Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (16)

Search Parameters:
Keywords = spherical virion

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 3835 KiB  
Article
Host RhoA Signaling Controls Filamentous vs. Spherical Morphogenesis and Cell-to-Cell Spread of RSV via Lipid Raft Localization: Host-Directed Antiviral Target
by Manoj K. Pastey, Lewis H. McCurdy and Barney S. Graham
Microorganisms 2025, 13(7), 1599; https://doi.org/10.3390/microorganisms13071599 - 7 Jul 2025
Viewed by 340
Abstract
Respiratory syncytial virus (RSV) is a major human respiratory pathogen, particularly affecting infants, the elderly, and immunocompromised individuals. RSV exists in both spherical and filamentous forms, with the filamentous morphology associated with enhanced infectivity and cell-to-cell spread. Here, we demonstrate that RhoA, a [...] Read more.
Respiratory syncytial virus (RSV) is a major human respiratory pathogen, particularly affecting infants, the elderly, and immunocompromised individuals. RSV exists in both spherical and filamentous forms, with the filamentous morphology associated with enhanced infectivity and cell-to-cell spread. Here, we demonstrate that RhoA, a small GTPase involved in cytoskeletal regulation, is essential for filamentous RSV morphogenesis through its role in organizing lipid raft microdomains. Rhosin, a selective RhoA inhibitor developed through structure-guided screening, disrupts GEF–RhoA interactions to block RhoA activation. The pharmacological inhibition of RhoA with Rhosin significantly reduced filamentous virion formation, disrupted RSV fusion (F) protein colocalization with lipid rafts, and diminished cell-to-cell fusion, without affecting overall viral replication. Scanning electron microscopy revealed that Rhosin-treated infected HEp-2 cells exhibited fewer and shorter filamentous projections compared to the extensive filament formation seen in untreated cells. β-galactosidase-based fusion assays confirmed that reduced filamentation corresponded with decreased cell-to-cell fusion. The biophysical separation of RSV spherical and filamentous particles by sucrose gradient velocity sedimentation, coupled with fluorescence and transmission electron microscopy, showed that Rhosin treatment shifted virion morphology toward spherical forms. This suggests that RhoA activity is critical for filamentous virion assembly, which may enhance viral spread. Immunofluorescence microscopy using lipid raft-selective dyes (DiIC16) and fusion protein-specific antibodies revealed the strong co-localization of RSV proteins with lipid rafts. Importantly, the pharmacological inhibition of RhoA with Rhosin disrupted F protein partitioning into raft domains, underscoring the requirement for intact lipid rafts in assembly. These findings highlight a novel role for host RhoA signaling in regulating viral assembly through raft microdomain organization, offering a potential target for host-directed antiviral intervention aimed at altering RSV structural phenotypes and limiting pathogenesis. Full article
(This article belongs to the Special Issue Viral Diseases: Current Research and Future Directions)
Show Figures

Figure 1

16 pages, 2591 KiB  
Article
Newly Established Genetic System for Functional Analysis of MetSV
by Finn O. Gehlert, Katrin Weidenbach, Brian Barüske, Daniela Hallack, Urska Repnik and Ruth A. Schmitz
Int. J. Mol. Sci. 2023, 24(13), 11163; https://doi.org/10.3390/ijms241311163 - 6 Jul 2023
Cited by 3 | Viewed by 2020
Abstract
The linear chromosome of the Methanosarcina spherical virus with 10,567 bp exhibits 22 ORFs with mostly unknown functions. Annotation using common tools and databases predicted functions for a few genes like the type B DNA polymerase (MetSVORF07) or the small (MetSVORF15) and major [...] Read more.
The linear chromosome of the Methanosarcina spherical virus with 10,567 bp exhibits 22 ORFs with mostly unknown functions. Annotation using common tools and databases predicted functions for a few genes like the type B DNA polymerase (MetSVORF07) or the small (MetSVORF15) and major (MetSVORF16) capsid proteins. For verification of assigned functions of additional ORFs, biochemical or genetic approaches were found to be essential. Consequently, we established a genetic system for MetSV by cloning its genome into the E. coli plasmid pCR-XL-2. Comparisons of candidate plasmids with the MetSV reference based on Nanopore sequencing revealed several mutations of yet unknown provenance with an impact on protein-coding sequences. Linear MetSV inserts were generated by BamHI restriction, purified and transformed in Methanosarcina mazei by an optimized liposome-mediated transformation protocol. Analysis of resulting MetSV virions by TEM imaging and infection experiments demonstrated no significant differences between plasmid-born viruses and native MetSV particles regarding their morphology or lytic behavior. The functionality of the genetic system was tested by the generation of a ΔMetSVORF09 mutant that was still infectious. Our genetic system of MetSV, the first functional system for a virus of methanoarchaea, now allows us to obtain deeper insights into MetSV protein functions and virus-host interactions. Full article
(This article belongs to the Special Issue Archaeal Viruses)
Show Figures

Figure 1

11 pages, 2971 KiB  
Article
Porcine Deltacoronavirus-like Particles Produced by a Single Recombinant Baculovirus Elicit Virus-Specific Immune Responses in Mice
by Yangkun Liu, Xueying Han, Yaqi Qiao, Tiejun Wang and Lunguang Yao
Viruses 2023, 15(5), 1095; https://doi.org/10.3390/v15051095 - 29 Apr 2023
Cited by 4 | Viewed by 2746
Abstract
Porcine deltacoronavirus (PDCoV) causes diarrhea and vomiting in neonatal piglets worldwide and has the potential for cross-species transmission. Therefore, virus-like particles (VLPs) are promising vaccine candidates because of their safety and strong immunogenicity. To the best of our knowledge, the present study reported [...] Read more.
Porcine deltacoronavirus (PDCoV) causes diarrhea and vomiting in neonatal piglets worldwide and has the potential for cross-species transmission. Therefore, virus-like particles (VLPs) are promising vaccine candidates because of their safety and strong immunogenicity. To the best of our knowledge, the present study reported for the first time the generation of PDCoV VLPs using a baculovirus expression vector system, and electron micrograph analyses revealed that PDCoV VLPs appeared as spherical particles with a diameter similar to that of the native virions. Furthermore, PDCoV VLPs effectively induced mice to produce PDCoV-specific IgG and neutralizing antibodies. In addition, VLPs could stimulate mouse splenocytes to produce high levels of cytokines IL-4 and IFN-γ. Moreover, the combination of PDCoV VLPs and Freund’s adjuvant could improve the level of the immune response. Together, these data showed that PDCoV VLPs could effectively elicit humoral and cellular immunity in mice, laying a solid foundation for developing VLP-based vaccines to prevent PDCoV infections. Full article
(This article belongs to the Collection Coronaviruses)
Show Figures

Figure 1

16 pages, 3700 KiB  
Article
Characterization of the First Alternavirus Identified in Fusarium avenaceum, the Causal Agent of Potato Dry Rot
by Xiaofang Zhang, Chunyan Wu, Huihui Hua, Qingnian Cai and Xuehong Wu
Viruses 2023, 15(1), 145; https://doi.org/10.3390/v15010145 - 2 Jan 2023
Cited by 10 | Viewed by 2397
Abstract
A novel virus with a double-stranded RNA (dsRNA) genome was isolated from Fusarium avenaceum strain GS-WW-224, the causal agent of potato dry rot. The virus has been designated as Fusarium avenaceum alternavirus 1 (FaAV1). Its genome consists of two dsRNA segments, 3538 bp [...] Read more.
A novel virus with a double-stranded RNA (dsRNA) genome was isolated from Fusarium avenaceum strain GS-WW-224, the causal agent of potato dry rot. The virus has been designated as Fusarium avenaceum alternavirus 1 (FaAV1). Its genome consists of two dsRNA segments, 3538 bp (dsRNA1) and 2477 bp (dsRNA2) in length, encoding RNA-dependent RNA polymerase (RdRp) and a hypothetical protein (HP), respectively. The virions of FaAV1 are isometric spherical and approximately 30 nm in diameter. Multiple sequence alignments and phylogenetic analyses based on the amino acid sequences of RdRp and HP indicated that FaAV1 appears to be a new member of the proposed family Alternaviridae. No significant differences in colony morphology and spore production were observed between strains GS-WW-224 and GS-WW-224-VF, the latter strain being one in which FaAV1 was eliminated from strain GS-WW-224. Notably, however, the dry weight of mycelial biomass of GS-WW-224 was higher than that of mycelial biomass of GS-WW-224-VF. The depth and the width of lesions on potato tubers caused by GS-WW-224 were significantly greater, relative to GS-WW-224-VF, suggesting that FaAV1 confers hypervirulence to its host, F. avenaceum. Moreover, FaAV1 was successfully transmitted horizontally from GS-WW-224 to ten other species of Fusarium, and purified virions of FaAV1 were capable of transfecting wounded hyphae of the ten species of Fusarium. This is the first report of an alternavirus infecting F. avenaceum and conferring hypervirulence. Full article
(This article belongs to the Collection Mycoviruses)
Show Figures

Figure 1

15 pages, 5735 KiB  
Article
Identification and Characterization of Epithelial Cell-Derived Dense Bodies Produced upon Cytomegalovirus Infection
by Estéfani García-Ríos, María Josefa Rodríguez, María Carmen Terrón, Daniel Luque and Pilar Pérez-Romero
Vaccines 2022, 10(8), 1308; https://doi.org/10.3390/vaccines10081308 - 12 Aug 2022
Cited by 3 | Viewed by 2463
Abstract
Dense bodies (DB) are complex, noninfectious particles produced during CMVinfection containing envelope and tegument proteins that may be ideal candidates as vaccines. Although DB were previously described in fibroblasts, no evidence of DB formation has been shown after propagating CMV in epithelial cells. [...] Read more.
Dense bodies (DB) are complex, noninfectious particles produced during CMVinfection containing envelope and tegument proteins that may be ideal candidates as vaccines. Although DB were previously described in fibroblasts, no evidence of DB formation has been shown after propagating CMV in epithelial cells. In the present study, both fibroblast MRC-5 and epithelial ARPE-19 cells were used to study DB production during CMV infection. We demonstrate the formation of epithelial cell-derived DB, mostly located as cytoplasmic inclusions in the perinuclear area of the infected cell. DB were gradient-purified, and the nature of the viral particles was confirmed using CMV-specific immunelabeling. Epithelial cell-derived DB had higher density and more homogeneous size (200–300 nm) compared to fibroblast-derived DB (100–600 nm).In agreement with previous results characterizing DB from CMV-infected fibroblasts, the pp65 tegument protein was predominant in the epithelial cell-derived DB. Our results also suggest that epithelial cells had more CMV capsids in the cytoplasm and had spherical bodies compatible with nucleus condensation (pyknosis) in cells undergoing apoptosis that were not detected in MRC-5 infected cells at the tested time post-infection. Our results demonstrate the formation of DB in CMV-infected ARPE-19 epithelial cells that may be suitable candidate to develop a multiprotein vaccine with antigenic properties similar to that of the virions while not including the viral genome. Full article
(This article belongs to the Special Issue Virus-Like Particle (VLP) Vaccines)
Show Figures

Figure 1

15 pages, 4424 KiB  
Article
A Transfectable Fusagravirus from a Japanese Strain of Cryphonectria carpinicola with Spherical Particles
by Subha Das, Sakae Hisano, Ana Eusebio-Cope, Hideki Kondo and Nobuhiro Suzuki
Viruses 2022, 14(8), 1722; https://doi.org/10.3390/v14081722 - 4 Aug 2022
Cited by 8 | Viewed by 3091
Abstract
A novel dsRNA virus (Cryphonectria carpinicola fusagravirus 1, CcFGV1), isolated from a Japanese strain (JS13) of Cryphonectria carpinicola, was thoroughly characterized. The biological comparison of a set of isogenic CcFGV1-infected and -free (JS13VF) strains indicated asymptomatic infection by CcFGV1. The sequence analysis [...] Read more.
A novel dsRNA virus (Cryphonectria carpinicola fusagravirus 1, CcFGV1), isolated from a Japanese strain (JS13) of Cryphonectria carpinicola, was thoroughly characterized. The biological comparison of a set of isogenic CcFGV1-infected and -free (JS13VF) strains indicated asymptomatic infection by CcFGV1. The sequence analysis showed that the virus has a two open reading frame (ORF) genome of 9.6 kbp with the RNA-directed RNA polymerase domain encoded by ORF2. The N-terminal sequencing and peptide mass fingerprinting showed an N-terminally processed or degraded product (150 kDa) of the 5′-proximal ORF1-encoded protein (1462 amino acids) to make up the CcFGV1 spherical particles of ~40 nm in diameter. Interestingly, a portion of CcFGV1 dsRNA co-fractionated with a host protein of 70 kDa. The purified CcFGV1 particles were used to transfect protoplasts of JS13VF as well as the standard strain of an experimental model filamentous fungal host Cryphonectria parasitica. CcFGV1 was confirmed to be associated with asymptomatic infection of both fungi. RNA silencing was shown to target the virus in C. parasitica, resulting in reduced CcFGV1 accumulation by comparing the CcFGV1 content between RNA silencing-competent and -deficient strains. These results indicate the transfectability of spherical particles of a fusagravirus associated with asymptomatic infection. Full article
(This article belongs to the Special Issue Viruses and Their Effects on Fungal Host Fitness)
Show Figures

Figure 1

21 pages, 6099 KiB  
Article
The Isolation and Full-Length Transcriptome Sequencing of a Novel Nidovirus and Response of Its Infection in Japanese Flounder (Paralichthys olivaceus)
by Chunguang Gong, Yitong Zhang, Guixing Wang, Yufeng Liu, Zhongwei He, Yuqin Ren, Wei Cao, Haitao Zhao, Yuhao Xu, Yufen Wang and Jilun Hou
Viruses 2022, 14(6), 1216; https://doi.org/10.3390/v14061216 - 2 Jun 2022
Cited by 5 | Viewed by 9203
Abstract
A novel nidovirus, CSBV Bces-Po19, was isolated from the marine fish, Japanese flounder (Paralichthys olivaceus). The viral genome was 26,597 nucleotides long and shared 98.62% nucleotide identity with CSBV WHQSR4345. PacBio Sequel and Illumina sequencing were used to perform full-length transcriptome [...] Read more.
A novel nidovirus, CSBV Bces-Po19, was isolated from the marine fish, Japanese flounder (Paralichthys olivaceus). The viral genome was 26,597 nucleotides long and shared 98.62% nucleotide identity with CSBV WHQSR4345. PacBio Sequel and Illumina sequencing were used to perform full-length transcriptome sequencing on CSBV Bces-Po19-sensitive (S) and -resistant (R) Japanese flounder. The results of negative staining revealed bacilliform and spherical virions. There were in total 1444 different genes between CSBV Bces-Po19 S and R groups, with 935 being up-regulated and 513 being down-regulated. Metabolism-, immune-, and RNA-related pathways were significantly enriched. Furthermore, CSBV Bces-Po19 infection induced alternative splicing (AS) events in Japanese flounder; the S group had a higher numbers of AS events (12,352) than the R group (11,452). The number of long non-coding RNA (lncRNA) in the S group, on the other hand, was significantly lower than in the R group. In addition to providing valuable information that sheds more light on CSBV Bces-Po19 infection, these research findings provide further clues for CSBV Bces-Po19 prevention and treatment. Full article
(This article belongs to the Section Animal Viruses)
Show Figures

Figure 1

16 pages, 3907 KiB  
Article
Activity of Propolis Nanoparticles against HSV-2: Promising Approach to Inhibiting Infection and Replication
by Sirikwan Sangboonruang, Natthawat Semakul, Sanonthinee Sookkree, Jiraporn Kantapan, Nicole Ngo-Giang-Huong, Woottichai Khamduang, Natedao Kongyai and Khajornsak Tragoolpua
Molecules 2022, 27(8), 2560; https://doi.org/10.3390/molecules27082560 - 15 Apr 2022
Cited by 12 | Viewed by 3162
Abstract
Herpes simplex type 2 (HSV-2) infection causes a significant life-long disease. Long-term side effects of antiviral drugs can lead to the emergence of drug resistance. Thus, propolis, a natural product derived from beehives, has been proposed to prevent or treat HSV-2 infections. Unfortunately, [...] Read more.
Herpes simplex type 2 (HSV-2) infection causes a significant life-long disease. Long-term side effects of antiviral drugs can lead to the emergence of drug resistance. Thus, propolis, a natural product derived from beehives, has been proposed to prevent or treat HSV-2 infections. Unfortunately, therapeutic applications of propolis are still limited due its poor solubility. To overcome this, a nanoparticle-based drug delivery system was employed. An ethanolic extract of propolis (EEP) was encapsulated in nanoparticles composed of poly(lactic-co-glycolic acid) and chitosan using a modified oil-in-water single emulsion by using the solvent evaporation method. The produced nanoparticles (EEP-NPs) had a spherical shape with a size of ~450 nm and presented satisfactory physicochemical properties, including positively charged surface (38.05 ± 7.65 mV), high entrapment efficiency (79.89 ± 13.92%), and sustained release profile. Moreover, EEP-NPs were less cytotoxic on Vero cells and exhibited anti-HSV-2 activity. EEP-NPs had a direct effect on the inactivation of viral particles, and also disrupted the virion entry and release from the host cells. A significant decrease in the expression levels of the HSV-2 replication-related genes (ICP4, ICP27, and gB) was also observed. Our study suggests that EEP-NPs provide a strong anti-HSV-2 activity and serve as a promising platform for the treatment of HSV-2 infections. Full article
(This article belongs to the Special Issue Phytochemistry and Biological Properties of Medicinal Plants)
Show Figures

Figure 1

13 pages, 3375 KiB  
Article
Small Structural Proteins E and M Render the SARS-CoV-2 Pseudovirus More Infectious and Reveal the Phenotype of Natural Viral Variants
by Hsin-I Wang, Zih-Shiuan Chuang, Yu-Ting Kao, Yi-Ling Lin, Jian-Jong Liang, Chun-Che Liao, Ching-Len Liao, Michael M. C. Lai and Chia-Yi Yu
Int. J. Mol. Sci. 2021, 22(16), 9087; https://doi.org/10.3390/ijms22169087 - 23 Aug 2021
Cited by 14 | Viewed by 4468
Abstract
The SARS-CoV-2 pseudovirus is a commonly used strategy that mimics certain biological functions of the authentic virus by relying on biological legitimacy at the molecular level. Despite the fact that spike (S), envelope (E), and membrane (M) proteins together wrap up the SARS-CoV-2 [...] Read more.
The SARS-CoV-2 pseudovirus is a commonly used strategy that mimics certain biological functions of the authentic virus by relying on biological legitimacy at the molecular level. Despite the fact that spike (S), envelope (E), and membrane (M) proteins together wrap up the SARS-CoV-2 virion, most of the reported pseudotype viruses consist of only the S protein. Here, we report that the presence of E and M increased the virion infectivity by promoting the S protein priming. The S, E, and M (SEM)-coated pseudovirion is spherical, containing crown-like spikes on the surface. Both S and SEM pseudoviruses packaged the same amounts of viral RNA, but the SEM virus bound more efficiently to cells stably expressing the viral receptor human angiotensin-converting enzyme II (hACE2) and became more infectious. Using this SEM pseudovirus, we examined the infectivity and antigenic properties of the natural SARS-CoV-2 variants. We showed that some variants have higher infectivity than the original virus and that some render the neutralizing plasma with lower potency. These studies thus revealed possible mechanisms of the dissemination advantage of these variants. Hence, the SEM pseudovirion provides a useful tool to evaluate the viral infectivity and capability of convalescent sera in neutralizing specific SARS-CoV-2 S dominant variants. Full article
(This article belongs to the Special Issue SARS-CoV-2 Variants, Antibodies and Vaccines)
Show Figures

Graphical abstract

21 pages, 14952 KiB  
Article
Isolation of a Chinook Salmon Bafinivirus (CSBV) in Imported Goldfish Carassius auratus L. in the United Kingdom and Evaluation of Its Virulence in Resident Fish Species
by Irene Cano, David Stone, Jacqueline Savage, Gareth Wood, Brian Mulhearn, Joshua Gray, Nick Stinton, Stuart Ross, Michaela Bonar, Nick G. H. Taylor, Kelly S. Bateman and Stephen W. Feist
Viruses 2020, 12(5), 578; https://doi.org/10.3390/v12050578 - 25 May 2020
Cited by 13 | Viewed by 5127
Abstract
This is the first record of a fish nidovirus isolated from a consignment of goldfish at the United Kingdom (UK) border. The full-length viral genome was 25,985 nt, sharing a 97.9% nucleotide identity with the Chinook salmon bafinivirus (CSBV) NIDO with two deletions [...] Read more.
This is the first record of a fish nidovirus isolated from a consignment of goldfish at the United Kingdom (UK) border. The full-length viral genome was 25,985 nt, sharing a 97.9% nucleotide identity with the Chinook salmon bafinivirus (CSBV) NIDO with two deletions of 537 and 480 nt on the ORF Ia protein. To assess the potential impact on UK fish species, Atlantic salmon, common carp and goldfish were exposed to the virus via an intraperitoneal (IP) injection and bath challenge. Moribundity was recorded in only 8% of IP-injected goldfish. A high viral load, ≈107 of the CSBV PpIa gene, was measured in the kidney of moribund goldfish. Mild histopathological changes were observed in the kidneys of challenged carps. Ultrastructural observations in renal tubule epithelial cells of goldfish showed cylindrical tubes (≈15 nm in diameter) and tubular structures budding spherical virions (≈200 nm in diameter) with external spike-like structures. Negative staining showed both circular and bacilliform virions. Seroconversion was measured in common carp and goldfish but not in Atlantic salmon. This study reinforces the potential risk of novel and emerging pathogens being introduced to recipient countries via the international ornamental fish trade and the importance of regular full health screens at the border inspection posts to reduce this risk. Full article
Show Figures

Figure 1

17 pages, 5873 KiB  
Article
Isolation and Characterisation of Alongshan Virus in Russia
by Ivan S. Kholodilov, Alexander G. Litov, Alexander S. Klimentov, Oxana A. Belova, Alexandra E. Polienko, Nikolai A. Nikitin, Alexey M. Shchetinin, Anna Y. Ivannikova, Lesley Bell-Sakyi, Alexander S. Yakovlev, Sergey V. Bugmyrin, Liubov A. Bespyatova, Larissa V. Gmyl, Svetlana V. Luchinina, Anatoly P. Gmyl, Vladimir A. Gushchin and Galina G. Karganova
Viruses 2020, 12(4), 362; https://doi.org/10.3390/v12040362 - 26 Mar 2020
Cited by 62 | Viewed by 5896
Abstract
In recent decades, many new flavi-like viruses have been discovered predominantly in different invertebrates and, as was recently shown, some of them may cause disease in humans. The Jingmenvirus (JMV) group holds a special place among flaviviruses and flavi-like viruses because they have [...] Read more.
In recent decades, many new flavi-like viruses have been discovered predominantly in different invertebrates and, as was recently shown, some of them may cause disease in humans. The Jingmenvirus (JMV) group holds a special place among flaviviruses and flavi-like viruses because they have a segmented ssRNA(+) genome. We detected Alongshan virus (ALSV), which is a representative of the JMV group, in ten pools of adult Ixodes persulcatus ticks collected in two geographically-separated Russian regions. Three of the ten strains were isolated in the tick cell line IRE/CTVM19. One of the strains persisted in the IRE/CTVM19 cells without cytopathic effect for three years. Most ALSV virions purified from tick cells were spherical with a diameter of approximately 40.5 nm. In addition, we found smaller particles of approximately 13.1 nm in diameter. We obtained full genome sequences of all four segments of two of the isolated ALSV strains, and partial sequences of one segment from the third strain. Phylogenetic analysis on genome segment 2 of the JMV group clustered our novel strains with other ALSV strains. We found evidence for the existence of a novel upstream open reading frame in the glycoprotein-coding segment of ALSV and other members of the JMV group. Full article
(This article belongs to the Section Animal Viruses)
Show Figures

Figure 1

17 pages, 6716 KiB  
Article
Mosquito Cell-Derived Japanese Encephalitis Virus-Like Particles Induce Specific Humoral and Cellular Immune Responses in Mice
by Yu-Hsiu Chang, Der-Jiang Chiao, Yu-Lin Hsu, Chang-Chi Lin, Hsueh-Ling Wu, Pei-Yun Shu, Shu-Fen Chang, Jui-Huan Chang and Szu-Cheng Kuo
Viruses 2020, 12(3), 336; https://doi.org/10.3390/v12030336 - 19 Mar 2020
Cited by 14 | Viewed by 5723
Abstract
The Japanese encephalitis virus (JEV) is the major cause of an acute encephalitis syndrome in many Asian countries, despite the fact that an effective vaccine has been developed. Virus-like particles (VLPs) are self-assembled multi-subunit protein structures which possess specific epitope antigenicities related to [...] Read more.
The Japanese encephalitis virus (JEV) is the major cause of an acute encephalitis syndrome in many Asian countries, despite the fact that an effective vaccine has been developed. Virus-like particles (VLPs) are self-assembled multi-subunit protein structures which possess specific epitope antigenicities related to corresponding native viruses. These properties mean that VLPs are considered safe antigens that can be used in clinical applications. In this study, we developed a novel baculovirus/mosquito (BacMos) expression system which potentially enables the scalable production of JEV genotype III (GIII) VLPs (which are secreted from mosquito cells). The mosquito-cell-derived JEV VLPs comprised 30-nm spherical particles as well as precursor membrane protein (prM) and envelope (E) proteins with densities that ranged from 30% to 55% across a sucrose gradient. We used IgM antibody-capture enzyme-linked immunosorbent assays to assess the resemblance between VLPs and authentic virions and thereby characterized the epitope specific antigenicity of VLPs. VLP immunization was found to elicit a specific immune response toward a balanced IgG2a/IgG1 ratio. This response effectively neutralized both JEV GI and GIII and elicited a mixed Th1/Th2 response in mice. This study supports the development of mosquito cell-derived JEV VLPs to serve as candidate vaccines against JEV. Full article
(This article belongs to the Section Viral Immunology, Vaccines, and Antivirals)
Show Figures

Figure 1

17 pages, 4272 KiB  
Article
Characterization of a Botybirnavirus Conferring Hypovirulence in the Phytopathogenic Fungus Botryosphaeria dothidea
by Lifeng Zhai, Mengmeng Yang, Meixin Zhang, Ni Hong and Guoping Wang
Viruses 2019, 11(3), 266; https://doi.org/10.3390/v11030266 - 17 Mar 2019
Cited by 34 | Viewed by 5747
Abstract
A double-stranded RNA (dsRNA) virus was isolated and characterized from strain EW220 of the phytopathogenic fungus Botryosphaeria dothidea. The full-length cDNAs of the dsRNAs were 6434 bp and 5986 bp in size, respectively. The largest dsRNA encodes a cap-pol fusion protein that [...] Read more.
A double-stranded RNA (dsRNA) virus was isolated and characterized from strain EW220 of the phytopathogenic fungus Botryosphaeria dothidea. The full-length cDNAs of the dsRNAs were 6434 bp and 5986 bp in size, respectively. The largest dsRNA encodes a cap-pol fusion protein that contains a coat protein gene and an RNA-dependent RNA polymerase (RdRp) domain, and the second dsRNA encodes a hypothetical protein. Genome sequence analysis revealed that the sequences of the dsRNA virus shared 99% identity with Bipolaris maydis botybirnavirus 1(BmBRV1) isolated from the causal agent of corn southern leaf blight, Bipolaris maydis. Hence, the dsRNA virus constitutes a new strain of BmBRV1 and was named Bipolaris maydis botybirnavirus 1 strain BdEW220 (BmBRV1-BdEW220). BmBRV1-BdEW220 contains spherical virions that are 37 nm in diameter and consist of two dsRNA segments. The structural proteins of the BmBRV1-BdEW220 virus particles were 110 kDa, 90 kDa, and 80 kDa and were encoded by dsRNA1 and 2-ORFs. Phylogenetic reconstruction indicated that BmBRV1 and BmBRV1-BdEW220 are phylogenetically related to the genus Botybirnavirus. Importantly, BmBRV1-BdEW220 influences the growth of B. dothidea and confers hypovirulence to the fungal host. To our knowledge, this is the first report of a botybirnavirus in B. dothidea. Full article
(This article belongs to the Section Viruses of Plants, Fungi and Protozoa)
Show Figures

Graphical abstract

17 pages, 1363 KiB  
Review
Half a Century of Research on Membrane-Containing Bacteriophages: Bringing New Concepts to Modern Virology
by Sari Mäntynen, Lotta-Riina Sundberg, Hanna M. Oksanen and Minna M. Poranen
Viruses 2019, 11(1), 76; https://doi.org/10.3390/v11010076 - 18 Jan 2019
Cited by 40 | Viewed by 8558
Abstract
Half a century of research on membrane-containing phages has had a major impact on virology, providing new insights into virus diversity, evolution and ecological importance. The recent revolutionary technical advances in imaging, sequencing and lipid analysis have significantly boosted the depth and volume [...] Read more.
Half a century of research on membrane-containing phages has had a major impact on virology, providing new insights into virus diversity, evolution and ecological importance. The recent revolutionary technical advances in imaging, sequencing and lipid analysis have significantly boosted the depth and volume of knowledge on these viruses. This has resulted in new concepts of virus assembly, understanding of virion stability and dynamics, and the description of novel processes for viral genome packaging and membrane-driven genome delivery to the host. The detailed analyses of such processes have given novel insights into DNA transport across the protein-rich lipid bilayer and the transformation of spherical membrane structures into tubular nanotubes, resulting in the description of unexpectedly dynamic functions of the membrane structures. Membrane-containing phages have provided a framework for understanding virus evolution. The original observation on membrane-containing bacteriophage PRD1 and human pathogenic adenovirus has been fundamental in delineating the concept of “viral lineages”, postulating that the fold of the major capsid protein can be used as an evolutionary fingerprint to trace long-distance evolutionary relationships that are unrecognizable from the primary sequences. This has brought the early evolutionary paths of certain eukaryotic, bacterial, and archaeal viruses together, and potentially enables the reorganization of the nearly immeasurable virus population (~1 × 1031) on Earth into a reasonably low number of groups representing different architectural principles. In addition, the research on membrane-containing phages can support the development of novel tools and strategies for human therapy and crop protection. Full article
(This article belongs to the Section Bacterial Viruses)
Show Figures

Figure 1

12 pages, 3425 KiB  
Article
Electron-Beam-Lithographed Nanostructures as Reference Materials for Label-Free Scattered-Light Biosensing of Single Filoviruses
by Anant Agrawal, Joseph Majdi, Kathleen A. Clouse and Tzanko Stantchev
Sensors 2018, 18(6), 1670; https://doi.org/10.3390/s18061670 - 23 May 2018
Cited by 6 | Viewed by 4000
Abstract
Optical biosensors based on scattered-light measurements are being developed for rapid and label-free detection of single virions captured from body fluids. Highly controlled, stable, and non-biohazardous reference materials producing virus-like signals are valuable tools to calibrate, evaluate, and refine the performance of these [...] Read more.
Optical biosensors based on scattered-light measurements are being developed for rapid and label-free detection of single virions captured from body fluids. Highly controlled, stable, and non-biohazardous reference materials producing virus-like signals are valuable tools to calibrate, evaluate, and refine the performance of these new optical biosensing methods. To date, spherical polymer nanoparticles have been the only non-biological reference materials employed with scattered-light biosensing techniques. However, pathogens like filoviruses, including the Ebola virus, are far from spherical and their shape strongly affects scattered-light signals. Using electron beam lithography, we fabricated nanostructures resembling individual filamentous virions attached to a biosensing substrate (silicon wafer overlaid with silicon oxide film) and characterized their dimensions with scanning electron and atomic force microscopes. To assess the relevance of these nanostructures, we compared their signals across the visible spectrum to signals recorded from Ebola virus-like particles which exhibit characteristic filamentous morphology. We demonstrate the highly stable nature of our nanostructures and use them to obtain new insights into the relationship between virion dimensions and scattered-light signal. Full article
(This article belongs to the Special Issue Label-free Optical Nanobiosensors)
Show Figures

Figure 1

Back to TopTop