Quantum Beats of a Macroscopic Polariton Condensate in Real Space
Abstract
1. Introduction
2. Setting the Trap
3. The Dynamics of Trapped Condensates
4. Hadamard and Pauli Operations
5. Discussion
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mitsunaga, M.; Tang, C.L. Theory of quantum beats in optical transmission-correlation and pump-probe measurements. Phys. Rev. A 1987, 35, 1720–1728. [Google Scholar] [CrossRef]
- Dodd, J.N.; Kaul, R.D.; Warrington, D.M. The modulation of resonance fluorescence excited by pulsed light. Proc. Phys. Soc. 1964, 84, 176. [Google Scholar] [CrossRef]
- Haroche, S.; Paisner, J.A.; Schawlow, A.L. Hyperfine Quantum Beats Observed in Cs Vapor under Pulsed Dye Laser Excitation. Phys. Rev. Lett. 1973, 30, 948–951. [Google Scholar] [CrossRef]
- Shah, J. Ultrafast Spectroscopy of Semiconductors and Semiconductor Nanostructures, 2nd ed.; Springer: New York, NY, USA, 2013; Volume 115. [Google Scholar] [CrossRef]
- Roskos, H.G.; Nuss, M.C.; Shah, J.; Leo, K.; Miller, D.A.B.; Fox, A.M.; Schmitt-Rink, S.; Köhler, K. Coherent submillimeter-wave emission from charge oscillations in a double-well potential. Phys. Rev. Lett. 1992, 68, 2216–2219. [Google Scholar] [CrossRef]
- Schmitt-Rink, S.; Bennhardt, D.; Heuckeroth, V.; Thomas, P.; Haring, P.; Maidorn, G.; Bakker, H.; Leo, K.; Kim, D.S.; Shah, J.; et al. Polarization dependence of heavy- and light-hole quantum beats. Phys. Rev. B 1992, 46, 10460–10463. [Google Scholar] [CrossRef] [PubMed]
- Göbel, E.O.; Leo, K.; Damen, T.C.; Shah, J.; Schmitt-Rink, S.; Schäfer, W.; Müller, J.F.; Köhler, K. Quantum beats of excitons in quantum wells. Phys. Rev. Lett. 1990, 64, 1801–1804. [Google Scholar] [CrossRef]
- Bar-Ad, S.; Bar-Joseph, I. Absorption quantum beats of magnetoexcitons in GaAs heterostructures. Phys. Rev. Lett. 1991, 66, 2491–2494. [Google Scholar] [CrossRef]
- Trifonov, A.V.; Khramtsov, E.S.; Kavokin, K.V.; Ignatiev, I.V.; Kavokin, A.V.; Efimov, Y.P.; Eliseev, S.A.; Shapochkin, P.Y.; Bayer, M. Nanosecond Spin Coherence Time of Nonradiative Excitons in GaAs/AlGaAs Quantum Wells. Phys. Rev. Lett. 2019, 122, 147401. [Google Scholar] [CrossRef] [PubMed]
- Kotur, M.; Dzhioev, R.I.; Vladimirova, M.; Jouault, B.; Korenev, V.L.; Kavokin, K.V. Nuclear spin warm up in bulk n-GaAs. Phys. Rev. B 2016, 94, 081201. [Google Scholar] [CrossRef]
- Alexandrov, E. Interference effects in quantum transitions in non-stationary atomic systems. Opt. Spectrosc. 1964, 17, 957. [Google Scholar]
- Erland, J.; Balslev, I. Theory of quantum beat and polarization interference in four-wave mixing. Phys. Rev. A 1993, 48, R1765–R1768. [Google Scholar] [CrossRef]
- Yugova, I.A.; Glazov, M.M.; Ivchenko, E.L.; Efros, A.L. Pump-probe Faraday rotation and ellipticity in an ensemble of singly charged quantum dots. Phys. Rev. B 2009, 80, 104436. [Google Scholar] [CrossRef]
- Müller, G.M.; Oestreich, M.; Römer, M.; Hübner, J. Semiconductor spin noise spectroscopy: Fundamentals, accomplishments, and challenges. Phys. E Low-Dimens. Syst. Nanostructures 2010, 43, 569–587. [Google Scholar] [CrossRef]
- Kurnit, N.A.; Abella, I.D.; Hartmann, S.R. Observation of a Photon Echo. Phys. Rev. Lett. 1964, 13, 567–568. [Google Scholar] [CrossRef]
- Scully, M.O.; Zubairy, M.S. Dedication. In Quantum Optics; Cambridge University Press: Cambridge, UK, 1997; pp. 17–18. [Google Scholar]
- Deng, H.; Weihs, G.; Santori, C.; Bloch, J.; Yamamoto, Y. Condensation of Semiconductor Microcavity Exciton Polaritons. Science 2002, 298, 199–202. [Google Scholar] [CrossRef] [PubMed]
- Kasprzak, J.; Richard, M.; Kundermann, S.; Baas, A.; Jeambrun, P.; Keeling, J.M.J.; Marchetti, F.M.; Szymańska, M.H.; André, R.; Staehli, J.L.; et al. Bose–Einstein condensation of exciton polaritons. Nature 2006, 443, 409–414. [Google Scholar] [CrossRef] [PubMed]
- Carusotto, I.; Ciuti, C. Quantum fluids of light. Rev. Mod. Phys. 2013, 85, 299–366. [Google Scholar] [CrossRef]
- Norris, T.B.; Rhee, J.K.; Sung, C.Y.; Arakawa, Y.; Nishioka, M.; Weisbuch, C. Time-resolved vacuum Rabi oscillations in a semiconductor quantum microcavity. Phys. Rev. B 1994, 50, 14663–14666. [Google Scholar] [CrossRef] [PubMed]
- Cao, H.; Jacobson, J.; Björk, G.; Pau, S.; Yamamoto, Y. Observation of dressed-exciton oscillating emission over a wide wavelength range in a semiconductor microcavity. Appl. Phys. Lett. 1995, 66, 1107–1109. [Google Scholar] [CrossRef]
- Hennessy, K.; Badolato, A.; Winger, M.; Gerace, D.; Atatüre, M.; Gulde, S.; Fält, S.; Hu, E.L.; Imamoğlu, A. Quantum nature of a strongly coupled single quantum dot–cavity system. Nature 2007, 445, 896–899. [Google Scholar] [CrossRef]
- Dominici, L.; Colas, D.; Gianfrate, A.; Rahmani, A.; Ardizzone, V.; Ballarini, D.; De Giorgi, M.; Gigli, G.; Laussy, F.P.; Sanvitto, D.; et al. Full-Bloch beams and ultrafast Rabi-rotating vortices. Phys. Rev. Res. 2021, 3, 013007. [Google Scholar] [CrossRef]
- Renucci, P.; Amand, T.; Marie, X.; Senellart, P.; Bloch, J.; Sermage, B.; Kavokin, K.V. Microcavity polariton spin quantum beats without a magnetic field: A manifestation of Coulomb exchange in dense and polarized polariton systems. Phys. Rev. B 2005, 72, 075317. [Google Scholar] [CrossRef]
- Mukherjee, S.; Myers, D.M.; Lena, R.G.; Ozden, B.; Beaumariage, J.; Sun, Z.; Steger, M.; Pfeiffer, L.N.; West, K.; Daley, A.J.; et al. Observation of nonequilibrium motion and equilibration in polariton rings. Phys. Rev. B 2019, 100, 245304. [Google Scholar] [CrossRef]
- Kim, S.; Rubo, Y.G.; Liew, T.C.H.; Brodbeck, S.; Schneider, C.; Höfling, S.; Deng, H. Emergence of microfrequency comb via limit cycles in dissipatively coupled condensates. Phys. Rev. B 2020, 101, 085302. [Google Scholar] [CrossRef]
- Rayanov, K.; Altshuler, B.L.; Rubo, Y.G.; Flach, S. Frequency Combs with Weakly Lasing Exciton-Polariton Condensates. Phys. Rev. Lett. 2015, 114, 193901. [Google Scholar] [CrossRef] [PubMed]
- Nalitov, A.V.; Sigurdsson, H.; Morina, S.; Krivosenko, Y.S.; Iorsh, I.V.; Rubo, Y.G.; Kavokin, A.V.; Shelykh, I.A. Optically trapped polariton condensates as semiclassical time crystals. Phys. Rev. A 2019, 99, 033830. [Google Scholar] [CrossRef]
- Sigurdsson, H.; Gnusov, I.; Alyatkin, S.; Pickup, L.; Gippius, N.A.; Lagoudakis, P.G.; Askitopoulos, A. Persistent Self-Induced Larmor Precession Evidenced through Periodic Revivals of Coherence. Phys. Rev. Lett. 2022, 129, 155301. [Google Scholar] [CrossRef]
- Barrat, J.; Tzortzakakis, A.F.; Niu, M.; Zhou, X.; Paschos, G.G.; Petrosyan, D.; Savvidis, P.G. Qubit analog with polariton superfluid in an annular trap. Sci. Adv. 2024, 10, eado4042. [Google Scholar] [CrossRef]
- Carraro-Haddad, I.; Chafatinos, D.L.; Kuznetsov, A.S.; Papuccio-Fernández, I.A.; Reynoso, A.A.; Bruchhausen, A.; Biermann, K.; Santos, P.V.; Usaj, G.; Fainstein, A. Solid-state continuous time crystal in a polariton condensate with a built-in mechanical clock. Science 2024, 384, 995. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhao, S.; Lei, D. Quantum statistical theory for an exciton–polariton condensate: Fluctuations and coherence. Phys. Rev. B 2022, 106, L220306. [Google Scholar] [CrossRef]
- Sun, X.; Wang, G.; Hou, K.; Bi, H.; Xue, Y.; Kavokin, A. Clock generator based on a vortex attractor in polariton superfluids. Phys. Rev. B 2024, 109, 155301. [Google Scholar] [CrossRef]
- Xu, W.; Bagrov, A.A.; Chowdhury, F.T.; Smith, L.D.; Kattnig, D.R.; Kappen, H.J.; Katsnelson, M.I. Fröhlich versus Bose-Einstein condensation in pumped bosonic systems. Phys. Rev. Res. 2025, 7, 023111. [Google Scholar] [CrossRef]
- Aladinskaia, E.; Cherbunin, R.; Sedov, E.; Liubomirov, A.; Kavokin, K.; Khramtsov, E.; Petrov, M.; Savvidis, P.; Kavokin, A. Spatial quantization of exciton-polariton condensates in optically induced trap. Phys. Rev. B 2023, 107, 045302. [Google Scholar] [CrossRef]
- Yao, Q.; Comaron, P.; Alnatah, H.; Beaumariage, J.; Mukherjee, S.; West, K.; Pfeiffer, L.; Baldwin, K.; Szymanska, M.; Snoke, D. Persistent, controllable circulation of a polariton ring condensate. arXiv 2023, arXiv:2302.07803. [Google Scholar] [CrossRef]
- Töpfer, J.D.; Sigurdsson, H.; Alyatkin, S.; Lagoudakis, P.G. Lotka-Volterra population dynamics in coherent and tunable oscillators of trapped polariton condensates. Phys. Rev. B 2020, 102, 195428. [Google Scholar] [CrossRef]
- Estrecho, E.; Pieczarka, M.; Wurdack, M.; Steger, M.; West, K.; Pfeiffer, L.N.; Snoke, D.W.; Truscott, A.G.; Ostrovskaya, E.A. Low-Energy Collective Oscillations and Bogoliubov Sound in an Exciton-Polariton Condensate. Phys. Rev. Lett. 2021, 126, 075301. [Google Scholar] [CrossRef]
- Xue, Y.; Chestnov, I.; Sedov, E.; Kiktenko, E.; Fedorov, A.K.; Schumacher, S.; Ma, X.; Kavokin, A. Split-ring polariton condensates as macroscopic two-level quantum systems. Phys. Rev. Res. 2021, 3, 013099. [Google Scholar] [CrossRef]
- Kavokin, A.; Liew, T.C.H.; Schneider, C.; Lagoudakis, P.G.; Klembt, S.; Hoefling, S. Polariton condensates for classical and quantum computing. Nat. Rev. Phys. 2022, 4, 435–451. [Google Scholar] [CrossRef]
- Ricco, L.S.; Shelykh, I.A.; Kavokin, A. Qubit gate operations in elliptically trapped polariton condensates. Sci. Rep. 2024, 14, 4211. [Google Scholar] [CrossRef]
- de Oliveira, M.; Munro, W.J. Quantum computation with mesoscopic superposition states. Phys. Rev. A 2000, 61, 042309. [Google Scholar] [CrossRef]
- Kiktenko, E.O.; Fedorov, A.K.; Man’ko, O.V.; Man’ko, V.I. Multilevel superconducting circuits as two-qubit systems: Operations, state preparation, and entropic inequalities. Phys. Rev. A 2015, 91, 042312. [Google Scholar] [CrossRef]
- Vidal, G.; Werner, R.F. Computable measure of entanglement. Phys. Rev. A 2002, 65, 032314. [Google Scholar] [CrossRef]
- Dominici, L.; Colas, D.; Donati, S.; Restrepo Cuartas, J.P.; De Giorgi, M.; Ballarini, D.; Guirales, G.; López Carreño, J.C.; Bramati, A.; Gigli, G.; et al. Ultrafast control of Rabi oscillations in a polariton condensate. Phys. Rev. Lett. 2014, 113, 226401. [Google Scholar] [CrossRef]
- Faust, T.; Rieger, J.; Seitner, M.J.; Kotthaus, J.P.; Weig, E.M. Coherent control of a classical nanomechanical two-level system. Nat. Phys. 2013, 9, 485–488. [Google Scholar] [CrossRef]
- Frimmer, M.; Novotny, L. The classical Bloch equations. Am. J. Phys. 2014, 82, 947–955. [Google Scholar] [CrossRef]
- Snoke, D.W. Interpreting Quantum Mechanics: Modern Foundations; Cambridge University Press: Cambridge, UK, 2024. [Google Scholar]




Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cherbunin, R.V.; Liubomirov, A.; Kavokina, S.V.; Novokreschenov, D.; Kudlis, A.; Kavokin, A.V. Quantum Beats of a Macroscopic Polariton Condensate in Real Space. Optics 2025, 6, 53. https://doi.org/10.3390/opt6040053
Cherbunin RV, Liubomirov A, Kavokina SV, Novokreschenov D, Kudlis A, Kavokin AV. Quantum Beats of a Macroscopic Polariton Condensate in Real Space. Optics. 2025; 6(4):53. https://doi.org/10.3390/opt6040053
Chicago/Turabian StyleCherbunin, Roman V., Aleksey Liubomirov, Stella V. Kavokina, Denis Novokreschenov, Andrey Kudlis, and Alexey V. Kavokin. 2025. "Quantum Beats of a Macroscopic Polariton Condensate in Real Space" Optics 6, no. 4: 53. https://doi.org/10.3390/opt6040053
APA StyleCherbunin, R. V., Liubomirov, A., Kavokina, S. V., Novokreschenov, D., Kudlis, A., & Kavokin, A. V. (2025). Quantum Beats of a Macroscopic Polariton Condensate in Real Space. Optics, 6(4), 53. https://doi.org/10.3390/opt6040053

