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Abstract: In this paper, we propose a scheme for measurement-based control of hybrid Einstein–
Podolsky–Rosen (EPR) entanglement and steering between distant macroscopic mechanical oscillator
and yttrium iron garnet (YIG) sphere in a system of an electromechanical cavity unidirectionally cou-
pled to an electromagnonical cavity. We reveal that when the output of the electromagnonical cavity
is continuously monitored by homodyne detection, not only the phonon–magnon entanglement and
steering but also the purities of the phononic, magnonic and phonon–magnon states are consider-
ably enhanced. We also find that the measurement can effectively retrieve the magnon-to-phonon
steering, which is not yet obtained in the absence of the measurement. We show that unconditional
phonon–magnon entanglement and steering can be achieved by introducing indirect feedback to
drive the magnon and mechanical subsystems. The long-distance macroscopic hybrid entanglement
and steering can be useful for, e.g., fundamental tests for quantum mechanics and quantum networks.

Keywords: cavity magnonics; cavity optomechanics; magnomechanical entanglement; continuous
weak measurement

1. Introduction
In the past decade, great progress toward the realization of nonclassical phenomena

in macroscopic mechanical oscillators has been achieved [1–4], motivated by its poten-
tial applications in the fields of probing the fundamental limits of quantum theory [5,6],
ultrahigh precision measurements [7–10], and quantum information [11,12]. So far, var-
ious quantum effects [13–21], including mechanical squeezing [13], entanglement and
Bell nonlocality [14–16], and phonon Fock states [20], have been demonstrated. Moreover,
continuous-measurement-based control of mechanical oscillators has also been investigated
experimentally [22–27], including cooling a mechanical resonator closely to ground states,
observing quantum trajectory, and entropy production of a continuously monitored op-
tomechanical oscillator. In addition, proposals for preparing strong mechanical squeezing,
optomechanical entanglement and steering through continuous homodyne detection have
been put forward [28,29].

In parallel with well-studied cavity optomechanical systems, macroscopic quantum
effects in hybrid systems based on magnons in magnetic materials such as YIG sphere
being around hundreds of micrometers in diameter increasingly have recently attracted
a lot of attention, since magnons possess great frequency tunability, very low loss, and
good coupling capability to other systems, i.e., microwave or optical photons, phonons,
and qubits [30,31]. This therefore provides efficient ways to control quantum effects of
magnons and meanwhile makes magnon-based systems very suitable for various quantum
tasks. Qubit-based magnon quanta sensing, single-magnon control, and generation of a
macroscopic Bell state between a single magnon and a superconducting qubit have already
been reported [32–34]. Dynamical backaction magnomechanics and mechanical bistability
have also been observed in cavity magnomechanics [35,36]. Recent proposals have been
put forward for achieving magnon entanglement, magnon squeezing, magnon-mediated
microwave photon entanglement, magnon blockade, magnon cat states [37–46]. In addition,
magnon-based hybrid systems can also exhibit rich nonlinear phenomena, optomagnonic
frequency combs [47], magnonic frequency combs in cavity magnomechanics [48], and
magnon-induced high-order sideband generation [49].
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In this paper, we consider a continuous measurement scheme to control photon-
mediated EPR entanglement between a mechanical resonator and a distant YIG sphere.
Such long-distance entanglement enables quantum communication among remote quan-
tum nodes in quantum networks [50,51]. It should be noted that distant EPR entanglement
between macroscopic mechanical and spin systems has been realized via unidirectional
light coupling and measurement [52]. In addition, recent experiments have realized entan-
glement and quantum discord between superconducting qubits by virtue of continuous
measurements, e.g., photon counting and homodyne detection [53,54]. We consider a sys-
tem of an electromechanical cavity unidirectionally coupled to an electromagnonical cavity
where a YIG is placed. It is found that when the output of the electromagnonical cavity
is continuously monitored by homodyne detection, the phonon–magnon entanglement
and steering can be obviously enhanced. We reveal that enhancement due to measurement
enlarges the stability regime and also enhances the purities of the phononic, magnonic and
phonon–magnon states. The measurement can also retrieve the steering from magnons to
phonons which is unachievable in the absence of the measurement. We also show that by
introducing indirect feedback to the mechanical and magnonic subsystems, unconditional
phonon–magnon entanglement and steering can be achieved.

This paper is organized as follows. In Section 2, the system and working equations are
presented. In Section 3, the effects of the continuous measurement on the phonon–magnon
entanglement and steering are investigated in detail. Section 4, the indirect feedback is
introduced to achieve unconditional entanglement and steering. In the last Section 5, the
conclusion is given.

2. System and Equations
As shown in Figure 1, we consider that a driven electromechanical cavity is unidirec-

tionally coupled to an electromagnonical cavity. For the electromechanical cavity, the cavity
resonance is modulated by the mechanical oscillator, giving rise to the electromechanical
coupling. While inside the electromagnonical cavity, a ferrimagnetic YIG sphere with
a diameter of about hundreds of micrometers is placed and also biased in an uniform
magnetic field. The magnons, characterizing the quanta of collective spin excitations in the
YIG sphere, are coupled to the cavity mode via magnetic dipole interaction. In the rotating
frame with respect to the driving frequency ωd, the system’s Hamiltonian reads (h̄ = 1)

Ĥ = ∑
j=1,2

δj Â†
j Âj + δm M̂† M̂ + ωb B̂† B̂

+ ḡab Â†
1 Â1(B̂ + B̂†) + gam(Â†

2 M̂ + Â2M̂†)

− i(E∗d Â1 − Ed Â†
1), (1)

where the bosonic annihilation operators Âj, M̂ and B̂ denote, respectively, the jth cavity,
magnon (magnetostatic), and mechanical modes of resonances ωcj , ωm and ωb, respectively.
The detunings δj = ωcj −ωd and δm = ωm −ωd. ḡab represent electromechanical coupling
with a single microwave photon, and gam denotes electromagnonical coupling, dependent
on the number of spins. For the strong drive with the amplitude Ed, Equation (1) can be lin-
earized around the steady-state amplitudes by replacing the operators by Âj = 〈Âj〉ss + âj,
B̂ = 〈B̂〉ss + b̂, and M̂ = 〈M̂〉ss + m̂, and the resulted linear Hamiltonian is given by

Ĥlin = ∆1 â†
1 â1 + δ2 â†

2 â2 + δmm̂†m̂ + ωb b̂† b̂

+ gab(â1 + â†
1)(b̂ + b̂†) + gam(â†

2m̂ + â2m̂†), (2)

with ∆1 = δ1 + 2ḡabRe[〈B̂〉ss] and gab = ḡab〈Â1〉ss.
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Figure 1. The schematic plot of a driven electromechanical cavity is unidirectionally coupled to an
electromagnonical cavity whose output is continuously monitored by homodyne detection. Based on
the detection outcome I(t), indirect (state-based) feedback with gains db,m is employed to achieve
unconditional entanglement and steering between the macroscopic mechanical oscillator and the
YIG sphere.

We further consider that the output field âout
2 (t) of the second cavity â2 is subject to

time-continuous homodyne detection. For the cascade two-cavity system, the input–output
relation is

âout
2 (t) =

√
κ2 â2 +

√
ξeκ1 â1 +

√
ξeain

1 (t), (3)

where âin
1 (t) is the input of the first cavity â1 satisfying 〈âin

1 (t)âin†
1 (t′)〉 = δ(t− t′), κj are the

cavity dissipation rates, and ξe accounts for the cascade–cavity coupling efficiency. When
the generalized quadrature,

x̂out
2θ = (âout

2 eiθ + âout†
2 e−iθ)/

√
2, (4)

is homodynely detected with the local phase θ, the detection current

Iθdt =
√

η
〈
(
√

ξeκ1 â1 +
√

κ2 â2)eiθ + H.c.
〉
dt + dW. (5)

Here, η denotes the detection efficiency and dW is the stochastic Wiener increment
satisfying the Ito rule (dW)2 = dt. Conditioned on the detection outcomes, the stochastic
master equation for the density operator ρ̂c

s of the whole system is given in [55,56]:

dρ̂c
s = −i

[
Ĥlin, ρ̂c

s
]
dt + κ1L[â1]ρ̂

c
sdt + κ2L[â2]ρ̂

c
sdt

+ ∑
j=m,b

κj

{
(n̄th

j + 1)L[ ĵ]ρ̂c
sdt + n̄th

j L[ ĵ
†]ρ̂c

sdt
}

−
√

ξeκ1κ2

([
â†

2, â1ρ̂c
s
]
+
[
ρ̂c

s â†
1, â2

])
dt,

+
√

ηH
[(√

ξeκ1 â1 +
√

κ2 â2
)
eiθ]ρ̂c

sdW, (6)

where the symbols L[ô]ρ̂ = ôρ̂ô† − 1
2 (ô

† ôρ̂ + ρ̂ô† ô) and H[ô]ρ̂ = ôρ̂ + ρ̂ô† − 〈ô + ô†〉. The
second and third terms in the first line in Equation (6) describe the cavity dissipation
processes, the second line describes the damping of the mechanical and magnon modes at
the rates κb and κm, in thermal environments with the mean thermal excitation numbers
n̄th

j ≡ (eh̄ωj/kBTj − 1)−1, for temperature Tj and the Boltzmann constant kB; the third line
describes the cascade–cavity coupling with the efficiency ξe; and the last line characterizes
the backaction due to the continuous measurement and it disappears when ensemble
average is performed.

For initial Gaussian states, the system governed by Equation (6) evolves still in Gaus-
sian, determined by the covariance matrix σc,jj′ = 〈µjµj′ + µj′µj〉/2 − 〈µj〉〈µj′〉, where
µ = (x̂1, p̂1, x̂2, p̂2, x̂b, p̂b, x̂m, p̂m) for the quadrature operators x̂ = (ô + ô†)/

√
2 and

p̂ = −i(ô− ô†)/
√

2. From Equation (6), we have
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dµ̄T = Aµ̄Tdt + (σcC− Γ)dW, (7)

σ̇c = Aσc + σc AT + D− (σcC− Γ)(σcC− Γ)T , (8)

where µ̄j ≡ 〈µj〉. The matrix

A =


A1 0 Aab 0
A12 A2 0 Aam
Aab 0 Ab 0
0 Aam 0 Am

, (9)

where Ax={1,2,b,m} = −
(

κx −2∆x
2∆x κx

)
/2, with ∆2 = δ2, ∆m = δm and ∆b = ωb, Aab =

−
(

0 0
0 2Gab

)
, Aam =

(
0 gam
−gam 0

)
, and A12 = −

√
ξeκ1κ2 I. The matrix

D =

(
D1 D12
D12 D2

)
⊕
(

Db 0
0 Dm

)
, (10)

where Dj = κj I/2, Db,m = κb,m(n̄th
b,m + 1/2)I, and D12 =

√
ξeκ1κ2 I/2. The vectors

CT =
√

2η
(√

ξeκ1 cos θ,−
√

ξeκ1 sin θ,
√

κ2 cos θ,

−
√

κ2 sin θ, 0, 0, 0, 0
)
, (11)

ΓT =

√
η

2
(√

ξeκ1 cos θ,−
√

ξeκ1 sin θ,
√

κ2 cos θ,

−
√

κ2 sin θ, 0, 0, 0, 0
)
. (12)

We see from Equation (2) that the first moments are related to the detection outcomes
and are thus stochastic. Nevertheless, these stochastic moments are independent of the
entanglement and steering for the Gaussian states and can be cancelled out by introducing
feedback, as is shown later. On the contrary, the covariance matrix σc is independent of the
outcomes and thus deterministic and it completely determines quantum statistics of the
system. The effect of continuous measurement is embodied by the last nonlinear term of
Equation (8) (originating from the last term of Equation (6)), which is crucial for achieving
strong EPR entanglement and steering for the present scheme.

By solving Equation (8), the covariance matrix σbm of the mechanical and magnonic
system can be obtained and expressed in the form σbm =

(
σb σbm

σT
bm σm

)
. The phonon–magnon

entanglement can be quantified by the logarithmic negativity [57],

Ebm = max
[
0,− ln(2e)

]
, (13)

where e = 2−1/2
√

Σ−
√

Σ2 − 4det σbm and Σ = det σc + det σm − 2det cbm. The steering
from phonons to magnons can be quantified by [58]

Sm|b = max
[
0,

1
2

ln
( det σb

4 det σbm

)]
, (14)

and, similarly, the reverse steering from magnons to phonons is determined by

Sb|m = max
[
0,

1
2

ln
( det σm

4 det σbm

)]
. (15)

3. Conditional Entanglement and Steering via Measurement
In Figure 2, the phonon–magnon entanglement Ebm in the steady-state regime is

plotted for the two cases that the measurement is absent [(a1)–(c1), η = 0] and is present
[(a2)–(c2), η = 1]. As shown in Figure 2(a1), we see that without the measurement, the
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maximal entanglement occurs for the detuning ∆m = −ωb and also for the bad cavity
κ1,2 � {ωb, gab, gam} [59]. This is because the phonon–magnon entanglement roots from
the effective parametric amplification interaction between the mechanical and magnon
modes result from the cascade photon coupling, which is resonant at this detuning; their
strength is proportional to the product of cavity dissipation rates κ1,2. When the continuous
monitoring is turned on, the entanglement appears over a wider range of detuning ∆m
and its maximal value at ∆m = −ωb is obviously enhanced for the given cavity dissipation
rate κ = κj ∈ [0.5ωb, 15ωb]. From Figure 2(b1), we see that without the measurement, the
entanglement is present at steady-state regime ∆1 ≥ 0 and becomes maximal in the vicinity
of instability threshold ∆1 = 0 of the optomechanical system. However, as depicted in
Figure 2(b2), the continuous measurement enlarges the stable regime of the optomechanical
system to blue-detuned regime ∆1 < 0, even with mediate optomechanical coupling gab.
As a matter of fact, this blue-detuned regime is conducive to the generation of photon–
phonon entanglement, although it is prohibited by the stability for a generic optomechanical
system. Since the phonon–magnon entanglement actually results from the distribution
of the photon–phonon entanglement via the unidirectional cavity coupling, the stronger
steady-state phonon–magnon entanglement is thus achievable at ∆1 < 0, with the help of
the measurement. In addition, we can also see that apart from the blue-detuning regime,
the entanglement is also obviously enhanced in red-detuned region ∆1 > 0. This is because
the continuous measurement effectively reduces the fluctuations of the mechanical and
magnon modes in this regime. Similarly, as shown in Figure 2(c1–c3), the entanglement is
also improved by the measurement for different values of the couplings, gab and gam. We
can see that in the presence of the measurement, stronger entanglement can be achieved
even for smaller coupling gam.
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Figure 2. The dependence of the phonon–magnon entanglement Ebm on different parameters for
the measurement being absent (η = 0) in (a1,b1,c1) and present (η = 1) in (a2,b2,c2). In (a1,a2),
∆1 = −∆2 = ωb, gab = 0.5gam = 0.5ωb; In (b1,b2), κ = 10ωb, ∆m = −ωb, gab = 0.5gam = 0.5ωb;
In (c1,c2), κ = 10ωb, ∆m = −ωb, ∆1 = −∆2 = ωb. The other parameters ωb/2π = 10 MHz,
ωm/2π = 10 GHz, κm = 0.15ωb, κb = 10−5ωb, T1 = Tm = Tb = 30 mK, and ξe = 1. The plots
(a3,b2,c3) are the same as (a1,b1,c1), respectively, with ∆m = −ωm [in (a3)], ∆2 = −ωm [in (b3)], and
gab = ωm [in (c3)].

In Figures 3 and 4, the steady-state steerings Sm|b and Sb|m are plotted, respectively.
Comparing Figures 2 and 3, we can see that the properties of steering Sm|b are similar to
those of entanglement Ebm. On the contrary, steering Sb|m displays quite different behaviors.
As shown in plots (a1)–(b1) in Figures 3 and 4, when the measurement is absent, the
steering from magnons to phonons is unachievable, i.e., Sb|m = 0, and thus, one-way
steering (Sm|b 6= 0) is obtained in a wide range of parameters. This is mainly due to
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dissipation rate κb � κm, which can be seen from Figure 5, where the steerings are plotted
for decreased magnon damping rate κm. It can be found that the magnon-to-phonon
steering appears and the degrees of the entanglement and steerings increases with the
decreasing of the magnon damping. When the measurement is present, as depicted in
Figure 4(a2,b2), the magnon-to-phonon steering also appears, and therefore the two-way
steering between phonons and magnons can be obtained via the continuous measurement.
This is also due to the fact that continuous measurement suppresses fluctuations of the
magnon mode. Similarly to phonon-to-magnon steering Sm|b, the maximum of the reverse
steering still occurs at ∆m = −ωm. From Figure 4(c1–c3), we see that in the presence of the
continuous measurement, steering Sb|m can obviously be enhanced and also exist over a
wider range of coupling gam.
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Figure 3. The dependence of phonon-to-magnon steering Sm|b on different parameters for the
measurement being absent (η = 0) (in (a1,b1,c1)) and present (η = 1) (in (a2,b2,c2)). The other
parameters are the same as in Figure 2.
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Figure 4. The dependence of magnon-to-phonon steering Sb|m on different parameters for the
measurement being absent (η = 0) (in (a1,b1,c1)) and present (η = 1) (in (a2,b2,c2)). The other
parameters are the same as in Figure 2.
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Figure 5. Purity Pb, Pm, and Pbm of the phononic states, magnonic states, and phonon–magnon states
in (a,b,c) for the same parameters as those in Figure 2(a3,b3,c3), for the measurement being present
(η = 1, thick lines) and absent (η = 0, thin lines).

In Figure 6, we plot purity Pb, Pm, and Pbm of the phononic states, magnonic states, and
the phonon–magnon states for the cases that the measurement is present (η = 1) and absent
(η = 0). It can be found that the purities are considerably enhanced by the measurement.
Therefore, we can also understand that the measurement reduces the noise of the system
and therefore enhances the entanglement and steering in the steady-state regime.
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Figure 6. Density plots of steerings Sm|b (a1–c1) and Sb|m (a2–c2) in the absence of the measurement
for the same parameters as (a1–c1) in Figure 3 and (a1–c1) in Figure 4, respectively, except for
κm = 0.01ωb.

Figure 7 depicts the effects of imperfect unidirectional cavity coupling (ξe < 1) and
thermal fluctuations on the entanglement and steering. It is shown that the entanglement
and steering are robust against the unidirectional coupling loss. We see that Ebm and Sm|b
can exist even for ξe = 0.2, whereas Sb|m almost disappears for ξe ≤ 0.8. For the current
experiments in the microwave domain, unidirectional cavity coupling efficiency ξe ≈ 0.75
is achieved [53,54]. In addition, we can also see that the entanglement can still be achieved
even for the temperature of up to Tb ≈ 400 mK. The steerings are more influenced by the
thermal noise, and steering Sm|b is more robust than the reverse steering, due to damping
rates κb � κm. The two-way steering survives for T ≈ 100 mK. For the YIG sphere, the
cooling to 10 mK ∼ 1 K by using a dilution refrigerator, just with small line broadening, is
achieved in experiment [60]. We note that around temperature Tb = Tm ≈ 30 mK by using
cryostat in experiments [60–63], the mean thermal magnon number n̄th

m ≈ 0; it can thus be
neglected, while the mean thermal phonon number n̄th

b ≈ 62, not near the ground states.
Here, the parameters can be chosen as ωm/2π = 10 GHz, ωb/2π = 10 MHz, electrome-
chanical coupling gab/2π = 5 MHz for single-photon-mechanical coupling g̃ab ≈ 150 Hz
and pump power Pd ≈ 1 µW for ∆1 = −∆2 = −∆m = ωm and κ = 10ωm. Experimentally,
ultrastrong electromechanical coupling inducing the frequency splitting of 90 percent of
bare 10-MHz mechanical frequency has already been achieved [61]. When considering
a 400 µm diameter YIG sphere, electromagnonical coupling gam ≡

√
Ngm0 = ωb can be

obtained for single-spin coupling gm0/2π ≈ 38 mHz [60] and the number of spins in sphere
N ≈ 7× 1016 with net spin density of the sphere ρs = 2.1× 1027 m−3. For the present
scheme, the optomechanical device can be a three-dimensional superconducting cavity
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which is coupled to the motion of a micromechanical membrane. The electromagnonical de-
vice could also be a three-dimensional microwave cavity where an undoped single-crystal
YIG sphere is coupled the the microwave field. The output ports of the two cavities can
be connected via two microwave circulators and a coaxial cable to achieve the directional
coupling from the electromechanical cavity to the electromagnonical cavity, as accepted
in [53] where the second output is under continuous measurement. In the microwave
domain, the cascade–cavity coupling efficiency of up to 0.8 can be achieved.
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Figure 7. Density plot of entanglement Ebm and steering Sm|b and Sb|m versus temperature T and
unidirectional coupling efficiency ξe for gab = 0.5ωb and ∆1 = ωb in (a1,b1,c1), gab = ωb and
∆1 = −ωb in (a2,b2,c2), gam = ωb, κ = 10ωb, ∆2 = −ωb, ∆m = −ωb, and the other parameters are
the same as in Figure 2.

4. Unconditional Entanglement and Steering via Indirect Feedback
The above results are conditional, since expectation values µ̄(t) are driven by stochastic

noise dW and therefore walk randomly in the phase space, depending on the detection
outcomes. For many experimental runs of the system, the incoherent noise resulting
from the random walk masks the conditional mechanical magnon EPR entanglement
and steering studied in the above when ensemble average is performed. Therefore, to
verify and apply the entanglement and steering, we need to convert the conditional results
into the unconditional ones. This can be realized by employing state-based (indirect)
feedback to remove the negative effect of stochastic expectation values µ̄(t) [55,56]. Once
the measurement is performed at some time t, values x̄j(t) and p̄j(t) can be inferred
immediately, based on which the Markovian feedback described by the Hamiltonian

Ĥfb = ∑
j=b,m

dj
p p̄j(t)x̂j − dj

x x̄j(t) p̂j (16)

can be constructed, with the feedback gain parameters dj
x,p. The feedback leads Equation (7)

to be modified by substituting A with Ã ≡ A + diag(0, 0, 0, 0, dx
b , dy

b , dx
m, dy

m).
For the feedback described by the Hamiltonian of Equation (16), the mechanical

driving can be realized by, e.g., electric actuation, as demonstrated in [64–66]. To achieve
the magnon damping force, a drive tone at frequency ωd and supplied by a microwave
source can directly drive the YIG sphere, as performed in [63]. Here, the driving magnetic
field, bias magnetic field HB, and the magnetic field of the microwave cavity are orthogonal
to each other at the site of the YIG sphere to avoid the mutual impact among them.

Then, ensemble average σ̄e ≡ 1
2 〈µ̄i(t)µ̄j(t) + µ̄j(t)µ̄i(t)〉e over many realizations of the

system can be derived as

˙̄σe = Ãσ̄e + σ̄e ÃT + (σcC− Γ)(σcC− Γ)T , (17)

as well as ensemble average correlation matrix

σe = σc + σ̄e (18)
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determining the system’s properties under the feedback. When σ̄e ≈ 0 through the feedback,
the covariance matrix

σe ≈ σc, (19)

independent of the measurement outcomes and deterministic. The overlap between the
states with the covariance matrices σc and σe can be quantified by fidelity [67]

Fσc ,σe =
(√

Θ +
√

Λ−
√
(
√

Θ +
√

Λ)2 − ∆
)−1, (20)

where Θ = 16Det[Jσc Jσe + I/4], Λ = 16Det[σc + i J/4]Det[σe + i J/4], ∆ = Det[σc + σe],
and J =

( 0 1
−1 0

)
.

In Figure 8a,b, fidelity Fσc ,σe , entanglement Ebm and steering Sm|b and Sb|m are plotted

for the two cases: dj
x = dj

p = d (j = b, m) and db
x = 0 and db

p = dm
x = dm

p = d. We
see that in both cases, the fidelity, the entanglement and steering increase as feedback
strength d arises. This is because the increase in the feedback strength leads to stronger
damping for mean values 〈x̂j〉 and 〈 p̂j〉, which in turn further suppress the fluctuations
(i.e., σ̄e) of the mean values and even almost removes them completely in the limit of
strong feedback. We see that in this limit, fidelity Fσc ,σe → 1 and the entanglement and
steeering recover to the conditional values, Ebm → 0.84, Sm|b → 0.39, and Sb|m → 0.09 in

Figure 3 when dj
x = dj

p = d and d� ωb. It is also explicitly shown that a greater amount of
unconditional entanglement and steerings can be recovered when simultaneously driving
mechanical position x̂b and momentum p̂b in the feedback compared to when just driving
the mechanical position alone. In addition, as shown in Figure 8c,d, the effect of the unequal
feedback parameters is taken into account. We see that the unconditional entanglement and
steering become maximal approximately near the symmetric feedback and they decrease
when dm exceeds db. For the asymmetric feedback, one-way steering also appears, showing
that phonon–magnon entanglement and steering can be controlled via feedback.
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Figure 8. (a,b) The dependence of unconditional entanglement Ebm, fidelity Fσc ,σe and steerings
Sm|b and Sb|m on feedback parameter d, respectively, for dj

x = dj
p = d (j = b, m) (thick lines) and

db
x = 0 and db

p = dm
x = dm

p = d (thin lines). (c,d) The effect of unequal feedback parameters db
and dm on entanglement and steerings for db = 0.5ωb (thin lines) and db = ωb (thick lines). We
have ∆1 = −∆2 = ωb, gab = 0.5gam = 0.5ωb, κ = 10ωb, ∆m = −ωb, η = 1, ξe = 1, and the other
parameters are the same as in Figure 2.

5. Conclusions
In conclusion, in this paper, we consider a continuous measurement scheme to enhance

photon-mediated EPR entanglement and steering between a mechanical resonator and a
distant YIG sphere, a system of an electromechanical cavity unidirectionally coupled to
an electromagnonical cavity where a YIG is placed. We reveal that when the output of the
electromagnonical cavity is continuously monitored by homodyne detection, the phonon–
magnon entanglement and steering can be obviously enhanced. It is also revealed that the



Photonics 2023, 10, 1081 10 of 12

enhancement due to the measurement enlarges the stability regime and also enhances the
purities of the phononic, magnonic and phonon–magnon states. It is found that continuous
measurement can retrieve the steering from magnons to phonons, which is unachievable in
the absence of the measurement. We finally propose an indirect feedback scheme to achieve
unconditional phonon–magnon entanglement and steering. The long-distance macroscopic
hybrid entanglement and steering can be useful for, e.g., fundamental tests for quantum
mechanics and quantum networks.
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