Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,437)

Search Parameters:
Keywords = spin properties

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
9 pages, 1953 KiB  
Article
Planar Hall Effect and Magnetoresistance Effect in Pt/Tm3Fe5O12 Bilayers at Low Temperature
by Yukuai Liu, Jingming Liang, Zhiyong Xu, Jiahui Li, Junhao Ruan, Sheung Mei Ng, Chuanwei Huang and Chi Wah Leung
Electronics 2025, 14(15), 3060; https://doi.org/10.3390/electronics14153060 (registering DOI) - 31 Jul 2025
Viewed by 63
Abstract
Spin transport behaviors in heavy metal/ferromagnetic insulator (HM/FI) bilayers have attracted considerable attention due to various novel phenomena and applications in spintronic devices. Herein, we investigate the planar Hall effect (PHE) in Pt/Tm3Fe5O12 (Pt/TmIG) heterostructures at low temperatures; [...] Read more.
Spin transport behaviors in heavy metal/ferromagnetic insulator (HM/FI) bilayers have attracted considerable attention due to various novel phenomena and applications in spintronic devices. Herein, we investigate the planar Hall effect (PHE) in Pt/Tm3Fe5O12 (Pt/TmIG) heterostructures at low temperatures; moment switching in the ferrimagnetic insulator TmIG is detected by using electrical measurements. Double switching hysteresis PHE curves are found in Pt/TmIG bilayers, closely related to the magnetic moment of Tm3+ ions, which makes a key contribution to the total magnetic moment of TmIG film at low temperature. More importantly, a magnetoresistance (MR) curve with double switching is found, which has not been reported in this simple HM/FI bilayer, and the sign of this MR effect is sensitive to the angle between the magnetic field and current directions. Our findings of these effects in this HM/rare earth iron garnet (HM/REIG) bilayer provide insights into tuning the spin transport properties of HM/REIG by changing the rare earth. Full article
(This article belongs to the Section Electronic Materials, Devices and Applications)
Show Figures

Figure 1

12 pages, 7989 KiB  
Article
Microstructures and Magnetic Properties of Rare-Earth-Free Co-Zr-Mo-B Alloys
by Tetsuji Saito and Masaru Itakura
Crystals 2025, 15(8), 698; https://doi.org/10.3390/cryst15080698 (registering DOI) - 31 Jul 2025
Viewed by 157
Abstract
The growing demand for rare-earth magnets has raised concerns over their price and the country’s risk of depleting the supply of rare-earth elements. These severe concerns have led to the study of rare-earth-free magnets that do not rely on rare-earth elements. Co-Zr-Mo-B alloys, [...] Read more.
The growing demand for rare-earth magnets has raised concerns over their price and the country’s risk of depleting the supply of rare-earth elements. These severe concerns have led to the study of rare-earth-free magnets that do not rely on rare-earth elements. Co-Zr-Mo-B alloys, one of the prospective candidates for rare-earth-free magnets, were produced by the melt-spinning technique and subsequent annealing. It was found that a small substitution of Mo for Zr in the Co-Zr-B alloys increased coercivity. The Co-Zr-Mo-B alloy with a Mo content of 2 at% showed a high coercivity of 6.2 kOe with a remanence of 40 emu/g. SEM studies showed that the annealed Co-Zr-Mo-B alloys had fine, uniform grains with an average diameter of about 0.6 μm. Further studies using STEM demonstrated that the ferromagnetic phase in the annealed Co-Zr-Mo-B alloys with high coercivity was composed of the Co5Zr phase and the long-period stacking ordered (LPSO) phase. That is, the fine grains observed in the SEM studies were found to be ferromagnetic dendrites containing numerous twin boundaries of the Co5Zr phase and its derived LPSO phase. Therefore, the high coercivity of the Co-Zr-Mo-B alloys can be attributed to the presence of ferromagnetic crystals of Co5Zr and the derived LPSO phase. Full article
(This article belongs to the Special Issue Innovations in Magnetic Composites: Synthesis to Application)
Show Figures

Figure 1

19 pages, 4549 KiB  
Article
Synthesis, Structure, and Magnetic Properties of (Co/Eu) Co-Doped ZnO Nanoparticles
by Adil Guler
Coatings 2025, 15(8), 884; https://doi.org/10.3390/coatings15080884 - 29 Jul 2025
Viewed by 198
Abstract
Transition-metal and rare-earth element co-doped ZnO nanoparticles have attracted significant attention due to their potential applications in spintronics and optoelectronics. In this study, Zn0.95Co0.01EuxO (x = 0.01–0.05) nanoparticles were synthesized using the sol–gel technique. The estimated stress, strain, and [...] Read more.
Transition-metal and rare-earth element co-doped ZnO nanoparticles have attracted significant attention due to their potential applications in spintronics and optoelectronics. In this study, Zn0.95Co0.01EuxO (x = 0.01–0.05) nanoparticles were synthesized using the sol–gel technique. The estimated stress, strain, and crystallite sizes of the synthesized Co/Eu co-doped ZnO nanoparticles were calculated using the Williamson–Hall method, and their electron spin resonance (ESR) properties were investigated to examine the effect on their magnetic and structural properties. X-ray diffraction (XRD) analysis confirmed the presence of a single-phase structure. Surface morphology, elemental composition, crystal quality, defect types, density, and magnetic behavior were characterized using scanning electron microscope (SEM), electron-dispersive spectroscopy (EDS), and ESR techniques, respectively. The effect of Eu concentration on the linewidth (ΔBpp) and g-factor in the ESR spectra was studied. By correlating ESR results with the obtained structural properties, room-temperature ferromagnetic behavior was identified. Full article
Show Figures

Figure 1

14 pages, 1884 KiB  
Article
Ag/ZrO2 Hybrid Coating for Tribological and Corrosion Protection of Ti45Nb Alloy in Biomedical Environments
by Mevra Aslan Çakir
Metals 2025, 15(8), 831; https://doi.org/10.3390/met15080831 - 24 Jul 2025
Viewed by 217
Abstract
In this study, a Ag/ZrO2 hybrid coating prepared by the sol–gel method on a β-type Ti45Nb alloy was applied by the spin coating technique, and the microstructural, mechanical, electrochemical, and tribological properties of the surface were evaluated in a multi-dimensional manner. The [...] Read more.
In this study, a Ag/ZrO2 hybrid coating prepared by the sol–gel method on a β-type Ti45Nb alloy was applied by the spin coating technique, and the microstructural, mechanical, electrochemical, and tribological properties of the surface were evaluated in a multi-dimensional manner. The hybrid solution was prepared using zirconium propoxide and silver nitrate and stabilized through a low-temperature two-stage annealing protocol. The crystal structure of the coating was determined by XRD, and the presence of dense tetragonal ZrO2 phase and crystalline Ag phases was confirmed. SEM-EDS analyses revealed a compact coating structure of approximately 1.8 µm thickness with homogeneously distributed Ag nanoparticles on the surface. As a result of the electrochemical corrosion tests, it was determined that the open circuit potential shifted to more noble values, the corrosion current density decreased, and the corrosion rate decreased by more than 70% on the surfaces where the Ag/ZrO2 coating was applied. In the tribological tests, a decrease in the coefficient of friction, narrowing of wear marks, and significant reduction in surface damage were observed in dry and physiological (HBSS) environments. The findings revealed that the Ag/ZrO2 hybrid coating significantly improved the surface performance of the Ti45Nb alloy both mechanically and electrochemically and offers high potential for biomedical implant applications. Full article
(This article belongs to the Special Issue Corrosion Behavior and Surface Engineering of Metallic Materials)
Show Figures

Figure 1

11 pages, 2151 KiB  
Article
Fabrication of Antibacterial Poly(ethylene terephthalate)/Graphene Nanocomposite Fibers by In Situ Polymerization for Fruit Preservation
by Jiarui Wu, Qinhan Chen, Aobin Han, Min Liu, Wenhuan Zhong, Xiaojue Shao, Yan Jiang, Jing Lin, Zhenyang Luo, Jie Yang and Gefei Li
Molecules 2025, 30(15), 3109; https://doi.org/10.3390/molecules30153109 - 24 Jul 2025
Viewed by 195
Abstract
A novel polyester/graphene nanocomposite fiber was produced using the in situ polymerization protocol with carboxylated graphene and melt spinning technology. The resulting nanocomposite fibers were characterized by X-ray diffraction (XRD), Raman spectroscopy, differential scanning calorimeter (DSC), and scanning electron microscope (SEM). The fibers [...] Read more.
A novel polyester/graphene nanocomposite fiber was produced using the in situ polymerization protocol with carboxylated graphene and melt spinning technology. The resulting nanocomposite fibers were characterized by X-ray diffraction (XRD), Raman spectroscopy, differential scanning calorimeter (DSC), and scanning electron microscope (SEM). The fibers containing 0.2 wt% graphene fraction showed an excellent dispersity of graphene nanosheets in polymeric matrix. DSC test showed that the efficient polymer-chain grafting depresses the crystallization of PET chains. This graphene-contained PET fabric exhibited attractive antibacterial properties that can be employed in fruit preservation to ensure food safety. Full article
(This article belongs to the Special Issue Design and Application of Functional Supramolecular Materials)
Show Figures

Figure 1

26 pages, 38696 KiB  
Review
Altermagnetism and Altermagnets: A Brief Review
by Rupam Tamang, Shivraj Gurung, Dibya Prakash Rai, Samy Brahimi and Samir Lounis
Magnetism 2025, 5(3), 17; https://doi.org/10.3390/magnetism5030017 - 23 Jul 2025
Viewed by 789
Abstract
Recently, a new class of magnetic material, termed altermagnets, has caught the attention of the magnetism and spintronics community. The magnetic phenomenon arising from these materials differs from traditional ferromagnetism and antiferromagnetism. It generally lacks net magnetization and is characterized by unusual non-relativistic [...] Read more.
Recently, a new class of magnetic material, termed altermagnets, has caught the attention of the magnetism and spintronics community. The magnetic phenomenon arising from these materials differs from traditional ferromagnetism and antiferromagnetism. It generally lacks net magnetization and is characterized by unusual non-relativistic spin-splitting and broken time-reversal symmetry. This leads to novel transport properties, such as the anomalous Hall effect, the crystal Nernst effect, and spin-dependent phenomena. Spin-dependent phenomena such as spin currents, spin-splitter torques, and high-frequency dynamics emerge as key characteristics in altermagnets. This paper reviews the main aspects pertaining to altermagnets by providing an overview of theoretical investigations and experimental realizations. We discuss the most recent developments in altermagnetism and prospects for exploiting its unique properties in next-generation devices. Full article
Show Figures

Figure 1

21 pages, 5914 KiB  
Article
Simple Spin-Coating Preparation of Hydrogel and Nanoparticle-Loaded Hydrogel Thin Films
by Sara Calistri, Chiara Ciantelli, Sebastiano Cataldo, Vincenzo Cuzzola, Roberta Guzzinati, Simone Busi and Alberto Ubaldini
Coatings 2025, 15(7), 859; https://doi.org/10.3390/coatings15070859 - 21 Jul 2025
Viewed by 329
Abstract
Hydrogel films receive significant attention among researchers because they combine increased stimuli responsiveness and faster responses to the already excellent properties of their component materials. However, their preparation is complex and requires that many difficulties are overcome. The present work presents a new [...] Read more.
Hydrogel films receive significant attention among researchers because they combine increased stimuli responsiveness and faster responses to the already excellent properties of their component materials. However, their preparation is complex and requires that many difficulties are overcome. The present work presents a new study regarding the preparation of pure and nanoparticle-loaded alginate-based films by spin-coating. Two-microliter solutions of sodium alginate and calcium chloride with different concentrations were deposited on a glass substrate and subjected to rapid rotations of between 100 and 1000 RPM. Film formation can be achieved by optimizing the ratio between the viscosity of the solutions, depending on their concentrations and the rotation speed. When these conditions are in the right range, a homogeneous film is obtained, showing good adherence to the substrate and uniform thickness. Films containing silver nanoparticles were prepared, exploiting the reaction between sodium borohydride and silver nitrate. The two reagents were added to the sodium alginate and calcium nitrate solution, respectively. Their concentration is the driving force for the formation of a uniform film: particles of about 50 nm that are well-dispersed throughout the film are obtained using AgNO3 at 4 mM and NaBH4 at 2 or 0.2 mM; meanwhile, at higher concentrations, one can also obtain the precipitation of inorganic crystals. Full article
(This article belongs to the Section Thin Films)
Show Figures

Graphical abstract

13 pages, 9148 KiB  
Article
Investigation of Thermoelectric Properties in Altermagnet RuO2
by Jun Liu, Chunmin Ning, Xiao Liu, Sicong Zhu and Shuling Wang
Nanomaterials 2025, 15(14), 1129; https://doi.org/10.3390/nano15141129 - 21 Jul 2025
Viewed by 262
Abstract
An altermagnet, characterized by its distinctive magnetic properties, may hold potential applications in diverse fields such as magnetic materials, spintronics, data storage, and quantum computing. As a prototypical altermagnet, RuO2 exhibits spin polarization and demonstrates the advantageous characteristics of high electrical conductivity [...] Read more.
An altermagnet, characterized by its distinctive magnetic properties, may hold potential applications in diverse fields such as magnetic materials, spintronics, data storage, and quantum computing. As a prototypical altermagnet, RuO2 exhibits spin polarization and demonstrates the advantageous characteristics of high electrical conductivity and low thermal conductivity. These exceptional properties endow it with considerable promise in the emerging field of thermal spintronics. We studied the electronic structure and thermoelectric properties of RuO2; the constructed RuO2/TiO2/RuO2 all-antiferromagnetic tunnel junction (AFMTJ) exhibited thermally induced magnetoresistance (TIMR), reaching a maximum TIMR of 1756% at a temperature gradient of 5 K. Compared with prior studies on RuO2-based antiferromagnetic tunnel junctions, the novelty of this work lies in the thermally induced magnetoresistance based on its superior thermoelectric properties. In parallel structures, the spin-down current dominates the transmission spectrum, whereas in antiparallel structures, the spin-up current governs the transmission spectrum, underscoring the spin-polarized thermal transport. In addition, thermoelectric efficiency emphasizes the potential of RuO2 to link antiferromagnetic robustness with ferromagnetic spin functionality. These findings promote the development of efficient spintronic devices and spin-based storage technology for waste heat recovery and emphasize the role of spin splitting in zero-magnetization systems. Full article
Show Figures

Figure 1

12 pages, 11870 KiB  
Article
Structural, Elastic, Electronic, Magnetic, and Half-Metallic Properties of Full-Heusler Compounds Fe2LiZ (Z = Ge and Si): A First-Principles Study
by Yufeng Wen, Yanlin Yu, Zhangli Lai and Xianshi Zeng
Metals 2025, 15(7), 808; https://doi.org/10.3390/met15070808 - 18 Jul 2025
Viewed by 216
Abstract
The structural, elastic, electronic, magnetic, and half-metallic properties of full-Heusler Fe2LiSi and Fe2LiGe compounds were investigated using first-principles calculations. Among the studied configurations, the cubic XA structures in the ferromagnetic state for both compounds are the most stable. They [...] Read more.
The structural, elastic, electronic, magnetic, and half-metallic properties of full-Heusler Fe2LiSi and Fe2LiGe compounds were investigated using first-principles calculations. Among the studied configurations, the cubic XA structures in the ferromagnetic state for both compounds are the most stable. They exhibit mechanical stability, elastic anisotropy, and ductility. Compared to Fe2LiGe, Fe2LiSi demonstrates higher stability, stronger anisotropy, greater brittleness, higher Debye and melting temperatures, and a smaller Grüneisen parameter. Both compounds exhibit metallic majority-spin channels and semiconducting minority-spin channels. At the equilibrium lattice constant, Fe2LiSi and Fe2LiGe exhibit half-metallic gaps of 0.141 eV and 0.179 eV, respectively. Both compounds exhibit 100% spin-polarization ratio in specific lattice constant ranges. The total magnetic moment per formula unit (3.000 μB) follows the generalized Slater–Pauling rule and depends on Fe atomic magnetic moments. These properties indicate that Fe2LiSi and Fe2LiGe hold promise for spintronic applications. Full article
Show Figures

Figure 1

15 pages, 6762 KiB  
Article
Influence of Annealing on the Properties of Fe62Ni18P13C7 Alloy
by Aleksandra Małachowska, Łukasz Szczepański, Andrzej Żak, Anna Kuś, Łukasz Żrodowski, Łukasz Maj and Wirginia Pilarczyk
Materials 2025, 18(14), 3376; https://doi.org/10.3390/ma18143376 - 18 Jul 2025
Viewed by 257
Abstract
In this study, the influence of annealing on the phase evolution and mechanical properties of the Fe62Ni18P13C7 (at.%) alloy was investigated. Ribbons produced via melt-spinning were annealed at various temperatures, and their structural transformations and hardness [...] Read more.
In this study, the influence of annealing on the phase evolution and mechanical properties of the Fe62Ni18P13C7 (at.%) alloy was investigated. Ribbons produced via melt-spinning were annealed at various temperatures, and their structural transformations and hardness were evaluated. The alloy exhibited a narrow supercooled liquid region (ΔTx ≈ 22 °C), confirming its low glass-forming ability (GFA). Primary crystallization began at approximately 380 °C with the formation of α-(Fe,Ni) and Fe2NiP, followed by the emergence of γ-(Fe,Ni) phase at higher temperatures. A significant increase in hardness was observed after annealing up to 415 °C, primarily due to nanocrystallization and phosphide precipitation. Further heating resulted in a hardness plateau, followed by a noticeable decline. Additionally, samples were produced via selective laser melting (SLM). The microstructure of the SLM-processed material revealed extensive cracking and the coexistence of phosphorus-rich regions corresponding to Fe2NiP and iron-rich regions associated with γ-(Fe,Ni). Full article
(This article belongs to the Special Issue Laser Technology for Materials Processing)
Show Figures

Figure 1

16 pages, 4723 KiB  
Article
The Effect of the Fiber Diameter, Epoxy-to-Amine Ratio, and Degree of PVA Saponification on CO2 Adsorption Properties of Amine-Epoxy/PVA Nanofibers
by Chisato Okada, Zongzi Hou, Hiroaki Imoto, Kensuke Naka, Takeshi Kikutani and Midori Takasaki
Polymers 2025, 17(14), 1973; https://doi.org/10.3390/polym17141973 - 18 Jul 2025
Viewed by 286
Abstract
Achieving carbon neutrality requires not only reducing CO2 emissions but also capturing atmospheric CO2. Direct air capture (DAC) using amine-based adsorbents has emerged as a promising approach. In this study, we developed amine-epoxy/poly(vinyl alcohol) (AE/PVA) nanofibers via electrospinning and in [...] Read more.
Achieving carbon neutrality requires not only reducing CO2 emissions but also capturing atmospheric CO2. Direct air capture (DAC) using amine-based adsorbents has emerged as a promising approach. In this study, we developed amine-epoxy/poly(vinyl alcohol) (AE/PVA) nanofibers via electrospinning and in situ thermal polymerization. PVA was incorporated to enhance spinnability, and B-staging of AE enabled fiber formation without inline heating. We systematically investigated the effects of electrospinning parameters, epoxy-to-amine ratios (E/A), and the degree of PVA saponification on CO2 adsorption performance. Thinner fibers, obtained by adjusting spinning conditions, exhibited faster adsorption kinetics due to increased surface area. Varying the E/A revealed a trade-off between adsorption capacity and low-temperature desorption efficiency, with secondary amines offering a balanced performance. Additionally, highly saponified PVA improved thermal durability by minimizing side reactions with amines. These findings highlight the importance of optimizing fiber morphology, chemical composition, and polymer properties to enhance the performance and stability of AE/PVA nanofibers for DAC applications. Full article
(This article belongs to the Section Circular and Green Sustainable Polymer Science)
Show Figures

Figure 1

11 pages, 1218 KiB  
Communication
Spin Polarization Crossing a Heterostructure of a Ferromagnetic/Semiconductor-Based Rashba Spin–Orbit Interaction: Tight Binding Approach
by Aek Jantayod
Physics 2025, 7(3), 29; https://doi.org/10.3390/physics7030029 - 17 Jul 2025
Viewed by 233
Abstract
The spin polarization of current in a conventional ferromagnetic and semiconductor-based Rashba spin–orbit interaction (RSOI) in an infinite two-dimensional system and the electrical properties of the junction are described using the square lattice model. In particular, a suitable approach is devised to compute [...] Read more.
The spin polarization of current in a conventional ferromagnetic and semiconductor-based Rashba spin–orbit interaction (RSOI) in an infinite two-dimensional system and the electrical properties of the junction are described using the square lattice model. In particular, a suitable approach is devised to compute the particle transport characteristics in the junction, taking into consideration the interface quality. It is found that the spin polarization becomes strongly reliant on the spin-flip scattering potential at applied voltages close to the crossings of the semiconductor-based RSOI band. On the other hand, in the voltage near the middle band, the spin polarization of current is found to remain modest and not influenced by either the spin-flip or non-spin-flip scattering potentials. Full article
(This article belongs to the Section Classical Physics)
Show Figures

Figure 1

14 pages, 5463 KiB  
Article
First-Principles Study of Topological Nodal Line Semimetal I229-Ge48 via Cluster Assembly
by Liwei Liu, Xin Wang, Nan Wang, Yaru Chen, Shumin Wang, Caizhi Hua, Tielei Song, Zhifeng Liu and Xin Cui
Nanomaterials 2025, 15(14), 1109; https://doi.org/10.3390/nano15141109 - 17 Jul 2025
Viewed by 297
Abstract
Group IV element-based topological semimetals (TSMs) are pivotal for next-generation quantum devices due to their ultra-high carrier mobility and low-energy consumption. However, germanium (Ge)-based TSMs remain underexplored despite their compatibility with existing semiconductor technologies. Here, we propose a novel I229-Ge48 allotrope constructed [...] Read more.
Group IV element-based topological semimetals (TSMs) are pivotal for next-generation quantum devices due to their ultra-high carrier mobility and low-energy consumption. However, germanium (Ge)-based TSMs remain underexplored despite their compatibility with existing semiconductor technologies. Here, we propose a novel I229-Ge48 allotrope constructed via bottom-up cluster assembly that exhibits a unique porous spherical Fermi surface and strain-tunable topological robustness. First-principles calculations reveal that I229-Ge48 is a topological nodal line semimetal with exceptional mechanical anisotropy (Young’s modulus ratio: 2.27) and ductility (B/G = 2.21, ν = 0.30). Remarkably, the topological property persists under spin-orbit coupling (SOC) and tensile strain, while compressive strain induces a semiconductor transition (bandgap: 0.29 eV). Furthermore, I229-Ge48 demonstrates strong visible-light absorption (105 cm−1) and a strong strain-modulated infrared response, surpassing conventional Ge allotropes. These findings establish I229-Ge48 as a multifunctional platform for strain-engineered nanoelectronics and optoelectronic devices. Full article
Show Figures

Figure 1

13 pages, 462 KiB  
Article
Electron and Hole Doping Effects on the Magnetic Properties and Band Gap Energy of Ba2FeMoO6 and Sr2FeMoO6
by Angel T. Apostolov, Iliana N. Apostolova and Julia M. Wesselinowa
Molecules 2025, 30(14), 2987; https://doi.org/10.3390/molecules30142987 - 16 Jul 2025
Viewed by 311
Abstract
Using the s-d model and Green’s function theory, we investigated for the first time the electron and hole doping effects on the magnetic and optical properties of the double perovskites Ba2FeMoO6 (BFMO) and Sr2FeMoO6 (SFMO). Our aim [...] Read more.
Using the s-d model and Green’s function theory, we investigated for the first time the electron and hole doping effects on the magnetic and optical properties of the double perovskites Ba2FeMoO6 (BFMO) and Sr2FeMoO6 (SFMO). Our aim was to find the doping ions that lead to an increase in Curie temperature TC. On the basis of a competition mechanism between spin exchange and s-d interactions, we explain at a microscopic level the decrease in magnetization M and band gap energy Eg, as well as the increase in TC of BFMO and SFMO through substitution with rare earth ions at the Ba(Sr) sites. The influence of doping with K at the Ba(Sr) and Co at the Fe sites on the magnetic properties and the band gap is also discussed. A very good qualitative coincidence with the existing experimental data was observed. Moreover, we found that both M and TC decrease with decreasing the size of BFMO and SFMO nanoparticles. Full article
Show Figures

Figure 1

14 pages, 4651 KiB  
Article
Thermal-Induced Oxygen Vacancy Enhancing the Thermo-Chromic Performance of W-VO2−x@AA/PVP Nanoparticle Composite-Based Smart Windows
by Jiran Liang, Tong Wu, Chengye Zhang, Yunfei Bai, Dequan Zhang and Dangyuan Lei
Nanomaterials 2025, 15(14), 1084; https://doi.org/10.3390/nano15141084 - 12 Jul 2025
Viewed by 297
Abstract
Tungsten-doped vanadium dioxide (W-VO2) shows semiconductor-to-metal phase transition properties at room temperature, which is an ideal thermo-chromic smart window material. However, low visual transmittance and solar modulation limit its application in building energy saving. In this paper, a W-VO2−x@AA [...] Read more.
Tungsten-doped vanadium dioxide (W-VO2) shows semiconductor-to-metal phase transition properties at room temperature, which is an ideal thermo-chromic smart window material. However, low visual transmittance and solar modulation limit its application in building energy saving. In this paper, a W-VO2−x@AA core-shell nanoparticle is proposed to improve the thermo-chromic performance of W-VO2. Oxygen vacancies were used to promote the connection of W-VO2−x nanoparticles with L-ascorbic acid (AA) molecules. Oxygen vacancies were tuned in W-VO2 nanoparticles by thermal annealing temperatures in vacuum, and W-VO2−x@AA nanoparticles were synthesized by the hydrothermal method. A smart window was formed by dispersing W-VO2−x@AA core-shell nanoparticles into PVP evenly and spin-coating them on the surface of glass. The visual transmittance of this smart window reaches up to 67%, and the solar modulation reaches up to 12.1%. This enhanced thermo-chromic performance is related to the electron density enhanced by the AA surface molecular coordination effect through W dopant and oxygen vacancies. This work provides a new strategy to enhance the thermo-chromic performance of W-VO2 and its application in the building energy-saving field. Full article
(This article belongs to the Special Issue Nano Surface Engineering: 2nd Edition)
Show Figures

Figure 1

Back to TopTop