Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (52)

Search Parameters:
Keywords = sphere oscillation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 1098 KB  
Article
Mechanical Nonlinear Oscillations Using a Hertzian-Type Restoring Force
by Stylianos Vasileios Kontomaris, Gamal M. Ismail, Anna Malamou and Andreas Stylianou
Vibration 2025, 8(4), 74; https://doi.org/10.3390/vibration8040074 - 20 Nov 2025
Viewed by 334
Abstract
This paper examines the generic case of nonlinear mechanical oscillation under the influence of Hertzian-type restoring forces, a model relevant to phenomena involving elastic contact. The study addresses the complexity of strongly nonlinear systems by focusing on the differential equation governing the oscillation [...] Read more.
This paper examines the generic case of nonlinear mechanical oscillation under the influence of Hertzian-type restoring forces, a model relevant to phenomena involving elastic contact. The study addresses the complexity of strongly nonlinear systems by focusing on the differential equation governing the oscillation of a rigid sphere interacting with an elastic half-space, which includes a full series expansion to account for large deformations. Since no closed-form solution exists for the amplitude-dependent oscillation period, a new approximate analytical approach is introduced. This method preserves the system’s dominant Hertzian scaling while incorporating higher-order corrections through an averaged factor. For amplitudes where the deformation is less than or equal to the sphere’s radius, this approximation is nearly identical to the numerical solution. For larger amplitudes, the accuracy is further enhanced by introducing a semi-empirical linear adjustment to the relative error. This framework provides a reliable analytical description of the system’s behavior, offering a useful tool for theoretical studies and comparison with numerical results. Full article
(This article belongs to the Special Issue Nonlinear Vibration of Mechanical Systems)
Show Figures

Figure 1

11 pages, 8439 KB  
Article
Quantum Beats of a Macroscopic Polariton Condensate in Real Space
by Roman V. Cherbunin, Aleksey Liubomirov, Stella V. Kavokina, Denis Novokreschenov, Andrey Kudlis and Alexey V. Kavokin
Optics 2025, 6(4), 53; https://doi.org/10.3390/opt6040053 - 23 Oct 2025
Viewed by 799
Abstract
We experimentally observe harmonic oscillations in a bosonic condensate of exciton-polaritons confined within an elliptical trap. These oscillations arise from quantum beats between two size-quantized states of the condensate, split in energy due to the trap’s ellipticity. By precisely targeting specific spots inside [...] Read more.
We experimentally observe harmonic oscillations in a bosonic condensate of exciton-polaritons confined within an elliptical trap. These oscillations arise from quantum beats between two size-quantized states of the condensate, split in energy due to the trap’s ellipticity. By precisely targeting specific spots inside the trap with nonresonant laser pulses, we control frequency, amplitude, and phase of these quantum beats. The condensate wave function dynamics is visualized on a streak camera and mapped to the Bloch sphere, demonstrating Hadamard and Pauli-Z operations. We conclude that a qubit based on a superposition of these two polariton states would exhibit a coherence time exceeding the lifetime of an individual exciton-polariton by at least two orders of magnitude. Full article
Show Figures

Figure 1

22 pages, 1200 KB  
Article
Interaction Between Two Rigid Hydrophobic Spheres Oscillating in an Infinite Brinkman–Stokes Fluid
by Azza M. Algatheem, Hala H. Taha and Shreen El-Sapa
Mathematics 2025, 13(2), 218; https://doi.org/10.3390/math13020218 - 10 Jan 2025
Cited by 5 | Viewed by 1667
Abstract
This study investigates the dynamics of two oscillating rigid spheres moving through an infinite porous medium saturated with Stokes fluid flow, addressing the problem of how fluid properties, permeability, frequency, and slip length influence the system. The objective is to model the interactions [...] Read more.
This study investigates the dynamics of two oscillating rigid spheres moving through an infinite porous medium saturated with Stokes fluid flow, addressing the problem of how fluid properties, permeability, frequency, and slip length influence the system. The objective is to model the interactions between the spheres, which differ in size and velocity as they move along the axis connecting their centers while applying slip boundary conditions to their surfaces. We derive the governing field equations using a semi-analytical method and solve the resulting system of equations numerically through a collocation technique. Our novel quantitative results include insights into the drag force coefficients for both in-phase and out-of-phase oscillations of each hydrophobic sphere, considering parameters such as diameter ratio, permeability, frequency, velocity ratios, slip lengths, and the distances between the spheres. Notably, when the spheres are sufficiently far apart, the normalized drag force coefficients behave as if each sphere is moving independently. Additionally, we present streamlines that illustrate the interactions between the spheres across a range of parameters, highlighting the novelty of our findings. A purely viscous medium and no-slip conditions are used to validate the numerical approach and results. Full article
(This article belongs to the Section E: Applied Mathematics)
Show Figures

Figure 1

18 pages, 4451 KB  
Article
A Self-Oscillator Based on Liquid Crystal Elastomer Fiber Under Constant Voltage
by Dali Ge, Xin Liu, Qingrui Hong and Haiyi Liang
Polymers 2024, 16(22), 3192; https://doi.org/10.3390/polym16223192 - 17 Nov 2024
Viewed by 1327
Abstract
Self-oscillation is the phenomenon in which a system generates spontaneous, consistent periodic motion in response to a steady external stimulus, making it highly suitable for applications in soft robotics, motors, and mechatronic devices. In this paper, we present a self-oscillator based on liquid [...] Read more.
Self-oscillation is the phenomenon in which a system generates spontaneous, consistent periodic motion in response to a steady external stimulus, making it highly suitable for applications in soft robotics, motors, and mechatronic devices. In this paper, we present a self-oscillator based on liquid crystal elastomer (LCE) fiber under constant voltage. The system primarily consists of an LCE–liquid metal (LCE-LM) composite fiber, a metal mass sphere, and a straight rod featuring both conductive and insulating segments. Building upon an established dynamic LCE model, we derive the governing dynamic equations. Numerical calculations reveal two distinct motion regimes: a static regime and a self-oscillation regime. Furthermore, we provide the temporal behavior curves of electrothermal-induced contraction and tensile force, the phase trajectories variation curves of the equivalent driving force and damping force. These detailed studies elucidate that self-oscillation results from the contraction of the electrothermal-responsive LCE-LM fiber when the circuit is activated, with continuous periodic motion being sustained through the interplay between the metal mass sphere and a self-controlled dynamic circuit. We also investigate the threshold conditions necessary for initiating self-oscillation, as well as the key system parameters that influence its frequency and amplitude. Our self-oscillator demonstrates improved stability by reducing the effects of gravity and other disturbances. Additionally, the curved trajectory of the mass sphere can be achieved by replacing the straight rod with a curved one, resulting in a more flexible and easily controllable structure. Given these characteristics, a self-oscillator system based on LCE-LM fiber may be ideal for creating monitoring and warning devices, dynamic circuit systems, and for integrating actuators and controllers. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

14 pages, 18659 KB  
Article
A Novel Liquid–Solid Fluidized Bed of Large-Scale Phase-Changing Sphere for Thermal Energy Storage
by Xiaohang Qu, Xiaoni Qi and Da Fang
Appl. Sci. 2024, 14(21), 9828; https://doi.org/10.3390/app14219828 - 28 Oct 2024
Cited by 5 | Viewed by 1429
Abstract
The storage of thermal energy has been hindered by the low heat-transfer rate of the solid phase of the phase-changing materiel. With water being the heat-transfer fluid as well as the liquid phase in the liquid–solid two-phase system, a novel type of fluidized [...] Read more.
The storage of thermal energy has been hindered by the low heat-transfer rate of the solid phase of the phase-changing materiel. With water being the heat-transfer fluid as well as the liquid phase in the liquid–solid two-phase system, a novel type of fluidized bed is designed in this study. Numerous hollow spheres are fabricated with phase-changing materiel encapsulated. Adding the solid–liquid phase-change material capsules to the flowing fluid, the capsules are dispersed suspended in the carrier. The large spheres, 25 mm in present experiment, possess the merits of guaranteeing energy-storage density and tolerating internal interface chaotic motion. Both the fluidization status and phase-changing process are recorded by photography combined with image-processing technology. It is found that the large spheres, with density less than water, can be fluidized by the downward flowing fluid. As the flow rate increases, the expansion ratio of the solid phase increases and the regimes of incipient fluidization and bubbling fluidization can be observed. In comparison to the fixed bed, the oscillation of pressure drop across a fluidized bed is more severe, but the averaged value is less than the fixed bed. The melting and solidifying can be accelerated by 22.6% and 50%, respectively, thus proving the superiority of the fluidized bed in improving the heat-transfer rate while charging/discharging the thermal energy. Three types of basic movement of the spheres are shown to contribute to the enhanced phase-changing rate, which are shifting, colliding and rotating. Full article
Show Figures

Figure 1

14 pages, 4164 KB  
Article
Increasing Light-Induced Forces with Magnetic Photonic Glasses
by Hugo Avalos-Sánchez, Abraham J. Carmona-Carmona, Martha A. Palomino-Ovando, Benito Flores Desirena, Rodolfo Palomino-Merino, Khashayar Misaghian, Jocelyn Faubert, Miller Toledo-Solano and Jesus Eduardo Lugo
Photonics 2024, 11(9), 827; https://doi.org/10.3390/photonics11090827 - 1 Sep 2024
Viewed by 1966
Abstract
In this work, we theoretically and experimentally study the induction of electromagnetic forces in an opal-based magnetic photonic glass, where light normally impinges onto a disordered arrangement of SiO2 spheres by the aggregation of Fe3O4 nanoparticles. The working wavelength [...] Read more.
In this work, we theoretically and experimentally study the induction of electromagnetic forces in an opal-based magnetic photonic glass, where light normally impinges onto a disordered arrangement of SiO2 spheres by the aggregation of Fe3O4 nanoparticles. The working wavelength is 633 nm. Experimental evidence is presented for the force that results from forced oscillations of the photonic structure. Finite-element method simulations and a theoretical model estimate the magnetic force volumetric density value, peak displacement, and velocity of oscillations. The magnetic force is of the order of 56 microN, which is approximately 500-times higher than forces induced in dielectric optomechanical photonic crystal cavities. Full article
(This article belongs to the Special Issue Emerging Trends in Photonic Crystals)
Show Figures

Figure 1

18 pages, 4200 KB  
Article
Study of Self-Excited Thermomechanical Oscillator with Shape Memory Alloys
by Ivo Yotov, Georgi Todorov and Todor Todorov
Actuators 2024, 13(5), 182; https://doi.org/10.3390/act13050182 - 11 May 2024
Cited by 4 | Viewed by 2124
Abstract
In this paper, a new type of self-excited thermomechanical oscillator containing an oscillating shape memory alloy (SMA) filament with two symmetrically arranged spheres is investigated. The self-excitation of the oscillations is due to a heater of constant temperature, which causes periodic contractions of [...] Read more.
In this paper, a new type of self-excited thermomechanical oscillator containing an oscillating shape memory alloy (SMA) filament with two symmetrically arranged spheres is investigated. The self-excitation of the oscillations is due to a heater of constant temperature, which causes periodic contractions of the filament when it approaches it. The contracted filament moves away from the heater a distance sufficient to cool it. Under the action of the weight of the spheres, the cooled filament re-approaches the heater, causing the above processes to repeat periodically. On the basis of experimental studies, approximating functions of the heater’s heat field distribution are derived. A dynamic model of the oscillator has been created, in which the minor and major hysteresis in the SMA alloy and the distribution of the heat field around the heater have been taken into account. Through numerical solutions of the differential equations, the laws of motion of the spheres are obtained. The displacements of the spheres in two perpendicular directions were measured using an experimental system. The obtained experimental results validate the proposed dynamic model and its assumptions with a high degree of confidence. Conclusions are drawn about the stochastic nature of the oscillations due to the hysteresis properties of the SMA and the temperature variation of the natural frequency of the oscillating system. Full article
(This article belongs to the Special Issue Shape Memory Alloy (SMA) Actuators and Their Applications)
Show Figures

Figure 1

18 pages, 9637 KB  
Article
Laser Backscattering Analytical Model of Doppler Power Spectra about Convex Quadric Bodies of Revolution during Precession
by Yanhui Li, Hua Zhao, Ruochen Huang, Geng Zhang, Hangtian Zhou, Chenglin Han and Lu Bai
Remote Sens. 2024, 16(6), 1104; https://doi.org/10.3390/rs16061104 - 21 Mar 2024
Cited by 1 | Viewed by 1722
Abstract
In the realm of ballistic target analysis, micro-motion attributes, such as warhead precession, nutation, and decoy oscillations, play a pivotal role. This paper addresses these critical aspects by introducing an advanced analytical model for assessing the Doppler power spectra of convex quadric revolution [...] Read more.
In the realm of ballistic target analysis, micro-motion attributes, such as warhead precession, nutation, and decoy oscillations, play a pivotal role. This paper addresses these critical aspects by introducing an advanced analytical model for assessing the Doppler power spectra of convex quadric revolution bodies during precession. Our model is instrumental in calculating the Doppler shifts pertinent to both precession and swing cones. Additionally, it extends to delineate the Doppler power spectra for configurations involving cones and sphere–cone combinations. A key aspect of our study is the exploration of the effects exerted by geometric parameters and observation angles on the Doppler spectra, offering a comparative perspective of various micro-motion forms. The simulations distinctly demonstrate how different micro-motion patterns of a cone influence the Doppler power spectra and underscore the significance of geometric parameters and observational angles in shaping these spectra. This research not only contributes to enhancing LIDAR target identification methodologies but also lays a groundwork for future explorations into complex micro-motions like nutation. Full article
(This article belongs to the Special Issue Lidar for Environmental Remote Sensing: Theory and Application)
Show Figures

Graphical abstract

20 pages, 30763 KB  
Article
Electric Field Characteristics of Rotating Permanent Magnet Stimulation
by Pei L. Robins, Sergey N. Makaroff, Michael Dib, Sarah H. Lisanby and Zhi-De Deng
Bioengineering 2024, 11(3), 258; https://doi.org/10.3390/bioengineering11030258 - 6 Mar 2024
Cited by 1 | Viewed by 3578
Abstract
Neurostimulation devices that use rotating permanent magnets are being explored for their potential therapeutic benefits in patients with psychiatric and neurological disorders. This study aims to characterize the electric field (E-field) for ten configurations of rotating magnets using finite element analysis and phantom [...] Read more.
Neurostimulation devices that use rotating permanent magnets are being explored for their potential therapeutic benefits in patients with psychiatric and neurological disorders. This study aims to characterize the electric field (E-field) for ten configurations of rotating magnets using finite element analysis and phantom measurements. Various configurations were modeled, including single or multiple magnets, and bipolar or multipolar magnets, rotated at 10, 13.3, and 350 revolutions per second (rps). E-field strengths were also measured using a hollow sphere (r=9.2 cm) filled with a 0.9% sodium chloride solution and with a dipole probe. The E-field spatial distribution is determined by the magnets’ dimensions, number of poles, direction of the magnetization, and axis of rotation, while the E-field strength is determined by the magnets’ rotational frequency and magnetic field strength. The induced E-field strength on the surface of the head ranged between 0.0092 and 0.52 V/m. In the range of rotational frequencies applied, the induced E-field strengths were approximately an order or two of magnitude lower than those delivered by conventional transcranial magnetic stimulation. The impact of rotational frequency on E-field strength represents a confound in clinical trials that seek to tailor rotational frequency to individual neural oscillations. This factor could explain some of the variability observed in clinical trial outcomes. Full article
Show Figures

Graphical abstract

22 pages, 1818 KB  
Article
Quantum Switch as a Thermodynamic Resource in the Context of Passive States
by Otavio A. D. Molitor and Łukasz Rudnicki
Entropy 2024, 26(2), 153; https://doi.org/10.3390/e26020153 - 10 Feb 2024
Cited by 2 | Viewed by 1913
Abstract
In recent years, many works have explored possible advantages of indefinite causal order, with the main focus on its controlled implementation known as quantum switch. In this paper, we tackle advantages in quantum thermodynamics, studying whether quantum switch is capable of activating [...] Read more.
In recent years, many works have explored possible advantages of indefinite causal order, with the main focus on its controlled implementation known as quantum switch. In this paper, we tackle advantages in quantum thermodynamics, studying whether quantum switch is capable of activating a passive state, either alone or with extra resources (active control state) and/or operations (measurement of the control system). By disproving the first possibility and confirming the second one, we show that quantum switch is not a thermodynamic resource in the discussed context, though it can facilitate work extraction given external resources. We discuss our findings by considering specific examples: a qubit system subject to rotations around the x and y axes in the Bloch sphere, as well as general unitaries from the U(2) group; and the system as a quantum harmonic oscillator with displacement operators, as well as with a combination of displacement and squeeze operators. Full article
(This article belongs to the Special Issue Advances in Quantum Thermodynamics)
Show Figures

Figure 1

23 pages, 6138 KB  
Article
Dipole Oscillations along Principal Coordinates in a Frozen Channel in the Context of Symmetric Linear Thickness of Porous Ice
by Konstantin Shishmarev, Tatyana Sibiryakova, Kristina Naydenova and Tatyana Khabakhpasheva
J. Mar. Sci. Eng. 2024, 12(1), 198; https://doi.org/10.3390/jmse12010198 - 22 Jan 2024
Cited by 2 | Viewed by 1724
Abstract
The problem of periodic oscillations of a dipole, specifically its strength, along the principal axes in a three-dimensional frozen channel is considered. The key points of the problem are taking into account the linear thickness of ice across the channel and ice porosity [...] Read more.
The problem of periodic oscillations of a dipole, specifically its strength, along the principal axes in a three-dimensional frozen channel is considered. The key points of the problem are taking into account the linear thickness of ice across the channel and ice porosity within Darcy’s law. The fluid in the channel is inviscid and incompressible; the flow is potential. It is expected that the oscillations of a small radius dipole well approximate the oscillations of a small radius sphere at a sufficient depth of immersion of the dipole. It was found that during oscillations along the channel and vertical oscillations, waves are generated in the channel, propagating along the channel with a frequency equal to the frequency of dipole oscillations. These waves decay far from the dipole, and the rate of decay depends on the porosity coefficient. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

17 pages, 4644 KB  
Article
Model Problems on Oscillations of Mechanical and Biological Membranes
by Yury Kostikov and Aleksandr Romanenkov
Inventions 2023, 8(6), 139; https://doi.org/10.3390/inventions8060139 - 30 Oct 2023
Cited by 1 | Viewed by 2015
Abstract
Various models of membrane oscillations emerging in the theory of elasticity of mechanical systems, biomechanics of the internal ear of vertebrata, and in the theory of electrical circuits are discussed in the article. The considered oscillations have different natures, but their mathematical models [...] Read more.
Various models of membrane oscillations emerging in the theory of elasticity of mechanical systems, biomechanics of the internal ear of vertebrata, and in the theory of electrical circuits are discussed in the article. The considered oscillations have different natures, but their mathematical models are described using similar initial boundary value problems for the second-order hyperbolic equation with the nontrivial boundary condition. The differential equations in these problems are the same. Thus, for example, the model of voltage distribution in the telegraph line emerges for the one-dimensional equation of oscillations. The model of oscillations of a circular homogeneous solid membrane, a membrane with a hole, and the model of gas oscillations in a sphere and spherical region emerge for the two-dimensional and three-dimensional operators, but take into account the radial symmetry of oscillations. The model problem on membrane oscillation can be considered as the problem on ear drum membrane oscillations. The unified approach to reducing the corresponding problems to the initial boundary value problem with zero boundary conditions is suggested. The technique of formulating the solution in the form of a Fourier series using eigenfunctions of the corresponding Sturm–Liouville problem is described. Full article
(This article belongs to the Special Issue Recent Advances and New Trends in Signal Processing)
Show Figures

Figure 1

12 pages, 5683 KB  
Article
Measurement-Based Control of Quantum Entanglement and Steering in a Distant Magnomechanical System
by Huatang Tan
Photonics 2023, 10(10), 1081; https://doi.org/10.3390/photonics10101081 - 26 Sep 2023
Cited by 4 | Viewed by 1745
Abstract
In this paper, we propose a scheme for measurement-based control of hybrid Einstein–Podolsky–Rosen (EPR) entanglement and steering between distant macroscopic mechanical oscillator and yttrium iron garnet (YIG) sphere in a system of an electromechanical cavity unidirectionally coupled to an electromagnonical cavity. We reveal [...] Read more.
In this paper, we propose a scheme for measurement-based control of hybrid Einstein–Podolsky–Rosen (EPR) entanglement and steering between distant macroscopic mechanical oscillator and yttrium iron garnet (YIG) sphere in a system of an electromechanical cavity unidirectionally coupled to an electromagnonical cavity. We reveal that when the output of the electromagnonical cavity is continuously monitored by homodyne detection, not only the phonon–magnon entanglement and steering but also the purities of the phononic, magnonic and phonon–magnon states are considerably enhanced. We also find that the measurement can effectively retrieve the magnon-to-phonon steering, which is not yet obtained in the absence of the measurement. We show that unconditional phonon–magnon entanglement and steering can be achieved by introducing indirect feedback to drive the magnon and mechanical subsystems. The long-distance macroscopic hybrid entanglement and steering can be useful for, e.g., fundamental tests for quantum mechanics and quantum networks. Full article
(This article belongs to the Special Issue Hybrid Quantum Magnonics)
Show Figures

Figure 1

14 pages, 344 KB  
Article
Religion upon the Mountains: From Christianisation to Social Actions against Summit Crosses in Italy
by Giovanna Rech
Religions 2023, 14(8), 1056; https://doi.org/10.3390/rel14081056 - 18 Aug 2023
Cited by 1 | Viewed by 2520
Abstract
In Italy, the debate regarding the presence of crosses and crucifixes in public places is long-standing and involves their detractors, supporters and defenders. Over time, these conflicting positions have gained media resonance, becoming a sociopolitical controversy that has led to lawsuits at various [...] Read more.
In Italy, the debate regarding the presence of crosses and crucifixes in public places is long-standing and involves their detractors, supporters and defenders. Over time, these conflicting positions have gained media resonance, becoming a sociopolitical controversy that has led to lawsuits at various levels, including the European Court of Human Rights. In the social sphere, the issue has oscillated between the recognition of the universal value of religious symbols and advocacy for secularism, even in open spaces such as mountaintops. During the last few decades, several initiatives have been undertaken in the Italian Alps, driven by ecological concerns and opposition to the presence of crosses on the mountains. These initiatives have resulted in collective actions against the positioning and erection of crosses, and there have even been attempts to diversify the Italian peaks. By providing a historical overview of the Christianisation of Italian mountaintops and focusing on the mobilisation against the presence of crosses, this article contributes to the understanding of the role of such symbols in Italian public opinion, which is intertwined with the vitality of the Catholic Church and the sociopolitical implications of these initiatives. The research questions will investigate the process of legitimisation and delegitimisation of Christian symbols. The cross on the mountaintop serves as an example of culturalised religion, where this cultural object can become a “passive religious symbol,” polarising claims for the defence of the natural environment and the sustainability of religion in the mountains. Full article
(This article belongs to the Special Issue Sociology of Law, Human Rights, and Religious Freedom)
15 pages, 4011 KB  
Article
Landau Diamagnetism and de Haas–van Alphen Oscillations, Formed in Single Crystals of Y3Fe5O12, in Local Nanodimensional-Sized 2D Phase Separation Regions, Located inside Layered Domain Walls at Room Temperature and T = 77 K
by Boris Khannanov, Evgeny Golovenchits, Mikhail Shcheglov and Viktoriya Sanina
Nanomaterials 2023, 13(14), 2147; https://doi.org/10.3390/nano13142147 - 24 Jul 2023
Viewed by 1522
Abstract
This paper presents results of the magnetic dynamics study (the microwave power absorptions at the fixed frequencies during magnetic field sweeping) in samples of Y3Fe5O12 single crystals in the form of plates and spheres of various sizes, at [...] Read more.
This paper presents results of the magnetic dynamics study (the microwave power absorptions at the fixed frequencies during magnetic field sweeping) in samples of Y3Fe5O12 single crystals in the form of plates and spheres of various sizes, at frequencies exceeding 30 GHz, in magnetic fields up to 18 kOe, at room temperature, and T = 77 K. It was found that in this case, the inhomogeneity’s of the magnetic state manifested itself in the Y3Fe5O12 samples as 2D local phase separation regions. Such 2D phase separation regions formed inside layered domain walls representing superlattices with sizes of 700–900 Å. Depending on the shape and size of the studied plates and spheres, Landau diamagnetism or de Haas–van Alphen oscillations were observed in the 2D phase separation regions at room temperature and T = 77 K. Full article
Show Figures

Figure 1

Back to TopTop