Torque Capability Enhancement of Interior Permanent Magnet Motors Using Filleting and Notching Stator
Abstract
1. Introduction
2. Motor Topologies
3. Optimization Methodology
- Step 1:
- Define the optimization objectives and constraints.
- Step 2:
- Select key design variables and perform a sensitivity analysis.
- Step 3:
- Execute structural optimization through MOGA and extract optimal solutions from Pareto fronts.
- Step 4:
- Evaluate optimized design performance in comparison with the conventional motor.
3.1. Objective Function and Constraints
- The rated current is maintained at 254.6 A with an operational speed of 2700 rpm.
- The core and magnet materials remain consistent with the conventional design.
- The rotor configuration in the proposed design is comparable to that of a conventional motor.
- The dimensions, including the outer stator diameter, inner stator diameter, and axial length, are identical between the proposed and conventional motors for a valid comparative assessment.
3.2. Design Variables and Sensitivity Analysis
3.3. Optimization of Design Variables Using Multi-Objective Genetic Algorithm
4. Electromagnetic Performance Comparison
4.1. No-Load Performance
4.2. On-Load Performance
4.3. Efficiency Map
4.4. Mechanical Stress Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yu, W.; Wu, Z.; Hua, W. Performance Evaluation of Stator/Rotor-PM Flux-Switching Machines and Interior Rotor-PM Machine for Hybrid Electric Vehicles. World Electr. Veh. J. 2023, 14, 139. [Google Scholar] [CrossRef]
- Wang, A.; Jia, Y.; Soong, W.L. Comparison of Five Topologies for an Interior Permanent-Magnet Machine for a Hybrid Electric Vehicle. IEEE Trans. Magn. 2011, 47, 3606–3609. [Google Scholar] [CrossRef]
- Gundogdu, T.; Zhu, Z.-Q.; Chan, C.C. Comparative Study of Permanent Magnet, Conventional, and Advanced Induction Machines for Traction Applications. World Electr. Veh. J. 2022, 13, 137. [Google Scholar] [CrossRef]
- Un-Noor, F.; Padmanaban, S.; Mihet-Popa, L.; Mollah, M.; Hossain, E. A Comprehensive Study of Key Electric Vehicle (EV) Components, Technologies, Challenges, Impacts, and Future Direction of Development. Energies 2017, 10, 1217. [Google Scholar] [CrossRef]
- Chau, K.T.; Chan, C.C.; Liu, C. Overview of Permanent-Magnet Brushless Drives for Electric and Hybrid Electric Vehicles. IEEE Trans. Ind. Electron. 2008, 55, 2246–2257. [Google Scholar] [CrossRef]
- Ning, S.; Seangwong, P.; Fernando, N.; Jongudomkarn, J.; Siritaratiwat, A.; Khunkitti, P. A Novel Double Stator Hybrid-Excited Flux Reversal Permanent Magnet Machine with Halbach Arrays for Electric Vehicle Traction Applications. IEEE Access 2023, 11, 113255–113263. [Google Scholar] [CrossRef]
- Yang, Z.; Shang, F.; Brown, I.P.; Krishnamurthy, M. Comparative Study of Interior Permanent Magnet, Induction, and Switched Reluctance Motor Drives for EV and HEV Applications. IEEE Trans. Transp. Electrif. 2015, 1, 245–254. [Google Scholar] [CrossRef]
- Suphama, M.; Seangwong, P.; Fernando, N.; Jongudomkarn, J.; Siritaratiwat, A.; Khunkitti, P. A Novel Asymmetric Hybrid-Layer Del-Shaped Rotor Interior Permanent Magnet Motor for Electric Vehicles. IEEE Access 2023, 12, 2793–2802. [Google Scholar] [CrossRef]
- Zhang, G.; Jewell, G.W. Combined Electromagnetic and Mechanical Design Optimization of Interior Permanent Magnet Rotors for Electric Vehicle Drivetrains. World Electr. Veh. J. 2023, 15, 4. [Google Scholar] [CrossRef]
- Dai, L.; Gao, J.; Niu, S.; Huang, S. Multi-Electromagnetic Performance Optimization of Double-Layer Interior Permanent Magnet Synchronous Machine. IEEE Trans. Ind. Electron. 2024; in press. [Google Scholar] [CrossRef]
- Huynh, T.A.; Chen, P.-H.; Hsieh, M.-F. Analysis and Comparison of Operational Characteristics of Electric Vehicle Traction Units Combining Two Different Types of Motors. IEEE Trans. Veh. Technol. 2022, 6, 5727–5742. [Google Scholar] [CrossRef]
- Jung, W.-S.; Lee, H.-K.; Lee, Y.-K.; Kim, S.-M.; Lee, J.-I.; Choi, J.-Y. Analysis and Comparison of Permanent Magnet Synchronous Motors According to Rotor Type under the Same Design Specifications. Energies 2023, 16, 1306. [Google Scholar] [CrossRef]
- Ibrahim, M.; Masisi, L.; Pillay, P. Design of Variable Flux Permanent-Magnet Machine for Reduced Inverter Rating. IEEE Trans. Ind. Appl. 2015, 51, 3666–3674. [Google Scholar] [CrossRef]
- Ibrahim, M.; Masisi, L.; Pillay, P. Design of Variable-Flux Permanent-Magnet Machines Using Alnico Magnets. IEEE Trans. Ind. Appl. 2015, 51, 4482–4491. [Google Scholar] [CrossRef]
- Kim, H.; Park, Y.; Oh, S.-T.; Jeong, G.; Seo, U.-J.; Won, S.-H.; Lee, J. Study on Analysis and Design of Line-Start Synchronous Reluctance Motor Considering Rotor Slot Opening and Bridges. IEEE Trans. Magn. 2022, 58, 8103906. [Google Scholar] [CrossRef]
- Chu, G.; Dutta, R.; Xiao, D.; Fletcher, J.E.; Rahman, M.F. Development and Optimization of a Mechanically Robust Novel Rotor Topology for Very-High-Speed IPMSMs. IEEE Trans. Energy Convers. 2023, 38, 1781–1792. [Google Scholar] [CrossRef]
- Tu, Z.; Lv, Y.; Li, X.; Xu, W.; Peng, T.; Han, X.; Ding, H.; Li, L. Design and Experiment of Post-Assembly Magnetization System for a 160-kW Interior Permanent-Magnet Motor. IEEE Trans. Appl. Supercond. 2024, 34, 5202007. [Google Scholar] [CrossRef]
- Hsieh, M.-F.; Huynh, A.T.; Do, V.-V.; Gerada, D.; Gerada, C. Design Optimization of Spoke-Type Flux-Intensifying PM Motor with Asymmetric Rotor Configuration for Improved Performance. IEEE Trans. Magn. 2024, 60, 8203905. [Google Scholar] [CrossRef]
- Wan, X.; Yang, S.; Li, Y.; Shi, Y.; Lou, J. Minimization of Cogging Torque for V-Type IPMSM by the Asymmetric Auxiliary Slots on the Rotor. IEEE Access 2022, 10, 89428–89436. [Google Scholar] [CrossRef]
- Xu, R.; Tong, W. Multi-Objective Hierarchical Optimization of Interior Permanent Magnet Synchronous Machines Based on Rotor Surface Modification. China Electrotech. Soc. Trans. Electr. Mach. Syst. 2022, 6, 352–358. [Google Scholar] [CrossRef]
- Sun, K.; Tian, S. Multiobjective Optimization of IPMSM with FSCW Applying Rotor Notch Design for Torque Performance Improvement. IEEE Trans. Magn. 2022, 58, 8104909. [Google Scholar] [CrossRef]
- Dai, Y.; Lee, D.-W.; Joung, H.-K.; Lee, H.-J. Optimization on Torque Ripple Performance in ISG Motors with Fractional Slot Distributed Windings and Rotor Notching. IEEE Access 2024, 12, 123872–123882. [Google Scholar] [CrossRef]
- Wang, B.; Wang, D.; Peng, C.; Wang, C.; Xu, C.; Wang, X. Interior Permanent Magnet Synchronous Machines with Composed T-Shaped Notching Rotor. IEEE Trans. Ind. Electron. 2024, 71, 5519–5529. [Google Scholar] [CrossRef]
- Bahrami-Fard, M.; Liang, J.; Chen, P.; Hair, C.; Moallem, M.; Pekarek, S.; Fahimi, B. Cogging Torque Minimization Strategies in Interior Permanent Magnet Synchronous Motors. IEEE Access 2025, 13, 49597–49610. [Google Scholar] [CrossRef]
- Lin, H.N.; Seangwong, P.; Fernando, N.; Siritaratiwat, A.; Khunkitti, P. Torque Capability Enhancement of Commercial Interior Permanent Magnet Motors Using T-Shaped Notching and Merged Barrier Rotor Topology. Results Eng. 2025, 26, 105108. [Google Scholar] [CrossRef]
- Moon, J.-H.; Kang, D.-W. Torque Ripple and Cogging Torque Reduction Method of IPMSM Using Asymmetric Shoe of Stator and Notch in Stator. J. Electr. Eng. Technol. 2022, 17, 3465–3471. [Google Scholar] [CrossRef]
- Zhou, C.; Huang, X.; Li, Z.; Cao, W. Design Consideration of Fractional Slot Concentrated Winding Interior Permanent Magnet Synchronous Motor for EV and HEV Applications. IEEE Access 2021, 9, 64116–64126. [Google Scholar] [CrossRef]
- Wang, Q.; Niu, S. A novel hybrid-excited dual-PM machine with bidirectional flux modulation. IEEE Trans. Energy Convers. 2017, 32, 424–435. [Google Scholar] [CrossRef]
- Dmitrievskii, V.; Prakht, V.; Kazakbaev, V.; Anuchin, A. Comparison of Interior Permanent Magnet and Synchronous Homopolar Motors for a Mining Dump Truck Traction Drive Operated in Wide Constant Power Speed Range. Mathematics 2022, 10, 1581. [Google Scholar] [CrossRef]
- Bi, Y.; Fu, W.; Niu, S.; Zhao, X.; Huang, J. Design of a Dual-Set Permanent Magnet Flux-Switching Machine With Enhanced Torque Density and Fault-Tolerance Capability. IEEE Trans. Transp. Electrific. 2024, 10, 9096–9108. [Google Scholar] [CrossRef]
- Khalil, S.A.; Yousif, M.; Tameemi, A.; Khan, F.; Jadoon, U.; Yousaf, M. Design and Optimization of High Torque Density Spoke-Type Inverted V Shape IPMSM with Concentrated Winding for EV Applications. Results Eng. 2025, 26, 105473. [Google Scholar] [CrossRef]
Parameters | Unit | Conventional Motor | Proposed Motor |
---|---|---|---|
Number of phases | phase | 3 | |
Number of stator slots | slot | 12 | |
Number of rotor poles | pole | 8 | |
Core material | - | B20AT1500 | |
PM material | - | N48UH | |
PM volume | mm3 | 174,030 | |
Stator outer diameter | mm | 230 | |
Stator inner diameter | mm | 144.9 | |
Rotor outer diameter | mm | 143.7 | |
Rotor inner diameter | mm | 64 | |
Air gap length | mm | 0.6 | |
Stack length | mm | 88 | |
Number of turns per phase | turns | 16 | |
Pole arc | deg | 45 | |
Rated speed | rpm | 2700 | |
mm | - | 7.723 | |
mm | - | 2.532 | |
mm | - | 2.190 | |
mm | - | 4.759 | |
deg | - | −0.594 | |
deg | - | 3.810 | |
deg | - | 0.762 | |
deg | - | 0.9853 | |
deg | - | 1.643 | |
deg | - | 3.084 | |
deg | - | 0.862 | |
deg | - | 1.662 | |
deg | - | 0.317 | |
deg | - | 1.809 | |
deg | - | 2.986 | |
deg | - | 2.777 |
Parameters | Unit | Ranges | Initial Value | Optimal Value |
---|---|---|---|---|
mm | 0 to 8 | 4 | 7.723 | |
mm | 0 to 8 | 4 | 2.532 | |
mm | 1 to 6 | 3.5 | 2.190 | |
mm | 0 to 5 | 2.5 | 4.759 | |
deg | −4 to 4 | 0 | −0.594 | |
deg | −4 to 4 | 0 | 3.810 | |
deg | −4 to 4 | 0 | 0.762 | |
deg | −4 to 4 | 0 | 0.9853 | |
deg | −4 to 4 | 0 | 1.643 | |
deg | −4 to 4 | 0 | 3.084 | |
deg | −4 to 4 | 0 | 0.862 | |
deg | −4 to 4 | 0 | 1.662 | |
deg | −4 to 4 | 0 | 0.317 | |
deg | −4 to 4 | 0 | 1.809 | |
deg | −4 to 4 | 0 | 2.986 | |
deg | −4 to 4 | 0 | 2.777 | |
N·m | - | 231.35 | 236.18 | |
% | - | 17.72 | 14.52 |
Parameters (Unit) | Conventional Motor | Proposed Motor |
---|---|---|
Back-EMF (Vrms) | 142.69 | 141.49 |
Cogging torque (N·mp-p) | 5.14 | 11.65 |
Rated current (A) | 254.6 | 254.6 |
(N·m) | 230.54 | 236.18 |
(%) | 27.78 | 14.52 |
Output power (kW) | 65.2 | 66.8 |
Copper loss (W) | 4027.85 | 4028.2 |
Eddy current loss (W) | 57.43 | 52.3 |
Hysteresis loss (W) | 375.55 | 355 |
Power factors | 0.54 | 0.49 |
Efficiency (%) | 93.6 | 93.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Published by MDPI on behalf of the World Electric Vehicle Association. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chamchuen, S.; Tonchua, K.; Khonongbua, K.; Jongudomkarn, J.; Siritaratiwat, A.; Khunkitti, P.; Seangwong, P. Torque Capability Enhancement of Interior Permanent Magnet Motors Using Filleting and Notching Stator. World Electr. Veh. J. 2025, 16, 488. https://doi.org/10.3390/wevj16090488
Chamchuen S, Tonchua K, Khonongbua K, Jongudomkarn J, Siritaratiwat A, Khunkitti P, Seangwong P. Torque Capability Enhancement of Interior Permanent Magnet Motors Using Filleting and Notching Stator. World Electric Vehicle Journal. 2025; 16(9):488. https://doi.org/10.3390/wevj16090488
Chicago/Turabian StyleChamchuen, Supanat, Kantapat Tonchua, Kunasin Khonongbua, Jonggrist Jongudomkarn, Apirat Siritaratiwat, Pirat Khunkitti, and Pattasad Seangwong. 2025. "Torque Capability Enhancement of Interior Permanent Magnet Motors Using Filleting and Notching Stator" World Electric Vehicle Journal 16, no. 9: 488. https://doi.org/10.3390/wevj16090488
APA StyleChamchuen, S., Tonchua, K., Khonongbua, K., Jongudomkarn, J., Siritaratiwat, A., Khunkitti, P., & Seangwong, P. (2025). Torque Capability Enhancement of Interior Permanent Magnet Motors Using Filleting and Notching Stator. World Electric Vehicle Journal, 16(9), 488. https://doi.org/10.3390/wevj16090488