of PEG-coated Mn 0.48 Zn 0.46 Fe 2.06 O4 nanoparticles.
(a) Representative TEM image. Note that the PEG coating of the core particles cannot be seen by TEM
due to the low contrast between the polymer and carbon-coated grid. (b). High-resolution TEM image
of nanoparticles. (c) Topographic image of nanoparticles deposited on Si plate as measured by AFM
in air. (d) High-resolution XPS spectra of C1s for obtained nanoparticles. (e) The size distribution
histogram of nanoparticles based on TEM data (red line—Gaussian distribution).(f) Distribution
profiles of the hydrodynamic diameters (dh) obtained from DLS. (g) Nanoparticle’s cross-section
profile (AFM). Measurement of the diameter of an isolated nanoparticle. (h) Cartoon of the proposed
structure of a nanoparticle showing the nanocrystal core and polymer coating.

The analysis of particles from the TEM image in Figure 1a,b gives particle core sizes at
8.5 ± 1.0 nm (mean and standard deviation). The hydrodynamic size of the entire particle
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(ferrite core and PEG shell) was measured with a DLS technique. The obtained value
of 20 nm agrees with AFM measurements (15 nm), but as expected, it is bigger than the
one obtained from TEM [30]. The small particle size with strong temperature-dependent
magnetization is essential to achieve our goal of obtaining water-soluble temperature-
sensitive particles suitable for MRI thermometry.

XPS analysis was performed to confirm the presence of a PEG layer in the structure
of the received nanoparticles. The XPS survey spectrum of the MNPs revealed peaks at
1021, 710, 640, 530, and 285 eV corresponding to the Zn2p, Fe2p, Mn2p, O1s, and C1s lines,
respectively (Figure S2). The C1s spectra of MNPs were curve fitted with three different
peaks using a Shirley-type background subtraction (Figure 1d). The binding energies
of 285, 286.6 and 288.9 eV can be attributed to the C–C/C–H, C–O, and O–C–O/C=O
groups of the polyethylene glycol coating, respectively. The synthesis method used here
has been modified to a one-step process in which nanocrystallites are formed and stabilized
simultaneously. Thanks to this modification, the obtained nanoparticles exhibit long-lasting
colloidal stabilization. The presented high-resolution XPS spectra for C1s confirm the
presence of undegraded PEG polymer on the surface of the particles.

2.2. TG/DTG Analysis

The thermal decomposition of pure PEG 1000 and PEG-coated MnZn nanoparticles
as shown in Figure 2 was investigated using thermogravimetric (TG) and differential
thermogravimetric (DTG) analysis. In the case of the pure PEG sample (see Figure 2a), it
was found that the beginning of one-stage thermal decomposition occurred at a temperature
of 352 ◦C with the maximum weight loss rate at 396.8 ◦C. The residual weight of 2.37% at
800 ◦C is attributed to decomposition products [12,31,32].
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Figure 2. Comparison of TG/DTG curves at heating rate β = 10 ◦C × min−1 under argon atmosphere:
(a) pure PEG 1000. (b) PEG 1000-coated MnZn nanoparticles.

However, in the case of the PEG-coated MnZn nanoparticles, the results indicate
that the progressive thermal decomposition of PEG adsorbed on the surface of the MnZn
nanoparticles occurred in two stages: at 307.37 ◦C and 416.78 ◦C (see Figure 2b). This is
confirmed by the characteristic inflections on the TG and DTG curves. This effect can be
attributed to the strong interfacial interactions of MnZn nanoparticles with the PEG 1000
polymer [32], as shown. The total weight loss of the sample was approximately 72%, which
confirms that the surface of the MnZn nanoparticles was covered with PEG polymer. The
PEG polymer undergoes thermal degradation. The results of the TG/DTG analysis were
used to determine the mass of the ferrite core of PEG-coated MnZn nanoparticles in the
magnetic properties studies presented below.
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2.3. Magnetic Properties

Figure 3 shows magnetization measurements of nanoparticles in a dry form. One
can appreciate the strong temperature dependence of the magnetization in 3.0 T magnetic
fields (see Figure 3a). Note that 3.0 T is the field of an MRI scanner used for temperature-
dependent studies. The slope value of 7.1 × 10−2 Am2kg−1 ◦C−1 is in the same range as
the reported earlier values we obtained using micrometer-sized ferrite particles, which
were fabricated by ceramic technology [11]. Zero field cooling (ZFC) and field cooling (FC)
measurements were conducted at 20 mT magnetic field (see Figure 3b) to determine the
blocking temperature, which is about −198 ◦C, indicating the superparamagnetic nature
of nanoparticles. The estimated Curie temperature of particles is approximately 120 ◦C,
which is similar to TC values reported in the literature for bulk materials [33,34].
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Figure 3. Magnetization measurements for dried PEG-protected Mn-Zn ferrite nanoparticles. (a) Re-
sults at 3.0 T field. Blue rectangle marks the range of 5 to 50 ◦C, where NMR and MRI experiments
were conducted. (b) Results at 20 mT, zero field cooling (ZFC) and field cooling (FC). From these
results, we estimate the blocking temperature (TB, marked with blue arrow) in the range of −198 ◦C.

2.4. Nuclear Relaxation

Figure 4 presents the temperature dependence of transverse relaxation times T2 and
longitudinal times T1 of water protons suspended in the concentration of 0.017 mg/mL
in 1% w/w agar gel. T2 relaxation times show a very strong temperature dependence,
increasing by 165% as the temperature changes from 5 to 50 ◦C. This steep temperature
increase suggests that the intensity of T2-weighted MRI images will be a good indica-
tor of temperature when using Mn-Zn nanoparticles in aqueous solutions. The strong
temperature-dependent T2 allows for the possibility of using standard spin-echo MRI
acquisition rather than previously used gradient echo methods for T2* weighting reported
earlier [10]. Using spin-echo MRI would be advantageous because of the reduced sus-
ceptibility and chemical shift artifacts in spin-echo measurements [35,36]. In contrast, the
longitudinal relaxation values of T1 shown in Figure 4 change only by 16%, which is much
less than T2.



Int. J. Mol. Sci. 2023, 24, 16458 6 of 18

Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 7 of 19 
 

 

 

 
Figure 4. Temperature dependence of nuclear relaxation times of water protons in agar gel with 
embedded MnZn nanoparticles in concentration of 0.017 mg/mL of Fe at 3.0 T magnetic field. Red 
circles depict transverse T2 nuclear relaxation times, blue squares depict longitudinal T1 time. Note 
that longitudinal and transverse relaxation times have slopes with different signs. 

2.5. Magnetic Resonance Imaging 
To determine the spatial/thermal resolution of the method, we designed an MRI com-

patible setup. An 808 nm, 5 W continuous wave laser beam, sent through a glass fiber 
terminated with a light diffuser, produced an in-plane temperature gradient across the 
phantom (see the Materials and Methods section for design details). The cylindrical phan-
tom is 30 mm across, 20 mm tall, and is made of 1% agar gel with embedded 8.5 nm 
Mn0.48Zn0.46 Fe2.06O4 particles with a concentration of 0.017 mg/mL of Fe. With this setup, 
we were able to produce a maximum 30 °C temperature difference across 14 mm of agar 
gel with embedded particles. Examples of axial T2-weighted MR images of the agar phan-
tom with studied nanoparticles before and after heating are shown in Figure 5. Figure 5a 
is an axial image of the phantom before heating taken at a magnet’s bore temperature of 
17.5 °C. Three miniature, MRI-compatible, optical sensors are marked with white circles 
and denoted as S1, S2 and S3. The white part of the image in the center, marked with a 
large red circle, delineates the agar gel filled with polydopamine (PDA) particles to aid 
heating as described in the Materials and Methods section. The PDA core is 6 mm in di-
ameter and is excluded from further thermal analysis. An image of the phantom in the 
same location after 5-minute laser heating is shown in Figure 5b. 

Figure 5c shows the results of subtraction of image intensity obtained before heating 
(Figure 5a) from the image intensity obtained after heating (Figure 5b). Note the radial 
dependence in the brightness. Image difference data were used to obtain a pseudo-color 
temperature map with 4 °C isotherms, as exhibited in Figure 5d. 

Figure 4. Temperature dependence of nuclear relaxation times of water protons in agar gel with
embedded MnZn nanoparticles in concentration of 0.017 mg/mL of Fe at 3.0 T magnetic field. Red
circles depict transverse T2 nuclear relaxation times, blue squares depict longitudinal T1 time. Note
that longitudinal and transverse relaxation times have slopes with different signs.

2.5. Magnetic Resonance Imaging

To determine the spatial/thermal resolution of the method, we designed an MRI
compatible setup. An 808 nm, 5 W continuous wave laser beam, sent through a glass
fiber terminated with a light diffuser, produced an in-plane temperature gradient across
the phantom (see the Materials and Methods section for design details). The cylindrical
phantom is 30 mm across, 20 mm tall, and is made of 1% agar gel with embedded 8.5 nm
Mn0.48Zn0.46 Fe2.06O4 particles with a concentration of 0.017 mg/mL of Fe. With this setup,
we were able to produce a maximum 30 ◦C temperature difference across 14 mm of agar gel
with embedded particles. Examples of axial T2-weighted MR images of the agar phantom
with studied nanoparticles before and after heating are shown in Figure 5. Figure 5a is
an axial image of the phantom before heating taken at a magnet’s bore temperature of
17.5 ◦C. Three miniature, MRI-compatible, optical sensors are marked with white circles
and denoted as S1, S2 and S3. The white part of the image in the center, marked with a large
red circle, delineates the agar gel filled with polydopamine (PDA) particles to aid heating
as described in the Materials and Methods section. The PDA core is 6 mm in diameter and
is excluded from further thermal analysis. An image of the phantom in the same location
after 5-min laser heating is shown in Figure 5b.

Figure 5c shows the results of subtraction of image intensity obtained before heating
(Figure 5a) from the image intensity obtained after heating (Figure 5b). Note the radial
dependence in the brightness. Image difference data were used to obtain a pseudo-color
temperature map with 4 ◦C isotherms, as exhibited in Figure 5d.
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Figure 5. Spin echo T2-weighted MRI results in the presence of a strong radial temperature gradient
produced by a laser diffuser at the center of the phantom made of 1% agar gel with embedded 8.5 nm
Mn0.48Zn0.46Fe2.06O4 particles with a concentration of 0.017 mg/mL of Fe. (a) Image before heating.
Small white circles show the position of MRI-compatible, miniature temperature sensors S1, S2 and
S3. (b) Image after heating. (c) Difference image (a,b). (d) Pseudo-color temperature map with 4 ◦C
isotherms. Black spot in the center shows the position of the laser diffuser.

2.6. Diffusion Measurements

Apparent diffusion coefficient (ADC) of water molecules in deionized water (DIW)
and in agar–DIW solutions results are given in Table 1. We note the strong temperature
dependence of ADC and only a slight decrease in water molecules’ mobility with agar con-
centration. The presented results are in agreement with previously published data [37–39].
The error in the diffusivity measurements, as determined by comparison with consensus
data for deionized water, is less than ±3%.

Table 1. Temperature and concentration dependence of apparent coefficient (ADC) in deionized
water (DIW) and agar–DIW solutions. The error in the diffusivity measurements is less than ±3%.

ADC (10−3 mm2s−1)

T (◦C) DIW 0.5% Agar 1% Agar 2% Agar

5 1.34 1.33 1.29 1.27

20 2.03 2.01 1.97 1.92

37 3.00 2.97 2.91 2.83

50 3.90 3.86 3.79 3.70
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2.7. Biological Study

Considering the potential medical applications of nanoparticles, it is necessary to
determine the particles’ cytotoxicity. We performed preliminary toxicity studies by examin-
ing the viability of murine fibroblast cells treated with a dispersion of obtained magnetic
nanoparticles using the MTT assay for cellular metabolic activity [40]. As seen in Figure 6,
the cell viability drops with the nanoparticle concentration. Statistical analysis conducted
using ANOVA with a Dunnett’s comparison test shows that for concentrations above
0.24 mg/mL of Fe, the viability is significantly lower than in the control group (p < 0.05).
Results indicate that MnZn nanoparticles used in a concentration of 0.017 mg/mL of Fe in
these phantom studies should be safe for in vivo MRI studies. DNA damage results are still
pending. In the future, with magnetic particles embedded in polymers, the issue of direct
biocompatibility will be eliminated because some of the polymers are already approved for
use by the US Food and Drug Administration [41].
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3. Discussion

In this section, we discuss subjects relevant to the potential future application of
nanoparticles as MRI contrast agents for MRI-guided laser ablations such as predictions of
spin–spin relaxation rate (R2 = 1

T2
) using a motion averaging regime model, the calculation

of spatial–thermal resolution of temperature determination, a method of enhancement
of the contrast using combined T2 and T1 weighting of the spin-echo MR images, and
limitations of MRI thermometry using a temperature-sensitive contrast agent.

3.1. Spin–Spin Relaxation in Motional Averaging Regime

Reports on the nuclear relaxation of water protons due to the presence of magnetic
nanoparticles of the size around 10 nm, both coated and not coated, suggest that the
value of T2 is determined by the status of the motional regime of the water about the
nanoparticles [42–45].

Following these reports, we assumed that for PEG-coated MnZn nanoparticles used
in this project, the water molecule diffusion process averages the phase variation of proton
spins originating from the local magnetic field inhomogeneities. In this situation, the NMR
signal decay is mainly due to magnetic dipolar interactions between nuclear spins (protons)
and unpaired electron spins on the nanoparticles [46]. Consequently, we hypothesized
that our experiments were conducted in a motional averaging regime. In this regime, one
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expects that ∆ωτD < 1, where ∆ω is a Larmor frequency shift of water protons in the
magnetic field created by a nanoparticle at its equator at the closest accessible distance,
τD = d2

4D is the diffusion time, d is the particle size and D is the diffusion coefficient [24].
The diffusion time can be interpreted as the time required for a water molecule to move in
the distance of d, the average particle diameter, in any given direction. For the calculations,
the shape of MnZn ferrite nanoparticles covered by a layer of PEG (impermeable coating)
was approximated by the sphere of d = 15 nm diameter as shown schematically in Figure 1h.

The numerical value of the frequency shift was determined from the equation: ∆ω =
1
3 γµo Mv where γ is a gyromagnetic factor of protons (2.675 × 108 rads−1T−1), µo is the
magnetic permeability of vacuum (∼ 4π10−7TmA−1) and Mv is the volume magnetiza-
tion calculated from the SQUID data presented in Figure 3a using the value of density of
5.0 gcm−3 obtained from bulk ferrite measurements [47]. Since magnetization and ADC are
strongly temperature dependent, calculations were conducted for the entire temperature
range from 5 to 50 ◦C. The temperature dependence of the product of characteristic fre-
quency and translational diffusion time (∆ωτD) are presented in Figure 7a. The calculation
indicates that at 5 ◦C, we are on the border line of the motional averaging regime and with
a temperature increase, ∆ωτD asymptotically reaches a value of 0.1, which is well in the
motion-averaging regime.

Using the known model of water molecules in the motion-averaging regime, we apply
the following Equation (1) to calculate the spin–spin relaxation rate R2 at a high magnetic
field [42,48]

R2 =
1
T2

=
16
45

f τD(∆ω)2 (1)

where f is the volume fraction occupied by nanoparticles in the agar–water solution of
0.017 mg/mL of Fe.

A comparison of the results presented in Figure 7b shows a strong discrepancy between
experimental and calculated values of R2 at low temperature (109%).
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This discrepancy slowly vanishes at higher temperatures, and at 50 ◦C, the calculated
values of R2 are about 42% higher than the experimental values. This improvement
can be explained in terms of much higher water diffusion at higher temperatures (see
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Table 1 for diffusion values) and consequently a better-defined averaging regime at higher
temperatures (∆ωτD < 0.15) than at lower temperatures (∆ωτD > 0.5). Nevertheless,
Equation (1) gives us a good starting point for the prediction of R2 values in the temperature
range from 36 to 60 ◦C during laser ablations experiments.

3.2. Spatial–Thermal Resolution of the Temperature Determination

Figure 8 illustrates the analyses method of image intensity in terms of spatial–thermal
accuracy. Figure 8a shows the location of five regions of interest (ROIs), I1 through I5,
on the differential image. Each ROI covers N = 4 pixels. The mean values from each
ROI and their standard deviations are presented in Figure 8b. Figure 8c shows the local
temperature measured with three miniature MRI-compatible sensors in the middle of an
MRI scan, as shown in Appendix A. Data from these points were fitted to a second-order
polynomial function (blue solid line: y = 0.08x2 − 3.4x + 59.9, R2 = 1) for the determination
of temperature as a function of position. Due to the presence of sensors on the left hand of
the image and pixel intensity disturbances in this area, we analyzed pixels on opposite side
of the image.
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Figure 8. Determination of the in-plane thermal–spatial accuracy. (a) Location of temperature sensors
S1, S2 and S3, and regions of interests (ROIs) I1 through I5 on the differential image. (b) Local
brightens at ROI positions from N = 4 pixels (mean and standard deviation). Note that the green
dashed line delineates the position of the PDA core that was excluded from analysis. (c) Local
temperature at incorporated sensors (red circles). Blue solid line represents the fit of experimental
data points to polynomial function. (d) Method of thermal/spatial resolution determination (3.2 ◦C
at 2.9 mm) using 100% confidence bands (solid black lines). Data points are mean values and the
corresponding standard deviations.
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Figure 8d shows the ROI data points (red circles) with their own polynomial fit (red
solid line: y = 1.16x2 − 44.3x + 809, R2 = 0.997). Two confidence bands were created for 100%
coverage of the standard deviations (black solid lines). The intermediate intensity of 550
(blue horizontal dashed line) was arbitrarily chosen for a determination of how accurately
we can estimate the temperature in space. Intersection points with confidence bands were
projected on the distance axis (blue dashed vertical lines). The obtained intersections were
assigned to temperatures from the polynomial function obtained from a regression analysis
of the three data points presented in Figure 8c. The results are 3.2 ◦C over 2.9 mm, meaning
we can distinguish temperature changes of 3.2 ◦C at 2.9 mm distance.

3.3. Comparison of MnZn with CuZn

We reported the use of mixed CuZn ferrite nanoparticles as temperature-sensitive
contrast agents for MRI previously [12]. Table 2 summarizes the main results obtained
from the previous and current studies. The major difference between MnZn and CuZn
nanoparticles was a much bigger mass magnetization at 40 ◦C of the former, 18.4 Am2kg−1

and 11.8 Am2kg−1, respectively. MnZn nanoparticles also have a much faster temperature
drop of magnetization than CuZn, 14.4% and 7.3%, respectively. Despite the much smaller
concentrations of MnZn nanoparticles used in this study (0.017 mg/mL vs. 0.128 mg/mL
of Fe), their high magnetization immediately leads to higher values of corresponding
relaxivities of water protons r1,2 =

R1,2
C , where C is the nanoparticles concentration in mM

of Fe. The shorter T1 for protons in the presence of MnZn nanoparticles allows for much
faster MRI data acquisition, which is necessary for a fast temporal resolution of temperature
determination (16 s vs. 256 s).

As shown in Figure 4, in the Results section above, T2 and T1 exhibit monotonic
temperature dependence with slopes of different signs. This “sheer-like” pattern of the
thermal dependence of T2 and T1 was also visible in work on CuZn nanoparticles [12]. This
observation provides an interesting avenue for improvement in temperature contrast that
can be achieved by simultaneous T2 and T1 weighting, which is similar to the reported
T1-T2 dual mode MRI [49,50]. In general, the temperature contrast enhancement in aqueous
solutions of an exogenous agent resulting in temperature positive T2 and negative T1 slopes
can be obtained using a single standard spin-echo sequence with optimized times of TE
(responsible for T2 weighting) and of TR (responsible for T1 weighting). However, practical
uses of this strategy require a much steeper temperature change in T1 and will be a subject
of further study.

Table 2. Comparison of main results from MnZn and CuZn studies.

Composition Mn0.48Zn0.46Fe2.06O4 Cu0.08Zn0.54Fe2.38O4

Size: core/shell (nm) 8.5/15 6/30

Mm at 40 ◦C (Am2kg−1) 18.4 11.8

Mm drop in range 5–50 ◦C (%) 14.4 7.3

Concentration of Fe (mM/mg/mL) 0.30/0.017 2.02/0.128

T1 change in range 5–50 ◦C (%) −16.0 −14.0

T2 change in range 5–50 ◦C 137.0 92.1

r1 at 40 ◦C (s−1 mM−1) 22.5 0.80

r2 at 40 ◦C (s−1 mM−1) 494.5 77.4

Imaging time (s) 16 256

Thermal gradient produced by: heating by laser cooling by Teflon block

Type of thermal gradient radial linear

Thermal/spatial resolution (◦C/mm) 3.2/2.9 NA
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3.4. Limitations of Thermometry Using MRI Temperature-Sensitive Contrast Agent

The proposed method of temperature determination using temperature-dependent
intensity of T1, T2 and T*

2-weighted MR images suffers inherently from two major issues.
As we have shown in our earlier work, the nuclear relaxation of water protons in the
presence of magnetic particles strongly depends on magnetic field magnitude and particle
concentration [51,52]. While the magnetic field of the MR scanner is well determined and
does not change, the concentration of particles injected into the blood arteries will vary in
space and time. This challenge can be partially mitigated by using particle-doped polymer
filaments or patches and inserted into or placed on the region of interest, as proposed in our
recent papers [51,53]. The calibration of the temperature-dependent image intensity of such
ferro-polymers can be conducted prior to their use. We envision that one would obtain
temperature distribution, 1D from the filament or 2D from the patch, being in thermal
contact with the tissue, during the MRI-guided procedure.

4. Materials and Methods
4.1. Materials

Poly(ethylene glycol) (1000 Da, BioUltra), zinc(II) acetylacetonate (puriss. p.a., ≥95%,
Sigma-Aldrich, Burlington, NJ, USA), iron(III) acetylacetonate (puriss. p.a., 99.9%, Sigma-
Aldrich, Burlington, NJ, USA), manganese(II) acetylacetonate (puriss. p.a., ≥97.0%, Sigma-
Aldrich, Burlington, NJ, USA), acetone (puriss. p.a., POCH S.A, Gliwice, Poland), and
diethyl ether (puriss. p.a., Sigma Aldrich, Burlington, NJ, USA) were used as received.
Millipore-quality water was used during the experiments.

4.2. Synthesis of PEG Coated Nanoparticles

Magnetic nanoparticles (MNPs) were synthesized through the thermal decomposition
of organometallic precursors in a polymer matrix (PEG) described in detail earlier [12].
Figure 9 illustrates the fabrication of the materials. Manganese (II) acetylacetonate, zinc (II)
acetylacetonate and iron (III) acetylacetonate in the presence of poly(ethylene glycol) were
used to obtain colloidal stable nanoparticles.
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Figure 9. Graphic diagram of the fabrication of PEG-coated MnZn ferrite nanoparticles.

The first step was to heat 7 mmol PEG to 80 ◦C for 10 min under an argon atmosphere,
stirring continuously on a magnetic stirrer. Then, 0.6 mmol of Fe(acac)3 and 0.2 Zn(acac)2,
0.2 Mn(acac)2 were added to the molten PEG and intensively stirred at 80 ◦C under argon
for 30 min. Next, the solution was quickly heated to 285 ◦C and kept at this temperature
for 60 min. The obtained mixture was cooled at a temperature of 60 ◦C, and then 20 mL
of toluene was added. After cooling to room temperature, the mixture was washed with
acetone and diethyl ether. This mixture was purified by magnetic separation. Organic
solvents were disposed of and replaced with pure water, where the nanoparticles were
finally suspended.
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4.3. Morphology Characterization Methods

Transmission Electron Microscopy (Tecnai TF 20 X-TWIN (FEI)) was used to determine
the morphology and size distribution of nanoparticles. TEM and high-resolution HR-
TEM figures were analyzed using Image-J 1.54d software. The chemical composition
was checked using Energy-Dispersive X-ray Spectroscopy (EDX). The size distribution
and the zeta potential of the nanoparticles were measured with the Malvern Nano ZS
apparatus (Malvern Instrument Ltd., Worcestershire, UK). The chemical composition of the
obtained nanoparticles was analyzed with inductively coupled–plasma optical emission
spectroscopy (ICP-OES) using the Thermo Scientific iCAP 7000 Plus apparatus. All samples
were digested in a concentrated supra pure nitric acid. Further chemical characterization
was performed using an X-ray photoelectron spectroscopy (XPS). Measurements were
completed in a PHI 5000 VersaProbe II spectrometer with an Al Kα radiation source
(E = 1486.6 eV). The working pressure in the analytical chamber was less than 3 × 10−7 Pa.
High-resolution spectra were measured at the analyzer pass energy set to 49.95 eV. To
compensate for the charge-up effect, we used a dual-beam charge neutralizer. All binding
energies were corrected to a C-C line at 284.8 eV. The spectrum background was subtracted
by the Shirley method. The PHI MultiPak software ver 9.3.0.3 was used for data analysis.

4.4. Thermogravimetric Analysis (TGA)

The thermal decomposition of the PEG-coated MnZn nanoparticles was evaluated
by thermogravimetric analysis. The TG and DTG experiments were carried out using a
Thermogravimetric Analyzer SDT Q600 (TA Instruments, New Castle, DE, USA). Analysis
of samples of pure MnZn and PEG-coated MnZn ferrite nanoparticles was performed from
room temperature to 800 ◦C with the constant heating rate β = 10 ◦C × min−1 under argon
atmosphere. The thermogravimetric results were processed with Universal Analysis 2000
software [54].

4.5. Magnetization Measurements

The temperature dependence of dry nanoparticles magnetization was measured using
a Superconducting Quantum Interference Device (SQUID) magnetometer in the temper-
ature range from −269 to 77 ◦C (Quantum Design, San Diego, CA, USA). To determine
their superparamagnetic behavior, particles were measured at a low field of 20 mT using
a zero-field cooled and field cooled protocols. Additional measurements at 3.0 T were
conducted with the sample temperature initially lowered to −269 ◦C in a field of 3.0 T
that corresponds to the fields of MRI scanners used for imaging. The mass magnetization
was calculated using the corrected mass value of the ferrite core from thermogravimetric
measurements that show that the ferrite core constitutes only 28.1% of the total (shell and
core) particle mass.

4.6. Nuclear Relaxation

It is essential for this project to accurately determine the thermal dependence of the
water protons’ nuclear relaxation times T1 and T2. Temperature-dependent measurements
were conducted at 3.0 T in the range from 5 to 50 ◦C with 5 ◦C steps. Relaxation times
were measured using a conventional pulsed NMR spectrometer (NMR Redstone console;
Tecmag, Houston, TX, USA and a 3.0 T, 54 mm superconducting magnet; Oxford Instru-
ments, Abingdon, UK) [55]. The temperature of the sample was regulated and stabilized
through the flow of gaseous nitrogen through the radio-frequency probe head containing a
sample. The sample temperature uncertainty was determined to be ±0.2 ◦C. Ten minutes
were allowed between setting the target temperature and the beginning of the NMR mea-
surements to achieve the thermal equilibrium within the sample. Prior to the measurement
at 5 ◦C, the magnet was shimmed using the automated Berger Brown sequence [56] to
achieve homogeneity under 5 Hz. T1 relaxation was measured with the inversion recovery
sequence with the following parameters: the inversion 180◦ pulse 26.8 µs, separated from
the sampling 90◦ pulse of 13.4 µs by 20 variable delay time covering the range from 6 ms to
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4.171 s and a recovery time of 2.5 s. Spin–spin T2 relaxation time was determined using a
spin-echo Carr–Purcell–Meiboom–Gill sequence with the following parameters: excitation
90◦ pulse 13.4 µs, focusing 180◦ pulse = 26.8 µs, refocusing time 2.0 ms, 20 refocusing
periods from 4 to 44 ms and a recovery time of 2.2 s.

4.7. Diffusion Measurements

The diffusion data of water molecules were obtained by imaging of 5 mm diameter
NMR tubes filled with deionized water and with 0.5%, 1.0% and 2.0% w/w concentration
of agar gel in DIW in a temperature-controlled phantom using a preclinical MRI operating
at 3.0 T with a voxel size of 1 mm × 1 mm × 2 mm. The temperature was measured
using a calibrated fiber optic thermometer with an accuracy of ±0.25 ◦C. The apparent
diffusion coefficients were measured using a standard pulsed-gradient spin-echo sequence
(PGSE) sequence using 5 b-values ranging from 0 to 1000 s/mm2 [57]. The following
imaging geometry parameters for the diffusion encoded spin-echo multi-slice (SEMS)
sequence were used: field of view = 64 mm × 64 mm, slice thickness = 2 mm, acquisition
matrix = 64 × 64 pixels, in-plane resolution = 1.0 mm/pixel, number of slices = 7. The
following sequence timing parameters for SEMS were used: TR = 15 s, TE = 26.5 ms, flip
angle = 90◦. The MRI signal within a 3.5 mm diameter region of interest was averaged over
the three gradient directions and fit to a simple exponential model, using a non-linear least
squares method, to obtain the ADC values.

4.8. Magnetic Resonance Imaging Protocol

The MRIs of the phantom with gradient temperature were performed using a standard
single-slice, spin-echo sequence delivering T2-weighted images. Details of the MRI setup
are given in the Appendix A below. The phantom was located on a dedicated cradle and
placed into the quadrature birdcage resonator. The registered magnet bore temperature was
17.5 ◦C. Before imaging, both channels of the resonator were tuned to 128 MHz carrier fre-
quency and matched to the 50 Ω impedance of the transmitting/receiving lines. Automatic
procedures for resonant frequency and 90◦ pulse calibration were executed immediately
prior to imaging. The details of the sequence follow: field of view = 32 × 32 mm2, slice
thickness = 4 mm, data acquisition matrix = 32 × 32 pixels, in-plane resolution 1 mm/pixel,
repetition time = 500 ms, echo time = 10.79 ms, total image acquisition time = 16 s.

The NMR data and MR images were processed using in-house developed Python
platform software. The temperature map and spatial–thermal resolution were obtained
using Origin (Origin 9.0, OriginLab Corporation, Northampton, MA, USA). The analysis of
linear regression was conducted using Prizm software (GraphPad Prism version 5.00 for
Windows, GraphPad Software, San Diego, CA, USA).

4.9. Biological Study

Mouse cells neuroblastoma (Neuro2a) (a kind gift from A. Bodzon-Kulakowska, De-
partment of Biochemistry and Neurobiology, AGH University of Krakow, Poland, ob-
tained from ATCC) were grown at 37 ◦C in Dulbecco’s modified Eagle medium (DMEM)
supplemented with 3.7% sodium bicarbonate (NaHCO3), 10% fetal bovine serum and
penicillin/streptomycin. All the reagents related to cell culture were obtained from Sigma-
Aldrich (St. Louis, MO, USA). Cells were subcultured every 2 days until the appropriate
number of cells was received for testing. After cells reached 80% confluence, they were
trypsinized, seeded on sterile 96-well plates (3.0 × 104 cells/cm2) and incubated for 24 h.

The cytotoxic activity of PEG-NPs in neuroblastoma cell lines was assessed by the
MTT (3-[4,5-dimethylthiazole-2-yl]-2,5-diphenyl tetrazolium bromide) dye conversion
assay. Cells (4 × 104) were cultured in 0.1 mL volume of culture medium in a 96-well plate
in the presence of different concentrations of PEG-NPs in obtained systems dissolved in the
medium. After 24 h, the cells were washed once and further incubated for 1 h with MTT
dye. The obtained blue formazan precipitate was dissolved using a solubilization buffer
(5 mM HCl in isopropanol) and kept 2 h at 37 ◦C. The absorbance at 570 nm was measured
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using a microplate reader. Each result was presented as a mean of the three independent
experiments, each of them performed in triplicate. SD was also calculated and presented
for each mean value. The significance of the cell viability differences between no particles
control and with different concentrations of MnZn ferrite nanoparticles was determined
with a one-way ANOVA test with Dunnett’s test of multiple comparisons. These were
conducted using Prizm software (GraphPad Prism version 5.00 for Windows, GraphPad
Software, San Diego, CA, USA).

Supplementary Materials: The supporting information can be downloaded at https://www.mdpi.
com/article/10.3390/ijms242216458/s1.
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Appendix A

Magnetic Resonance Imaging Setup

Temperature-dependent MRI experiments were conducted on the preclinical, 30 cm
bore MRI scanner (Agilent, Santa Clara, CA, USA). A dedicated setup was designed and
built for MRI experiments with an in-plane, radial, temperature gradient. It was based on
heating the core, made of agar gel, with polydopamine with an 808 nm near-infrared diode
laser (MDL-H-808-5W, CNI Optoelectronics Technology Co, Ltd., Changchun, China). PDA
possesses unique properties, making photothermal conversion more efficient [58,59].

Laser light delivered through an optical fiber is dispersed sideways by a medical grade
diffuser (BioTex, Inc., Houston, TX, USA) in the center of the agar–PDA core. A core, heated
for 5 min, temporarily produces a strong, time-dependent, thermal gradient reaching a
maximum of 30 ◦C over 14 mm in the surrounding jacket of the agar gel doped with MnZn
ferrite nanoparticles. A diffuser is seen in action in Figure A1a dispersing light in deionized
water. A schematic diagram of the phantom is shown in Figure A1b. The orange color
denotes the heat ellipsoid. Profiles of heating curves recorded during the MRI study by
three miniature optical sensors (S1, S2, S3) are presented in Figure A1c. The green dashed
rectangle shows the time position during the 16 s imaging window. The black solid line
marks the time of temperature measurement used in spatial–thermal resolution analysis.

https://www.mdpi.com/article/10.3390/ijms242216458/s1
https://www.mdpi.com/article/10.3390/ijms242216458/s1
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Figure A1d exhibits a picture of the complete setup assembly in front of an Agilent 30 cm
preclinical scanner magnet before insertion into the isocenter of the magnet.
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References
1. Curie, P. Lois expérimentales du magnétisme. Propriétés magnétiques des corps à diverses températures. Ann. Chim. Phys. 1895,

5, 289.
2. Settecase, F.; Sussman, M.S.; Roberts, T.P.L. A new temperature-sensitive contrast mechanism for MRI: Curie temperature

transition-based imaging. Contrast Media Mol. Imaging 2007, 2, 50. [CrossRef]
3. Zhong, J.; Schilling, M.; Ludwig, F. Magnetic nanoparticle temperature imaging with a scanning magnetic particle spectrometer.

Meas. Technol. 2018, 29, 115903. [CrossRef]
4. Woodrum, D.A.; Kawashima, A.; Gorny, K.R.; Mynderse, L.A. Targeted prostate biopsy and MR-guided therapy for prostate

cancer. Abdom. Radiol. 2016, 41, 877. [CrossRef] [PubMed]
5. Rieke, V.; Pauly, K.B. MR Thermometry. J. Magn. Reson. Imaging 2008, 27, 376. [CrossRef] [PubMed]
6. Zhu, M.; Sun, Z.; Ng, C.K. Image-guided thermal ablation with MR-based thermometry. Quant. Imaging Med. Surg. 2017, 7, 356.

[CrossRef]
7. Dzwonczyk, R.; Fujii, J.T.; Simonetti, O.; Nieves-Ramos, R.; Bergese, S.D. Electrical noise in the intraoperative magnetic resonance

imaging setting. Anesth. Analg. 2009, 108, 181. [CrossRef]
8. Odéen, H.; Parker, D.L. Magnetic resonance thermometry and its biological–physical principles and practical considerations.

Prog. NMR Spectrosc. 2019, 110, 34. [CrossRef]
9. Hofstetter, L.W.; Yeo, D.T.B.W.; Dixon, T.; Marinelli, L.; Foo, T.K. Referenced MR thermometry using three-echo phase-based fat

water separation method. Magn. Reson. Imaging 2018, 49, 86. [CrossRef]
10. Hankiewicz, J.H.; Celinski, Z.; Stupic, K.F.; Anderson, N.R.; Camley, R.E. Ferromagnetic particles as magnetic resonance imaging

temperature sensors. Nat. Commun. 2016, 7, 12415. [CrossRef]

https://doi.org/10.1002/cmmi.120
https://doi.org/10.1088/1361-6501/aae3bd
https://doi.org/10.1007/s00261-016-0681-3
https://www.ncbi.nlm.nih.gov/pubmed/26907717
https://doi.org/10.1002/jmri.21265
https://www.ncbi.nlm.nih.gov/pubmed/18219673
https://doi.org/10.21037/qims.2017.06.06
https://doi.org/10.1213/ane.0b013e31818f8777
https://doi.org/10.1016/j.pnmrs.2019.01.003
https://doi.org/10.1016/j.mri.2018.01.002
https://doi.org/10.1038/ncomms12415


Int. J. Mol. Sci. 2023, 24, 16458 17 of 18

11. Alghamdi, N.A.; Hankiewicz, J.H.; Anderson, N.R.; Stupic, K.F.; Camley, R.E.; Przybylski, M.; Żukrowski, J.; Celinski, Z.
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