Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (63)

Search Parameters:
Keywords = speed ripple reduction

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
29 pages, 10502 KB  
Article
Performance Enhancement of Wireless BLDC Motor Using Adaptive Reinforcement Learning for Sustainable Pumping Applications
by Richard Pravin Antony, Pongiannan Rakkiya Goundar Komarasamy, Moustafa Ahmed Ibrahim, Abdulaziz Alanazi and Narayanamoorthi Rajamanickam
Sustainability 2025, 17(23), 10881; https://doi.org/10.3390/su172310881 - 4 Dec 2025
Viewed by 332
Abstract
This paper presents an adaptive reinforcement learning (RL)-based control strategy for a wireless power transfer (WPT)-fed brushless DC (BLDC) motor drive, aimed at enhancing efficiency in industrial applications. Conventional control methods for BLDC motors often result in higher energy consumption and increased torque [...] Read more.
This paper presents an adaptive reinforcement learning (RL)-based control strategy for a wireless power transfer (WPT)-fed brushless DC (BLDC) motor drive, aimed at enhancing efficiency in industrial applications. Conventional control methods for BLDC motors often result in higher energy consumption and increased torque ripple under dynamic load and voltage variations. To address this, an adaptive RL framework is implemented with pulse density modulation (PDM), enabling the controller to augment motor speed, torque, and input power in real time. The system is modeled and tested for a 48 V, 1 HP BLDC motor, powered through a 1.1 kW WPT system. Training is carried out across 10 learning episodes with varying load torque and speed demands, allowing the RL agent to adaptively minimize losses while maintaining performance. Results indicate a significant reduction in torque ripple to a minimum of 0.20 Nm, stable speed regulation within ±30 rpm, and improved power utilization compared to existing controllers. The integration of RL with WPT provides a robust, contactless, and energy-efficient solution that is suitable for sustainable industrial motor-pump applications. Full article
Show Figures

Figure 1

23 pages, 19045 KB  
Article
Evaluation of the Acoustic Noise Performance of a Switched Reluctance Motor Under Different Current Control Techniques
by Francisco Juarez-Leon, Moien Masoumi, Babak Nahid-Mobarakeh and Berker Bilgin
Acoustics 2025, 7(4), 77; https://doi.org/10.3390/acoustics7040077 - 30 Nov 2025
Viewed by 199
Abstract
In recent years, switched reluctance motors have emerged as a promising option for various applications due to their low manufacturing cost, rare-earth-free construction, and mechanical robustness. However, their widespread adoption is often limited by high torque ripple and acoustic noise. To address these [...] Read more.
In recent years, switched reluctance motors have emerged as a promising option for various applications due to their low manufacturing cost, rare-earth-free construction, and mechanical robustness. However, their widespread adoption is often limited by high torque ripple and acoustic noise. To address these challenges, this paper presents a comparative study of the acoustic noise performance of an 18/12 switched reluctance motor under various current control techniques. This comparison offers valuable insight into the motor’s vibroacoustic characteristics, which is essential for optimizing SRM performance, particularly in applications where noise reduction is critical. Dynamic simulations of an SRM are carried out in MATLAB/Simulink, and multi-physics analyses are performed in ANSYS Workbench. The multi-physics modeling includes electromagnetic, modal, and harmonic response analyses for four current control techniques evaluated across different operating speeds under light-load conditions. The simulation results are validated experimentally using an actual motor mounted on a dynamometer setup. The corresponding acoustic signatures for each control technique are presented as 2D plots of equivalent radiated power from simulations and sound power level from experimental tests. In addition, experimental waterfall diagrams are provided for each control technique. Full article
Show Figures

Figure 1

22 pages, 5253 KB  
Article
Torque Ripple Reduction and Efficiency Enhancement of Flared-Type Consequent-Pole Motors via Asymmetric Air-Gap and Structural Optimization
by Keun-Young Yoon and Soo-Whang Baek
Appl. Sci. 2025, 15(21), 11520; https://doi.org/10.3390/app152111520 - 28 Oct 2025
Cited by 1 | Viewed by 432
Abstract
The consequent-pole interior permanent-magnet (CPM) motor is a promising alternative for minimizing rare-earth magnet usage while supporting high-speed operation. However, rotor flux asymmetry often leads to distorted back-electromotive force waveforms and increased torque ripple. This study investigated a flared-type CPM motor that employs [...] Read more.
The consequent-pole interior permanent-magnet (CPM) motor is a promising alternative for minimizing rare-earth magnet usage while supporting high-speed operation. However, rotor flux asymmetry often leads to distorted back-electromotive force waveforms and increased torque ripple. This study investigated a flared-type CPM motor that employs ferrite magnets arranged in a flared configuration to enhance flux concentration within a compact rotor. To address waveform distortion, structural modifications such as bridge removal and an asymmetric air-gap design were implemented. Three rotor parameters—polar angle, asymmetric air-gap length, and rotor opening length—were optimized using Latin hypercube sampling combined with an evolutionary algorithm. Finite element method analyses conducted under no-load and rated-load conditions showed that the optimized model achieved a 77.8% reduction in torque ripple, a 43.4% decrease in cogging torque, and a 0.5% improvement in efficiency compared with the basic model. Stress analyses were performed to examine the structural bonding strength and rotor deformation of the optimized model under high-speed operation. The results revealed a 5.5× safety margin at four times the rated speed. The proposed approach offers a cost-effective and sustainable alternative to rare-earth magnet machines for high-efficiency household appliances, where vibration reduction, cost stability, and energy efficiency are critical. Full article
(This article belongs to the Section Electrical, Electronics and Communications Engineering)
Show Figures

Figure 1

24 pages, 1878 KB  
Article
Advancements in Sustainable Mobility: Fractional-Order FOC of IM in an Electric Vehicle Powered by an Autonomous PV Battery System
by Fatma Ben Salem, Jaouhar Mouine and Nabil Derbel
Fractal Fract. 2025, 9(10), 661; https://doi.org/10.3390/fractalfract9100661 - 14 Oct 2025
Viewed by 559
Abstract
This paper presents a novel fractional-order field-oriented control (FO-FOC) strategy for induction motor drives in electric vehicles (EVs) powered by an autonomous photovoltaic (PV) battery energy system. The proposed control approach integrates a fractional-order sliding mode controller (FO-SMC) into the conventional FOC framework [...] Read more.
This paper presents a novel fractional-order field-oriented control (FO-FOC) strategy for induction motor drives in electric vehicles (EVs) powered by an autonomous photovoltaic (PV) battery energy system. The proposed control approach integrates a fractional-order sliding mode controller (FO-SMC) into the conventional FOC framework to enhance dynamic performance, improve robustness, and reduce sensitivity to parameter variations. The originality of this work lies in the combined use of fractional-order control and real-time adaptive parameter updating, applied within a PV battery-powered EV platform. This dual-layer control structure allows the system to effectively reject disturbances, maintain torque and flux tracking, and mitigate the effects of component aging or thermal drift. Furthermore, to address the chattering phenomenon typically associated with sliding mode control, a continuous saturation function was employed, resulting in smoother voltage and current responses more suitable for real-time implementation. Extensive simulation studies were conducted under ideal conditions, with parameter mismatch, and with the proposed adaptive update laws. Results confirmed the superiority of the FO-based approach over classical integer-order designs in terms of speed tracking, flux regulation, torque ripple reduction, and system robustness. The proposed methodology offers a promising solution for next-generation sustainable mobility systems requiring high-performance, energy-efficient, and fault-tolerant electric drives. Full article
(This article belongs to the Special Issue Advances in Dynamics and Control of Fractional-Order Systems)
Show Figures

Figure 1

21 pages, 4287 KB  
Article
Performance Enhancement and Control Strategy for Dual-Stator Bearingless Switched Reluctance Motors in Magnetically Levitated Artificial Hearts
by Chuanyu Sun, Tao Liu, Chunmei Wang, Qilong Gao, Xingling Xiao and Ning Han
Electronics 2025, 14(19), 3782; https://doi.org/10.3390/electronics14193782 - 24 Sep 2025
Viewed by 390
Abstract
Magnetically levitated artificial hearts impose stringent requirements on the blood-pump motor: zero friction, minimal heat generation and full biocompatibility. Traditional mechanical-bearing motors and permanent-magnet bearingless motors fail to satisfy all of these demands simultaneously. A bearingless switched reluctance motor (BSRM), whose rotor contains [...] Read more.
Magnetically levitated artificial hearts impose stringent requirements on the blood-pump motor: zero friction, minimal heat generation and full biocompatibility. Traditional mechanical-bearing motors and permanent-magnet bearingless motors fail to satisfy all of these demands simultaneously. A bearingless switched reluctance motor (BSRM), whose rotor contains no permanent magnets, offers a simple structure, high thermal tolerance, and inherent fault-tolerance, making it an ideal drive for implantable circulatory support. This paper proposes an 18/15/6-pole dual-stator BSRM (DSBSRM) that spatially separates the torque and levitation flux paths, enabling independent, high-precision control of both functions. To suppress torque ripple induced by pulsatile blood flow, a variable-overlap TSF-PWM-DITC strategy is developed that optimizes commutation angles online. In addition, a grey-wolf-optimized fast non-singular terminal sliding-mode controller (NRLTSMC) is introduced to shorten rotor displacement–error convergence time and to enhance suspension robustness against hydraulic disturbances. Co-simulation results under typical artificial heart operating conditions show noticeable reductions in torque ripple and speed fluctuation, as well as smaller rotor radial positioning error, validating the proposed motor and control scheme as a high-performance, biocompatible, and reliable drive solution for next-generation magnetically levitated artificial hearts. Full article
Show Figures

Figure 1

18 pages, 1367 KB  
Article
Torque Smoothness for a Modified W-Type Inverter-Fed Three-Phase Induction Motor with Finite Set Model Predictive Control for Electric Vehicles
by Muhammad Ayyaz Tariq, Syed Abdul Rahman Kashif, Akhtar Rasool and Ahmed Ali
World Electr. Veh. J. 2025, 16(9), 539; https://doi.org/10.3390/wevj16090539 - 22 Sep 2025
Viewed by 716
Abstract
Ripples in the electromagnetic torque of electric vehicle (EV) motors due to poor stator voltage and control cause jerky movements, equipment failure, discomfort for passengers and drivers, and damage to the associated civil works. This paper presents the implementation of Finite Control Set [...] Read more.
Ripples in the electromagnetic torque of electric vehicle (EV) motors due to poor stator voltage and control cause jerky movements, equipment failure, discomfort for passengers and drivers, and damage to the associated civil works. This paper presents the implementation of Finite Control Set Model Predictive Control (FCSMPC) for a high-level modified W-type inverter (MWI) driving a three-phase induction motor (IM), along with validation of its performance. The proposed control strategy aims to minimize motor torque ripples and has been tested under various driving torque patterns. The results demonstrate a significant reduction in torque ripples—down to less than 1%—and acceptable levels of total harmonic distortion (THD), as verified through quality analysis of the stator currents. Moreover, a comparative assessment of voltage profiles for the electromagnetic torque and rotor speed curves has been presented for nine cases of simultaneous variations in multiple motor parameters; the results indicate that the MWI-fed motor has the best performance and the lowest sensitivity to the variations. Full article
Show Figures

Figure 1

32 pages, 38675 KB  
Article
Comparative Study and Multi-Objective Optimization of Electromagnetic Performance of Permanent Magnet Vernier Motors with Rotor Auxiliary Teeth
by Yujun Shi, Wenlei Zhao, Qingqing Liu, Jiwei Wang, Yaogang Liu and Haifeng Lu
Machines 2025, 13(9), 841; https://doi.org/10.3390/machines13090841 - 11 Sep 2025
Viewed by 746
Abstract
Permanent magnet vernier motors (PMVMs) have significant advantages in low-speed direct-drive fields on account of their high torque density, and their performance improvement is still a research hotspot. To enhance the overall electromagnetic performance and provide an alternative solution for low-speed direct-drive applications, [...] Read more.
Permanent magnet vernier motors (PMVMs) have significant advantages in low-speed direct-drive fields on account of their high torque density, and their performance improvement is still a research hotspot. To enhance the overall electromagnetic performance and provide an alternative solution for low-speed direct-drive applications, this paper proposes a permanent magnet vernier motor with rotor auxiliary teeth (denoted as “RAT-PMVM”). Firstly, the structure and working principle of RAT-PMVM are introduced. Then, the two-dimensional (2D) finite element method (FEM) is used to comparatively study the influence of the number, position, and tooth profile of the rotor auxiliary teeth on the electromagnetic performance of the proposed motor. The results show that the RAT-PMVM with trapezoidal teeth (denoted as “TT-PMVM”) achieved improvement in output torque, efficiency, and power factor: the output torque increased from 11.32 Nm to 14.19 Nm, the efficiency increased from 88.5% to 92.2%, and the power factor increased from 0.60 to 0.71. Finally, in order to further reduce the torque ripple and improve the torque, power factor, and efficiency, multi-objective optimization of the TT-PMVM is carried out. The optimization yields a 27.3% increase in torque, a 31.8% reduction in torque ripple ratio, an efficiency improvement from 92.2% to 93%, and a power factor enhancement from 0.73 to 0.81, demonstrating significant potential for low-speed direct-drive applications like industrial robots and wind power generation. Full article
Show Figures

Figure 1

24 pages, 8037 KB  
Article
Design, Analysis and Multi-Objective Optimization of a New Asymmetric Permanent Magnet Vernier Motor for Low-Speed High-Torque Applications
by Yujun Shi, Qingqing Liu, Wenlei Zhao, Jiwei Wang, Yaogang Liu and Haifeng Lu
Machines 2025, 13(9), 827; https://doi.org/10.3390/machines13090827 - 8 Sep 2025
Viewed by 796
Abstract
This paper proposes a new Asymmetric Permanent Magnet Vernier Motor (A-PMVM) for low-speed high-torque applications. Unlike conventional symmetric V-shaped PMVMs (SV-PMVMs), the A-PMVM features irregular U-shaped magnet arrays composed of asymmetric V-shaped magnets. Finite element analysis confirms its superior performance: 10.6% higher torque [...] Read more.
This paper proposes a new Asymmetric Permanent Magnet Vernier Motor (A-PMVM) for low-speed high-torque applications. Unlike conventional symmetric V-shaped PMVMs (SV-PMVMs), the A-PMVM features irregular U-shaped magnet arrays composed of asymmetric V-shaped magnets. Finite element analysis confirms its superior performance: 10.6% higher torque (19.67 N·m vs. 17.78 N·m), 22% reduced PM volume (37,500 mm3 vs. 48,000 mm3), and 53% lower cogging torque (0.32 N·m vs. 0.68 N·m peak-peak). While exhibiting higher initial torque ripple ratio (8.65%), multi-objective optimization suppresses torque ripple ratio by 5.32% (from 8.65% to 8.19%), reduces cogging torque 12.5% (from 0.32 N·m to 0.28 N·m), and enhances torque by 0.76% (from 19.67 N·m to 19.82 N·m). The optimized A-PMVM achieves a significant reduction in cogging torque and torque ripple ratio, demonstrating significant potential for applications like wind turbines and electric vehicles. Additionally, this paper confirms that the proposed motor maintains consistent performance during both clockwise and counterclockwise operation. Full article
Show Figures

Figure 1

17 pages, 3057 KB  
Article
Torque Capability Enhancement of Interior Permanent Magnet Motors Using Filleting and Notching Stator
by Supanat Chamchuen, Kantapat Tonchua, Kunasin Khonongbua, Jonggrist Jongudomkarn, Apirat Siritaratiwat, Pirat Khunkitti and Pattasad Seangwong
World Electr. Veh. J. 2025, 16(9), 488; https://doi.org/10.3390/wevj16090488 - 26 Aug 2025
Viewed by 926
Abstract
Interior permanent magnet (IPM) synchronous motors have gained widespread adoption in electric vehicles (EVs) owing to their durable rotor configurations, expansive operational speed range, and superior efficiency. Nonetheless, typical IPM motor designs frequently exhibit high torque ripple and constrained torque density. To address [...] Read more.
Interior permanent magnet (IPM) synchronous motors have gained widespread adoption in electric vehicles (EVs) owing to their durable rotor configurations, expansive operational speed range, and superior efficiency. Nonetheless, typical IPM motor designs frequently exhibit high torque ripple and constrained torque density. To address these issues, a torque enhancement method is introduced by applying both filleting and notching techniques to the stator core. These techniques help reshape the magnetic field directly at the stator, allowing for more precise control of torque production and torque ripple reduction while keeping the rotor structure unchanged. Design variables of the stator in a 12-slot/8-pole fractional-slot V-shaped IPM motor are optimized using a multi-objective genetic algorithm based on a sensitivity constraint for unidirectional operation. The electromagnetic performance of the motor is analyzed through 2D finite element simulations for both no-load and loaded scenarios. The proposed motor increases average torque by 2.45% and significantly reduces torque ripple by 47.73% compared to the conventional motor. These reflect a significant advancement in torque capability. Furthermore, the efficiency of the proposed motor reaches 93.8%. The findings suggest the potential of the proposed filleting and notching techniques for torque capability improvement in EV applications. Full article
Show Figures

Figure 1

12 pages, 1522 KB  
Article
Reduction of Current Harmonics in BLDC Motors Using the Proposed Sigmoid Trapezoidal Current Hysteresis Control
by Anuradha Thangavelu, Jebarani Evangeline Stephen, Srithar Samidurai, Ranganayaki Velusamy, Selligoundanur Subramaniyam Sivaraju, Subramaniam Usha and Sivakumar Palaniswamy
World Electr. Veh. J. 2025, 16(7), 355; https://doi.org/10.3390/wevj16070355 - 25 Jun 2025
Cited by 2 | Viewed by 1132
Abstract
Brushless DC (BLDC) motors are widely used in applications such as Electric Vehicles (EVs) due to their high efficiency, low maintenance, and favorable torque-to-mass ratio. However, one major challenge in BLDC motors is the presence of current harmonics, which can lead to increased [...] Read more.
Brushless DC (BLDC) motors are widely used in applications such as Electric Vehicles (EVs) due to their high efficiency, low maintenance, and favorable torque-to-mass ratio. However, one major challenge in BLDC motors is the presence of current harmonics, which can lead to increased noise, vibration, and reduced efficiency, particularly at low speeds or light loads. These harmonics primarily arise from abrupt current transitions during phase commutation. To address this, thispaper presents an innovative approach that combines the Proposed Sigmoid Trapezoidal Current Model with hysteresis control to reduce current harmonics. The model facilitates smooth current changes by applying a sigmoid function, replacing sharp transitions with gradual ones, thus significantly minimizing harmonic distortion. Additionally, hysteresis PWM control enhances the system by precisely regulating the current and dynamically adjusting the switching frequency to maintain the current within a defined range. Simulation results confirm the effectiveness of this method, showing substantial reductions in current harmonics, speed ripple, and torque ripple. Specifically, the proposed method reduces torque ripple by 81% compared to traditional Electronic Commutation Control and improves torque ripple by 30% compared to the conventional method. Full article
Show Figures

Figure 1

28 pages, 3675 KB  
Article
Balancing Cam Mechanism for Instantaneous Torque and Velocity Stabilization in Internal Combustion Engines: Simulation and Experimental Validation
by Daniel Silva Cardoso, Paulo Oliveira Fael, Pedro Dinis Gaspar and António Espírito-Santo
Energies 2025, 18(13), 3256; https://doi.org/10.3390/en18133256 - 21 Jun 2025
Cited by 3 | Viewed by 1286
Abstract
Torque and velocity fluctuations in internal combustion engines (ICEs), particularly during idle and low-speed operation, can reduce efficiency, increase vibration, and impose mechanical stress on coupled systems. This work presents the design, simulation, and experimental validation of a passive balancing cam mechanism developed [...] Read more.
Torque and velocity fluctuations in internal combustion engines (ICEs), particularly during idle and low-speed operation, can reduce efficiency, increase vibration, and impose mechanical stress on coupled systems. This work presents the design, simulation, and experimental validation of a passive balancing cam mechanism developed to mitigate fluctuations in single-cylinder internal combustion engines (ICEs). The system consists of a cam and a spring-loaded follower that synchronizes with the engine cycle to store and release energy, generating a compensatory torque that stabilizes rotational speed. The mechanism was implemented on a single-cylinder Honda® engine and evaluated through simulations and laboratory tests under idle conditions. Results demonstrate a reduction in torque ripple amplitude of approximately 54% and standard deviation of 50%, as well as a decrease in angular speed fluctuation amplitude of about 43% and standard deviation of 42%, resulting in significantly smoother engine behavior. These improvements also address longstanding limitations in traditional powertrains, which often rely on heavy flywheels or electronically controlled dampers to manage rotational irregularities. Such solutions increase system complexity, weight, and energy losses. In contrast, the proposed passive mechanism offers a simpler, more efficient alternative, requiring no external control or energy input. Its effectiveness in stabilizing engine output makes it especially suited for integration into hybrid electric systems, where consistent generator performance and low mechanical noise are critical for efficient battery charging and protection of sensitive electronic components. Full article
(This article belongs to the Special Issue Internal Combustion Engines: Research and Applications—3rd Edition)
Show Figures

Figure 1

13 pages, 7502 KB  
Article
Position Sensorless Control of Permanent Magnet Synchronous Motor Based on Improved Model Reference Adaptive Systems
by Meng Wang, Jian Liu, Lijun Jiang, Kun Tan and Yiyong Wang
Energies 2025, 18(10), 2531; https://doi.org/10.3390/en18102531 - 14 May 2025
Cited by 2 | Viewed by 956
Abstract
To address the issues of poor stability and susceptibility to external disturbances in traditional model reference adaptive systems (MRASs) for permanent magnet synchronous motors (PMSMs), this paper proposes a sliding mode control strategy based on an improved model reference adaptive observer. First, the [...] Read more.
To address the issues of poor stability and susceptibility to external disturbances in traditional model reference adaptive systems (MRASs) for permanent magnet synchronous motors (PMSMs), this paper proposes a sliding mode control strategy based on an improved model reference adaptive observer. First, the dynamic equations of the PMSM are used as the reference model, while the stator current equations incorporating speed variables are constructed as the adjustable model. Subsequently, a novel adaptive law is designed using Popov’s hyperstability theory to enhance the estimation accuracy of rotor position. A fractional-order system was introduced to construct both a fractional-order sliding surface and reaching law. Subsequently, a comparative study was conducted between the conventional integral terminal sliding surface and the proposed novel sliding mode reaching law. The results demonstrate that the new reaching law can adaptively adjust the switching gain based on system state variables. Under sudden load increases, the improved system achieves a 25% reduction in settling time compared to conventional sliding mode control (SMC), along with a 44% decrease in maximum speed fluctuation and a 42% reduction in maximum torque ripple, significantly enhancing dynamic response performance. Furthermore, a variable-gain terminal sliding mode controller is derived, and the stability of the closed-loop control system is rigorously proven using Lyapunov theory. Finally, simulations verify the effectiveness and feasibility of the proposed control strategy in improving system robustness and disturbance rejection capability. Full article
Show Figures

Figure 1

16 pages, 4111 KB  
Article
Current Ripple and Dynamic Characteristic Analysis for Active Magnetic Bearing Power Amplifiers with Eddy Current Effects
by Zhi Li, Zhenzhong Su, Hao Jiang, Qi Liu and Jingxiong He
Electronics 2025, 14(10), 1936; https://doi.org/10.3390/electronics14101936 - 9 May 2025
Viewed by 561
Abstract
Active magnetic bearings (AMBs), pivotal in high-speed rotating machinery for their frictionless operation and precise control, demand power amplifiers with exceptional dynamic performance and minimal current ripple. However, conventional amplifier designs often overlook eddy current effects, a critical oversight given the high-frequency switching [...] Read more.
Active magnetic bearings (AMBs), pivotal in high-speed rotating machinery for their frictionless operation and precise control, demand power amplifiers with exceptional dynamic performance and minimal current ripple. However, conventional amplifier designs often overlook eddy current effects, a critical oversight given the high-frequency switching inherent to pulse-width modulation (PWM). These induced eddy currents distort output waveforms, amplify ripple, and degrade system bandwidth. This paper bridges this critical gap by proposing a comprehensive methodology to model, quantify, and mitigate eddy current impacts on three-level half-bridge power amplifiers. A novel mutual inductance-embedded circuit model was developed, integrating winding–eddy current interactions under PWM operations, while a discretized transfer function framework dissects frequency-dependent ripple amplification and phase hysteresis. A voltage selection criterion was analytically derived to suppress nonlinear distortions, ensuring stable operation in high-precision applications. A Simulink simulation model was established to verify the accuracy of the theoretical model. Experimental validation demonstrated a 212% surge in steady-state ripple (48 mA to 150 mA at 4 A DC bias) under a 20 kHz PWM operation, aligning with theoretical predictions. Dynamic load tests (400 Hz) showed a 6.28% current amplitude reduction at 80 V DC bus voltage compared to 40 V, highlighting bandwidth degradation. This research provides a paradigm for optimizing AMB power electronics, enhancing precision in next-generation high-speed systems. Full article
Show Figures

Figure 1

15 pages, 5053 KB  
Article
Enhanced Dual Carry Approximate Adder with Error Reduction Unit for High-Performance Multiplier and In-Memory Computing
by Kaeun Lim, Jinhyun Kim, Eunsu Kim and Youngmin Kim
Electronics 2025, 14(9), 1702; https://doi.org/10.3390/electronics14091702 - 22 Apr 2025
Cited by 1 | Viewed by 1304
Abstract
The Dual Carry Approximate Adder (DCAA) is proposed as an advanced 8-bit approximate adder featuring dual carry-out and carry-in full adders (FAs) along with an Error Reduction Unit (ERU) to enhance accuracy. The 8-bit adder is partitioned into upper and lower 4-bit blocks, [...] Read more.
The Dual Carry Approximate Adder (DCAA) is proposed as an advanced 8-bit approximate adder featuring dual carry-out and carry-in full adders (FAs) along with an Error Reduction Unit (ERU) to enhance accuracy. The 8-bit adder is partitioned into upper and lower 4-bit blocks, connected via a dual carry-out full adder and a dual carry-in full adder. To minimize impact on the critical path, an ERU is designed for efficient error correction. Four variants of the DCAA are provided, allowing users to select the most suitable design based on their specific power, area, and accuracy requirements. The DCAA achieves a 78% reduction in Mean Error Distance (MED) while maintaining high computational speed and efficiency. When applied to Wallace Tree multipliers, it reduces delay by 32% compared to ripple carry adders (RCAs), and in in-memory computing (IMC) architectures, it significantly improves accuracy with minimal delay overhead. Experimental results demonstrate that the DCAA offers a well-balanced trade-off between accuracy, speed, and resource efficiency, making it suitable for high-performance, error-tolerant applications. Compared to existing approximate adders, DCAA exhibits superior error correction capabilities while achieving significantly lower delay. Furthermore, its efficient hardware implementation enables seamless integration into various computing paradigms, including AI accelerators and neuromorphic processors. Additionally, the scalability of the design allows for flexible adaptation to different bit-widths, making it a versatile solution for next-generation computing architectures. Full article
(This article belongs to the Special Issue CMOS Integrated Circuits Design)
Show Figures

Figure 1

17 pages, 4525 KB  
Article
Dynamic Decoupled Current Control for Smooth Torque of the Open-Winding Variable Flux Reluctance Motor Using Integrated Torque Harmonic Extended State Observer
by El Moundher Aouiche, Xu Liu, Abdelaziz Aouiche, Mustafa Alrayah Hassan, Mohammed Echarif Aguida, Junaid Ali Khan and Yang Cao
Processes 2025, 13(1), 263; https://doi.org/10.3390/pr13010263 - 17 Jan 2025
Cited by 1 | Viewed by 1581
Abstract
Variable Flux Reluctance Machines (VFRMs) face multiple interconnected challenges that limit their performance, particularly in high-performance applications such as electric vehicles (EVs), where smooth torque output and robust operation are critical. Chief among these challenges are complex inter-axis couplings, including cross-coupling in the [...] Read more.
Variable Flux Reluctance Machines (VFRMs) face multiple interconnected challenges that limit their performance, particularly in high-performance applications such as electric vehicles (EVs), where smooth torque output and robust operation are critical. Chief among these challenges are complex inter-axis couplings, including cross-coupling in the dq-axis, differential term coupling in the d0-axis, and disturbances propagating from the 0-axis to the q-axis. Additionally, harmonic disturbances associated with torque ripple exacerbate performance issues, resulting in degraded dynamic behavior. These challenges hinder current loop controllers, preventing effective management of winding impedance voltage drops and inter-axis coupling terms without advanced decoupling strategies. To address these challenges, this paper proposes a novel integrated torque harmonic extended state observer (ITHESO) within a decoupled current control designed to ensure fast and accurate current tracking, system stability, and torque ripple reduction. The ITHESO identifies and compensates for total current disturbances, including harmonic components, through feed-forward compensation within the current loop. Furthermore, the influence of control parameters and the effects of parameter mismatches on stability, torque ripple reduction, and disturbance rejection are thoroughly analyzed. Experimental validations demonstrate that the proposed strategy significantly enhances torque dynamics and reduces torque ripple, outperforming the conventional Active Disturbance Rejection Control (ADRC), which does not explicitly address disturbances associated with torque ripple. These advancements position the VFRM with the ITHESO as a competitive option for high-performance EV propulsion systems, offering smooth operation, noise reduction, and reliable performance under varying speeds and loads. Full article
Show Figures

Figure 1

Back to TopTop