Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,026)

Search Parameters:
Keywords = spectral optical properties

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 2595 KiB  
Article
Fiber Optic Gyro Random Error Suppression Based on Dual Adaptive Kalman Filter
by Hongcai Li, Zhe Liang, Zhaofa Zhou, Zhili Zhang, Junyang Zhao and Longjie Tian
Micromachines 2025, 16(8), 884; https://doi.org/10.3390/mi16080884 - 29 Jul 2025
Viewed by 157
Abstract
The random error of fiber optic gyros is a critical factor affecting their measurement accuracy. However, the statistical characteristics of these errors exhibit time-varying properties, which degrade model fidelity and consequently impair the performance of random error suppression algorithms. To address these issues, [...] Read more.
The random error of fiber optic gyros is a critical factor affecting their measurement accuracy. However, the statistical characteristics of these errors exhibit time-varying properties, which degrade model fidelity and consequently impair the performance of random error suppression algorithms. To address these issues, this study first proposes a recursive dynamic Allan variance calculation method that effectively mitigates the poor real-time performance and spectral leakage inherent in conventional dynamic Allan variance techniques. Subsequently, the recursive dynamic Allan variance is integrated with the process variance estimation of Kalman filtering to construct a dual-adaptive Kalman filter capable of autonomously switching and adjusting between model parameters and noise variance. Finally, both static and dynamic validation experiments were conducted to evaluate the proposed method. The experimental results demonstrate that, compared to existing algorithms, the proposed approach significantly enhances the suppression of angular random walk errors in fiber optic gyros. Full article
(This article belongs to the Special Issue Integrated Photonics and Optoelectronics, 2nd Edition)
Show Figures

Figure 1

29 pages, 4545 KiB  
Article
Characterization of Fresh and Aged Smoke Particles Simultaneously Observed with an ACTRIS Multi-Wavelength Raman Lidar in Potenza, Italy
by Benedetto De Rosa, Aldo Amodeo, Giuseppe D’Amico, Nikolaos Papagiannopoulos, Marco Rosoldi, Igor Veselovskii, Francesco Cardellicchio, Alfredo Falconieri, Pilar Gumà-Claramunt, Teresa Laurita, Michail Mytilinaios, Christina-Anna Papanikolaou, Davide Amodio, Canio Colangelo, Paolo Di Girolamo, Ilaria Gandolfi, Aldo Giunta, Emilio Lapenna, Fabrizio Marra, Rosa Maria Petracca Altieri, Ermann Ripepi, Donato Summa, Michele Volini, Alberto Arienzo and Lucia Monaadd Show full author list remove Hide full author list
Remote Sens. 2025, 17(15), 2538; https://doi.org/10.3390/rs17152538 - 22 Jul 2025
Viewed by 353
Abstract
This study describes a quite special and interesting atmospheric event characterized by the simultaneous presence of fresh and aged smoke layers. These peculiar conditions occurred on 16 July 2024 at the CNR-IMAA atmospheric observatory (CIAO) in Potenza (Italy), and represent an ideal case [...] Read more.
This study describes a quite special and interesting atmospheric event characterized by the simultaneous presence of fresh and aged smoke layers. These peculiar conditions occurred on 16 July 2024 at the CNR-IMAA atmospheric observatory (CIAO) in Potenza (Italy), and represent an ideal case for the evaluation of the impact of aging and transport mechanisms on both the optical and microphysical properties of biomass burning aerosol. The fresh smoke was originated by a local wildfire about 2 km from the measurement site and observed about one hour after its ignition. The other smoke layer was due to a wide wildfire occurring in Canada that, according to backward trajectory analysis, traveled for about 5–6 days before reaching the observatory. Synergetic use of lidar, ceilometer, radar, and microwave radiometer measurements revealed that particles from the local wildfire, located at about 3 km a.s.l., acted as condensation nuclei for cloud formation as a result of high humidity concentrations at this altitude range. Optical characterization of the fresh smoke layer based on Raman lidar measurements provided lidar ratio (LR) values of 46 ± 4 sr and 34 ± 3 sr, at 355 and 532 nm, respectively. The particle linear depolarization ratio (PLDR) at 532 nm was 0.067 ± 0.002, while backscatter-related Ångström exponent (AEβ) values were 1.21 ± 0.03, 1.23 ± 0.03, and 1.22 ± 0.04 in the spectral ranges of 355–532 nm, 355–1064 nm and 532–1064 nm, respectively. Microphysical inversion caused by these intensive optical parameters indicates a low contribution of black carbon (BC) and, despite their small size, particles remained outside the ultrafine range. Moreover, a combined use of CIAO remote sensing and in situ instrumentation shows that the particle properties are affected by humidity variations, thus suggesting a marked particle hygroscopic behavior. In contrast, the smoke plume from the Canadian wildfire traveled at altitudes between 6 and 8 km a.s.l., remaining unaffected by local humidity. Absorption in this case was higher, and, as observed in other aged wildfires, the LR at 532 nm was larger than that at 355 nm. Specifically, the LR at 355 nm was 55 ± 2 sr, while at 532 nm it was 82 ± 3 sr. The AEβ values were 1.77 ± 0.13 and 1.41 ± 0.07 at 355–532 nm and 532–1064 nm, respectively and the PLDR at 532 nm was 0.040 ± 0.003. Microphysical analysis suggests the presence of larger, yet much more absorbent particles. This analysis indicates that both optical and microphysical properties of smoke can vary significantly depending on its origin, persistence, and transport in the atmosphere. These factors that must be carefully incorporated into future climate models, especially considering the frequent occurrences of fire events worldwide. Full article
(This article belongs to the Section Atmospheric Remote Sensing)
Show Figures

Graphical abstract

20 pages, 29094 KiB  
Article
Retrieval of Cloud, Atmospheric, and Surface Properties from Far-Infrared Spectral Radiances Measured by FIRMOS-B During the 2022 HEMERA Stratospheric Balloon Campaign
by Gianluca Di Natale, Claudio Belotti, Marco Barucci, Marco Ridolfi, Silvia Viciani, Francesco D’Amato, Samuele Del Bianco, Bianca Maria Dinelli and Luca Palchetti
Remote Sens. 2025, 17(14), 2458; https://doi.org/10.3390/rs17142458 - 16 Jul 2025
Viewed by 270
Abstract
The knowledge of the radiative properties of clouds and the atmospheric state is of fundamental importance in modelling phenomena in numerical weather predictions and climate models. In this study, we show the results of the retrieval of cloud properties, along with the atmospheric [...] Read more.
The knowledge of the radiative properties of clouds and the atmospheric state is of fundamental importance in modelling phenomena in numerical weather predictions and climate models. In this study, we show the results of the retrieval of cloud properties, along with the atmospheric state and the surface temperature, from far-infrared spectral radiances, in the 100–1000 cm−1 range, measured by the Far-Infrared Radiation Mobile Observation System-Balloon version (FIRMOS-B) spectroradiometer from a stratospheric balloon launched from Timmins (Canada) in August 2022 within the HEMERA 3 programme. The retrieval study is performed with the Optimal Estimation inversion approach, using three different forward models and retrieval codes to compare the results. Cloud optical depth, particle effective size, and cloud top height are retrieved with good accuracy, despite the relatively high measurement noise of the FIRMOS-B observations used for this study. The retrieved atmospheric profiles, computed simultaneously with cloud parameters, are in good agreement with both co-located radiosonde measurements and ERA-5 profiles, under all-sky conditions. The findings are very promising for the development of an optimised retrieval procedure to analyse the high-precision FIR spectral measurements, which will be delivered by the ESA FORUM mission. Full article
Show Figures

Figure 1

26 pages, 3149 KiB  
Review
Research Progress and Future Perspectives on Photonic and Optoelectronic Devices Based on p-Type Boron-Doped Diamond/n-Type Titanium Dioxide Heterojunctions: A Mini Review
by Shunhao Ge, Dandan Sang, Changxing Li, Yarong Shi, Qinglin Wang and Dao Xiao
Nanomaterials 2025, 15(13), 1003; https://doi.org/10.3390/nano15131003 - 29 Jun 2025
Cited by 1 | Viewed by 528
Abstract
Titanium dioxide (TiO2) is a wide-bandgap semiconductor material with broad application potential, known for its excellent photocatalytic performance, high chemical stability, low cost, and non-toxicity. These properties make it highly attractive for applications in photovoltaic energy, environmental remediation, and optoelectronic devices. [...] Read more.
Titanium dioxide (TiO2) is a wide-bandgap semiconductor material with broad application potential, known for its excellent photocatalytic performance, high chemical stability, low cost, and non-toxicity. These properties make it highly attractive for applications in photovoltaic energy, environmental remediation, and optoelectronic devices. For instance, TiO2 is widely used as a photocatalyst for hydrogen production via water splitting and for degrading organic pollutants, thanks to its efficient photo-generated electron–hole separation. Additionally, TiO2 exhibits remarkable performance in dye-sensitized solar cells and photodetectors, providing critical support for advancements in green energy and photoelectric conversion technologies. Boron-doped diamond (BDD) is renowned for its exceptional electrical conductivity, high hardness, wide electrochemical window, and outstanding chemical inertness. These unique characteristics enable its extensive use in fields such as electrochemical analysis, electrocatalysis, sensors, and biomedicine. For example, BDD electrodes exhibit high sensitivity and stability in detecting trace chemicals and pollutants, while also demonstrating excellent performance in electrocatalytic water splitting and industrial wastewater treatment. Its chemical stability and biocompatibility make it an ideal material for biosensors and implantable devices. Research indicates that the combination of TiO2 nanostructures and BDD into heterostructures can exhibit unexpected optical and electrical performance and transport behavior, opening up new possibilities for photoluminescence and rectifier diode devices. However, applications based on this heterostructure still face challenges, particularly in terms of photodetector, photoelectric emitter, optical modulator, and optical fiber devices under high-temperature conditions. This article explores the potential and prospects of their combined heterostructures in the field of optoelectronic devices such as photodetector, light emitting diode (LED), memory, field effect transistor (FET) and sensing. TiO2/BDD heterojunction can enhance photoresponsivity and extend the spectral detection range which enables stability in high-temperature and harsh environments due to BDD’s thermal conductivity. This article proposes future research directions and prospects to facilitate the development of TiO2 nanostructured materials and BDD-based heterostructures, providing a foundation for enhancing photoresponsivity and extending the spectral detection range enables stability in high-temperature and high-frequency optoelectronic devices field. Further research and exploration of optoelectronic devices based on TiO2-BDD heterostructures hold significant importance, offering new breakthroughs and innovations for the future development of optoelectronic technology. Full article
(This article belongs to the Special Issue Nanoscale Photonics and Optoelectronics)
Show Figures

Graphical abstract

15 pages, 3832 KiB  
Article
Research on Total Internal Reflection Detection Technology for Subsurface Defects of Optical Elements Based on Spectral Confocal Principles
by Rongcai Bao, Kaige Qu, Lu Wu, Shijian Zhang and Anyu Sun
Sensors 2025, 25(13), 3969; https://doi.org/10.3390/s25133969 - 26 Jun 2025
Viewed by 320
Abstract
During the manufacturing of precision optical elements, subsurface defects seriously affect the performance of the elements, leading to the enhancement of light fields, an increase in laser absorption and an decrease in mechanical properties. It has become a key technology to realize the [...] Read more.
During the manufacturing of precision optical elements, subsurface defects seriously affect the performance of the elements, leading to the enhancement of light fields, an increase in laser absorption and an decrease in mechanical properties. It has become a key technology to realize the high-precision quantitative automatic detection of subsurface defects of optical elements. This paper presents a method of subsurface defect detection based on spectral confocal scattering measurement, the system adopts a dispersive lens group with the working band of 480–670 nm, and combines the spectral confocal technology and total internal reflection technology to effectively suppress the interference of scattered light on the surface, and can realize high-precision nondestructive detection without fluorescent substances. The axial resolution of this method is 0.8 μm and the measuring depth range is 0.94 mm. By building a measurement system and carrying out experimental verification, the results show that this method can accurately measure the depth and location of subsurface defects and confirm its feasibility and effectiveness. Full article
(This article belongs to the Section Optical Sensors)
Show Figures

Figure 1

21 pages, 4374 KiB  
Article
Fast Alkaline Hydrothermal Synthesis of Pyrophosphate BaCr2(P2O7)2 Nanoparticles and Their NIR Spectral Reflectance
by Diego Emiliano Carrillo-Ramírez, Juan Carlos Rendón-Angeles, Zully Matamoros-Veloza, Jorge López-Cuevas, Isaías Juárez-Ramírez and Tadaharu Ueda
Nanomaterials 2025, 15(13), 982; https://doi.org/10.3390/nano15130982 - 25 Jun 2025
Viewed by 353
Abstract
Recently, the development of nanoparticle pigments has attracted interest in chemical preparation due to their potential functional properties, such as phosphate-based pigments. The present research focuses on the feasibility of synthesising the BaCr2(P2O7)2 pigment under hydrothermal [...] Read more.
Recently, the development of nanoparticle pigments has attracted interest in chemical preparation due to their potential functional properties, such as phosphate-based pigments. The present research focuses on the feasibility of synthesising the BaCr2(P2O7)2 pigment under hydrothermal conditions. The effect of the microstructural features of ceramic pigments (the crystalline structure, morphology, and particle size) on their optical properties (colour and reflectance) was also studied. The BaCr2(P2O7)2 compound was prepared in different fluid media, including water and NaOH solutions (0.5–1.0 M), at several reaction temperatures (170–240 °C) and intervals (6–48 h). The single-phase BaCr2(P2O7)2 did not crystallise without by-products (BaCr2O10, BaCr2(PO7)2) in water and the alkaline solutions, even at 240 °C for 48 h; in these fluids, the ionic Cr3+ species oxidised to Cr6+. In contrast, the BaCr2(P2O7)2 single-phase crystallisation was favoured by adding urea as a reductant agent (25.0–300.0 mmol). Monodispersed BaCr2(P2O7)2 fine particles with a mean size of 44.0 nm were synthesised at a low temperature of 170 °C for 6 h with 0.5 M NaOH solution in the presence of 50.0 mmol urea. The phosphate pigment particle grew to approximately 62.0 nm by increasing the treatment temperature to 240 °C. A secondary dissolution–recrystallisation achieved after 24 h triggered a change in the particle morphology coupled with the incrementation of the concentration of NaOH in the solution. The pyrophosphate BaCr2(P2O7)2 pigments prepared in this study belong to the green colour spectral space according to the CIELab coordinates measurement, and exhibit 67.5% high near-infrared (NIR) solar reflectance. Full article
(This article belongs to the Section Synthesis, Interfaces and Nanostructures)
Show Figures

Graphical abstract

20 pages, 3209 KiB  
Article
Experimental Evaluation of GAGG:Ce Crystalline Scintillator Properties Under X-Ray Radiation
by Anastasios Dimitrakopoulos, Christos Michail, Ioannis Valais, George Fountos, Ioannis Kandarakis and Nektarios Kalyvas
Crystals 2025, 15(7), 590; https://doi.org/10.3390/cryst15070590 - 23 Jun 2025
Viewed by 595
Abstract
The scope of this study was to evaluate the response of Ce-doped gadolinium aluminum gallium garnet (GAGG:Ce) crystalline scintillator under medical X-ray irradiation for medical imaging applications. A 10 × 10 × 10 mm3 crystal was irradiated at X-ray tube voltages ranging [...] Read more.
The scope of this study was to evaluate the response of Ce-doped gadolinium aluminum gallium garnet (GAGG:Ce) crystalline scintillator under medical X-ray irradiation for medical imaging applications. A 10 × 10 × 10 mm3 crystal was irradiated at X-ray tube voltages ranging from 50 kVp to 150 kVp. The crystal’s compatibility with several commercially available optical photon detectors was evaluated using the spectral matching factor (SMF) along with the absolute efficiency (AE) and the effective efficiency (EE). In addition, the energy-absorption efficiency (EAE), the quantum-detection efficiency (QDE) as well as the zero-frequency detective quantum detection efficiency DQE(0) were determined. The crystal demonstrated satisfactory AE values as high as 26.3 E.U. (where 1 E.U. = 1 μW∙m−2/(mR∙s−1)) at 150 kVp, similar, or in some cases, even superior to other cerium-doped scintillator materials. It also exhibits adequate DQE(0) performance ranging from 0.99 to 0.95 across all the examined X-ray tube voltages. Moreover, it showed high spectral compatibility with commonly used photoreceptors in modern day such as complementary metal–oxide–semiconductors (CMOS) and charge-coupled-devices (CCD) with SMF values of 0.95 for CCD with broadband anti-reflection coating and 0.99 for hybrid CMOS blue. The aforementioned properties of this scintillator material were indicative of its superior efficiency in the examined medical energy range, compared to other commonly used scintillators. Full article
(This article belongs to the Special Issue Exploring New Materials for the Transition to Sustainable Energy)
Show Figures

Figure 1

20 pages, 23355 KiB  
Article
Unveiling Thickness-Dependent Oxidation Effect on Optical Response of Room Temperature RF-Sputtered Nickel Ultrathin Films on Amorphous Glass: An Experimental and FDTD Investigation
by Dylan A. Huerta-Arteaga, Mitchel A. Ruiz-Robles, Srivathsava Surabhi, S. Shiva Samhitha, Santhosh Girish, María J. Martínez-Carreón, Francisco Solís-Pomar, A. Martínez-Huerta, Jong-Ryul Jeong and Eduardo Pérez-Tijerina
Materials 2025, 18(12), 2891; https://doi.org/10.3390/ma18122891 - 18 Jun 2025
Viewed by 493
Abstract
Nickel (Ni) ultrathin films exhibit phase-dependent electrical, magnetic, and optical characteristics that are significantly influenced by deposition methods. However, these films are inherently prone to rapid oxidation, with the oxidation rate dependent on substrate, temperature, and deposition parameters. The focus of this research [...] Read more.
Nickel (Ni) ultrathin films exhibit phase-dependent electrical, magnetic, and optical characteristics that are significantly influenced by deposition methods. However, these films are inherently prone to rapid oxidation, with the oxidation rate dependent on substrate, temperature, and deposition parameters. The focus of this research is to investigate the temporal oxidation of RF-sputtered Ni ultrathin films on Corning glass under ambient atmospheric conditions and its impact on their structural, surface, and optical characteristics. Controlled film thicknesses were achieved through precise manipulation of deposition parameters, enabling the analysis of oxidation-induced modifications. Atomic force microscopy (AFM) revealed that films with high structural integrity and surface uniformity are exhibiting roughness values (Rq) from 0.679 to 4.379 nm of corresponding thicknesses ranging from 4 to 85 nm. Scanning electron microscopy (SEM) validated the formation of Ni grains interspersed with NiO phases, facilitating SPR-like effects. UV-visible spectroscopy is demonstrating thickness-dependent spectral (plasmonic peak) shifts. Finite Difference Time Domain (FDTD) simulations corroborate the observed thickness-dependent optical absorbance and the resultant shifts in the absorbance-induced plasmonic peak position and bandgap. Increased NiO presence primarily drives the enhancement of electromagnetic (EM) field localization and the direct impact on power absorption efficiency, which are modulated by the tunability of the plasmonic peak position. Our work demonstrates that controlled fabrication conditions and optimal film thickness selection allow for accurate manipulation of the Ni oxidation process, significantly altering their optical properties. This enables the tailoring of these Ni films for applications in transparent conductive electrodes (TCEs), magneto-optic (MO) devices, spintronics, wear-resistant coatings, microelectronics, and photonics. Full article
Show Figures

Graphical abstract

19 pages, 6018 KiB  
Article
Spectroscopic Studies of Baltic Amber—Critical Analysis
by Mirosław Kwaśny and Aneta Bombalska
Molecules 2025, 30(12), 2617; https://doi.org/10.3390/molecules30122617 - 17 Jun 2025
Viewed by 413
Abstract
Using optical spectroscopy methods including absorption in the UV-VIS, FTIR, Raman, and fluorescence, the spectra of 25 different Baltic amber samples were measured, and the ability of each method to distinguish between thermally modified and naturally aged material was analyzed. The natural ambers [...] Read more.
Using optical spectroscopy methods including absorption in the UV-VIS, FTIR, Raman, and fluorescence, the spectra of 25 different Baltic amber samples were measured, and the ability of each method to distinguish between thermally modified and naturally aged material was analyzed. The natural ambers studied are characterized by a wide range of spectral properties: the position of the transmission edge in the UV-VIS spectra, the absorbance ratios of the C-H and C=O groups in the IR spectra, a difference of approximately 20% in the fluorescence intensity level, and differences in the band ratios in the C=C and C-H bonds in the Raman spectrum. Spectral studies were carried out on samples of natural and thermally modified amber at temperatures of 100, 150, and 200 °C for 2–8 h. Drastic changes occur at temperatures above 150 °C: the color changes to dark brown, the UV-VIS transmission edge shifts, the absorbance of the C=O group increases, the absorbance intensity of the C=C bond decreases, and fluorescence disappears. In some special cases, fluorescence methods allow for the unambiguous distinction of amber from different geographical regions (e.g., Baltic and Dominican). Spectroscopic methods can distinguish natural amber from thermally modified amber only for large changes in the spectrum at temperatures of 150–200; for smaller changes, the differences between individual samples of natural amber may be greater than in the case of thermal modification. Full article
Show Figures

Figure 1

21 pages, 16825 KiB  
Article
Insights into the Optical and Physical Characteristics of Low Clouds and Aerosols in Africa from Satellite Lidar Measurements
by Bo Su, Dekai Lin, Xiaozhe Lv, Shuo Kong, Wenkai Song and Miao Zhang
Atmosphere 2025, 16(6), 717; https://doi.org/10.3390/atmos16060717 - 13 Jun 2025
Viewed by 321
Abstract
This study presents a systematic analysis of the optical-physical properties of low clouds and their vertical interaction mechanisms with aerosols over three African sub-regions (A: North African Desert; B: Congo Basin; C: Southeastern Plateau and Coastal Zone) using CALIPSO satellite vertical observations taken [...] Read more.
This study presents a systematic analysis of the optical-physical properties of low clouds and their vertical interaction mechanisms with aerosols over three African sub-regions (A: North African Desert; B: Congo Basin; C: Southeastern Plateau and Coastal Zone) using CALIPSO satellite vertical observations taken between 2006 and 2021. The results revealed distinct spatiotemporal variations: For example, the low-cloud aerosol optical depth (AOD) in Region A peaked during December–February, while Regions B and C exhibited higher values from June to November, with elevated dry-season and daytime levels. A positive correlation emerged between low-cloud AOD and its fractional contribution. Regional contrasts in low-cloud vertical structure were evident, with Region C showing the highest seasonal mean cloud base/top heights and Region A the lowest. The depolarisation ratio of low clouds was higher in desert areas (Region A) but lower in rainforest regions (Region B), while the SRlc (Low-cloud spectral reflectance ratio) was maximised in the Congo Basin (Region B), with wet-season and daytime enhancements. The near-surface aerosol AOD in Regions A and B was positively correlated with low-cloud AOD proportion (PAODlc). Across all regions, the near-surface aerosol layer top height showed positive correlations with the low-cloud base height and vertical extent, while the height of the bottom of the near-surface aerosol layer was positively aligned with the low-cloud base height. For Region C, there were negative correlations between near-surface aerosol layer heights and PAODlc, whereas the springtime aerosol parameters in Region A exhibited positive PAODlc correlations. These findings advance the current understanding of aerosol sources and ecosystem impacts, and provide critical insights for refining aerosol and low-cloud parameterisations in climate models. Full article
(This article belongs to the Section Atmospheric Techniques, Instruments, and Modeling)
Show Figures

Figure 1

16 pages, 18981 KiB  
Article
Dual-Broadband Topological Photonic Crystal Edge State Based on Liquid Crystal Tunability
by Jinying Zhang, Bingnan Wang, Jiacheng Wang, Xinye Wang and Yexiaotong Zhang
Materials 2025, 18(12), 2778; https://doi.org/10.3390/ma18122778 - 12 Jun 2025
Viewed by 402
Abstract
The rapid advancements in optical communication and sensing technologies have significantly increased the demand for advanced tunable spectral systems. This study presents a dual-band terahertz transmission and manipulation approach by leveraging the topologically protected properties of valley-topological photonic crystal edge states. The designed [...] Read more.
The rapid advancements in optical communication and sensing technologies have significantly increased the demand for advanced tunable spectral systems. This study presents a dual-band terahertz transmission and manipulation approach by leveraging the topologically protected properties of valley-topological photonic crystal edge states. The designed structure facilitates the excitation of the K valley within the range of 0.851–0.934 THz and the K′ valley from 1.604 to 1.686 THz, while also demonstrating anomalous refraction and birefringence. The calculated emission angles, derived through momentum matching, enable transitions between single-wave and dual-wave emissions and allow for precise angle control. The introduction of the liquid crystal material NJU-LDn-4 enables continuous tuning of the dual-band spectral range under a varying electric field, broadening the operating frequency bands to the ranges of 0.757–0.996 THz and 1.426–1.798 THz, respectively. These findings suggest promising applications in tunable filter design, optical communication, photonic computing, optical sensing, and high-resolution imaging, particularly in novel optical devices requiring precise control over spectral characteristics and light propagation. Full article
(This article belongs to the Special Issue Terahertz Materials and Technologies in Materials Science)
Show Figures

Figure 1

26 pages, 3279 KiB  
Article
Facile One-Pot Fischer–Suzuki–Knoevenagel Microwave-Assisted Synthesis of Fluorescent 5-Aryl-2-Styryl-3H-Indoles
by Martynas Rojus Bartkus, Neringa Kleizienė, Aurimas Bieliauskas and Algirdas Šačkus
Molecules 2025, 30(12), 2503; https://doi.org/10.3390/molecules30122503 - 7 Jun 2025
Viewed by 965
Abstract
In this study, novel fluorescent 5-aryl-2-styryl-3H-indole derivatives were efficiently synthesized from 4-bromophenylhydrazine hydrochloride using the microwave-accelerated one-pot technique, which includes Fischer synthesis, Suzuki cross-coupling, and Knoevenagel condensation. The structural assignments of the synthesized compounds were based on 1H, 13C, [...] Read more.
In this study, novel fluorescent 5-aryl-2-styryl-3H-indole derivatives were efficiently synthesized from 4-bromophenylhydrazine hydrochloride using the microwave-accelerated one-pot technique, which includes Fischer synthesis, Suzuki cross-coupling, and Knoevenagel condensation. The structural assignments of the synthesized compounds were based on 1H, 13C, 15N, and 19F NMR; IR spectroscopy; and HRMS spectral data. The optical properties of the newly obtained styryl-indole dyes were studied using UV-vis and fluorescence spectroscopy, which clearly demonstrated that the derivatives substituted with electron-donating or -withdrawing groups exhibited varying emission shifts and quantum yields ranging from negligible to high. Full article
(This article belongs to the Special Issue Novel Heterocyclic Compounds: Synthesis and Applications)
Show Figures

Graphical abstract

14 pages, 6320 KiB  
Article
Deep Reinforcement Learning-Guided Inverse Design of Transparent Heat Mirror Film for Broadband Spectral Selectivity
by Zhi Zeng, Haining Ji, Tianjian Xiao, Peng Long, Bin Liu, Shisong Jin and Yuxin Cao
Materials 2025, 18(12), 2677; https://doi.org/10.3390/ma18122677 - 6 Jun 2025
Viewed by 555
Abstract
With the increasing energy consumption of buildings, transparent heat mirror films have been widely used in building windows to enhance energy efficiency owing to their excellent spectrally selective properties. Previous studies have typically focused on spectral selectivity in the visible and near-infrared bands, [...] Read more.
With the increasing energy consumption of buildings, transparent heat mirror films have been widely used in building windows to enhance energy efficiency owing to their excellent spectrally selective properties. Previous studies have typically focused on spectral selectivity in the visible and near-infrared bands, as well as single-parameter optimization of film materials or thickness, without fully exploring the performance potential of the films. To address the limitations of traditional design methods, this paper proposes a deep reinforcement learning-based approach that employs an adaptive strategy network to optimize the thin-film material system and layer thickness parameters simultaneously. Through inverse design, a Ta2O5/Ag/Ta2O5/Ag/Ta2O5 (42 nm/22 nm/79 nm/22 nm/40 nm) thin-film structure with broadband spectral selectivity was obtained. The film exhibited an average reflectance of 75.5% in the ultraviolet band and 93.2% in the near-infrared band while maintaining an average visible transmittance of 87.0% and a mid- to far-infrared emissivity as low as 1.7%. Additionally, the film maintained excellent optical performance over a wide range of incident angles, making it suitable for use in complex lighting environments. Building energy simulations indicate that the film achieves a maximum energy-saving rate of 17.93% under the hot climatic conditions of Changsha and 16.81% in Guangzhou, demonstrating that the designed transparent heat mirror film provides a viable approach to reducing building energy consumption and holds significant potential for practical applications. Full article
(This article belongs to the Special Issue Machine Learning for Materials Design)
Show Figures

Graphical abstract

16 pages, 2229 KiB  
Article
Investigation of the Effect of Molecules Containing Sulfonamide Moiety Adsorbed on the FAPbI3 Perovskite Surface: A First-Principles Study
by Shiyan Yang, Yu Zhuang, Youbo Dou, Jianjun Wang, Hongwen Zhang, Wenjing Lu, Qiuli Zhang, Xihua Zhang, Yuan Wu and Xianfeng Jiang
Molecules 2025, 30(11), 2463; https://doi.org/10.3390/molecules30112463 - 4 Jun 2025
Viewed by 528
Abstract
First-principles calculations were conducted to examine the impact of three sulfonamide-containing molecules (H4N2O2S, CH8N4O3S, and C2H2N6O4S) adsorbed on the FAPbI3(001) perovskite [...] Read more.
First-principles calculations were conducted to examine the impact of three sulfonamide-containing molecules (H4N2O2S, CH8N4O3S, and C2H2N6O4S) adsorbed on the FAPbI3(001) perovskite surface, aiming to establish a significant positive correlation between the molecular structures and their regulatory effects on the perovskite surface. A systematic comparison was conducted to evaluate the adsorption stability of the three molecules on the two distinct surface terminations. The results show that all three molecules exhibit strong adsorption on the FAPbI3(001) surface, with C2H12N6O4S demonstrating the most favorable binding stability due to its extended frameworks and multiple electron-donating/withdrawing groups. Simpler molecules lacking carbon skeletons exhibit weaker adsorption and less dependence on surface termination. Ab initio molecular dynamics simulations (AIMD) further corroborated the thermal stability of the stable adsorption configurations at elevated temperatures. Electronic structure analysis reveals that molecular adsorption significantly reconstructs the density of states (DOS) on the PbI2-terminated surface, inducing shifts in band-edge states and enhancing energy-level coupling between molecular orbitals and surface states. In contrast, the FAI-terminated surface shows weaker interactions. Charge density difference (CDD) analysis indicates that the molecules form multiple coordination bonds (e.g., Pb–O, Pb–S, and Pb–N) with uncoordinated Pb atoms, facilitated by –SO2–NH2 groups. Bader charge and work function analyses indicate that the PbI2-terminated surface exhibits more pronounced electronic coupling and interfacial charge transfer. The C2H12N6O4S adsorption system demonstrates the most substantial reduction in work function. Optical property calculations show a distinct red-shift in the absorption edge along both the XX and YY directions for all adsorption systems, accompanied by enhanced absorption intensity and broadened spectral range. These findings suggest that sulfonamide-containing molecules, particularly C2H12N6O4S with extended carbon skeletons, can effectively stabilize the perovskite interface, optimize charge transport pathways, and enhance light-harvesting performance. Full article
Show Figures

Figure 1

10 pages, 1905 KiB  
Article
Optimizing Sintering Conditions for Y2O3 Ceramics: A Study of Atmosphere-Dependent Microstructural Evolution and Optical Performance
by Xueer Wang, Dongliang Xing, Ying Wang, Jun Wang, Jie Ma, Peng Liu, Jian Zhang and Dingyuan Tang
Ceramics 2025, 8(2), 66; https://doi.org/10.3390/ceramics8020066 - 1 Jun 2025
Viewed by 618
Abstract
This paper systematically investigated the influence of sintering atmospheres, vacuum, and oxygen, on the microstructure and optical properties of Y2O3 ceramics. Compared with vacuum sintering, sintering in flowing oxygen atmosphere can effectively inhibit the grain growth of Y2O [...] Read more.
This paper systematically investigated the influence of sintering atmospheres, vacuum, and oxygen, on the microstructure and optical properties of Y2O3 ceramics. Compared with vacuum sintering, sintering in flowing oxygen atmosphere can effectively inhibit the grain growth of Y2O3 ceramics at the final stage of sintering and improve the uniformity of microstructure. After hot isostatic pressing, the samples pre-sintered at oxygen atmosphere showed good in-line transmittance from a visible-to-mid-infrared wavelength range (0.4–6.0 μm) except in the range of 2.8–4.1 μm. Spectral analysis showed that an obvious broadband absorption peak (2.8–4.1 μm) of characteristic hydroxyl groups is detected in the above samples. However, before densification, a low-temperature heat treatment at 600 °C under vacuum can effectively diminish the hydroxyl groups in Y2O3 ceramics. However, laser experiments in the ~1 μm wavelength range showed that although the Yb:Y2O3 ceramic carrying hydroxyl had obvious absorption in the 2.8–4.1 μm range, it had little effect on its laser oscillation in the ~1 μm wavelength. Yb:Y2O3 ceramics pre-sintered in an oxygen atmosphere at 1460 °C followed by hot isostatic pressing at 1440 °C achieved 12.85 W continuous laser output at room temperature, with a laser slope efficiency of 84.4%. Full article
(This article belongs to the Special Issue Transparent Ceramics—a Theme Issue in Honor of Dr. Adrian Goldstein)
Show Figures

Graphical abstract

Back to TopTop