Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (267,945)

Search Parameters:
Keywords = specifications

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
38 pages, 2523 KB  
Article
Methods for GIS-Driven Airspace Management: Integrating Unmanned Aircraft Systems (UASs), Advanced Air Mobility (AAM), and Crewed Aircraft in the NAS
by Ryan P. Case and Joseph P. Hupy
Drones 2026, 10(2), 82; https://doi.org/10.3390/drones10020082 (registering DOI) - 24 Jan 2026
Abstract
The rapid growth of Unmanned Aircraft Systems (UASs) and Advanced Air Mobility (AAM) presents significant integration and safety challenges for the National Airspace System (NAS), often relying on disconnected Air Traffic Management (ATM) and Unmanned Aircraft System Traffic Management (UTM) practices that contribute [...] Read more.
The rapid growth of Unmanned Aircraft Systems (UASs) and Advanced Air Mobility (AAM) presents significant integration and safety challenges for the National Airspace System (NAS), often relying on disconnected Air Traffic Management (ATM) and Unmanned Aircraft System Traffic Management (UTM) practices that contribute to airspace incidents. This study evaluates Geographic Information Systems (GISs) as a unified, data-driven framework to enhance shared airspace safety and efficiency. A comprehensive, multi-phase methodology was developed using GIS (specifically Esri ArcGIS Pro) to integrate heterogeneous aviation data, including FAA aeronautical data, Automatic Dependent Surveillance–Broadcast (ADS-B) for crewed aircraft, and UAS Flight Records, necessitating detailed spatial–temporal data preprocessing for harmonization. The effectiveness of this GIS-based approach was demonstrated through a case study analyzing a critical interaction between a University UAS (Da-Jiang Innovations (DJI) M300) and a crewed Piper PA-28-181 near Purdue University Airport (KLAF). The resulting two-dimensional (2D) and three-dimensional (3D) models successfully enabled the visualization, quantitative measurement, and analysis of aircraft trajectories, confirming a minimum separation of approximately 459 feet laterally and 339 feet vertically. The findings confirm that a GIS offers a centralized, scalable platform for collating, analyzing, modeling, and visualizing air traffic operations, directly addressing ATM/UTM integration deficiencies. This GIS framework, especially when combined with advancements in sensor technologies and Artificial Intelligence (AI) for anomaly detection, is critical for modernizing NAS oversight, improving situational awareness, and establishing a foundation for real-time risk prediction and dynamic airspace management. Full article
(This article belongs to the Special Issue Urban Air Mobility Solutions: UAVs for Smarter Cities)
24 pages, 940 KB  
Review
A Comprehensive Review of Bump-Feeding Strategies During Late Gestation: Nutritional and Behavioral Implications for Farrowing Performance and Reproductive Outcomes
by Ahsan Mehtab, Hong-Seok Mun, Eddiemar B. Lagua, Md Sharifuzzaman, Md Kamrul Hasan, Young-Hwa Kim and Chul-Ju Yang
Agriculture 2026, 16(3), 302; https://doi.org/10.3390/agriculture16030302 (registering DOI) - 24 Jan 2026
Abstract
Bump feeding is a nutritional management strategy in swine production that involves increasing feed allowance and/or dietary nutrient density during the final weeks of gestation, usually from day 90 to farrowing, to support rapid fetal growth and prepare sows for lactation. This strategy [...] Read more.
Bump feeding is a nutritional management strategy in swine production that involves increasing feed allowance and/or dietary nutrient density during the final weeks of gestation, usually from day 90 to farrowing, to support rapid fetal growth and prepare sows for lactation. This strategy is widely applied to improve piglet birth weight, neonatal viability, and subsequent reproductive performance. This review synthesizes current evidence on the effects of increased maternal feed intake during late gestation on sow body condition and feeding-related behavioral responses, and farrowing outcomes. Available studies suggest that increasing feed allowance during late gestation can influence litter characteristics, piglet survival at birth, and sow energy reserves, as reflected by changes in backfat thickness (BFT) and body condition score (BCS). The nutritional composition of bump-feeding diets, including dietary energy and amino acid balance, is critically evaluated in relation to pregnancy maintenance, farrowing duration, and early lactation performance. In addition, the roles of parity and feeding behavior during late gestation are examined, with particular emphasis on their associations with sow activity patterns, restlessness around parturition, and farrowing efficiency. Despite these reported effects, findings across studies remain inconsistent, particularly regarding the balance between improved reproductive outcomes and the risk of excessive fat deposition in sows. This review highlights key knowledge gaps and underscores the need for optimized, parity-specific bump-feeding strategies that integrate nutritional management with feeding behavior to enhance farrowing performance, piglet survival, sow welfare, and economic sustainability in modern pig production. Full article
(This article belongs to the Section Farm Animal Production)
Show Figures

Graphical abstract

17 pages, 1426 KB  
Article
Spherical vs. Plane Lenses for Enhanced DUV-LED Performance and Wine Aging
by Jichen Shen, Tianqi Wu, Jun Zou, Peng Wu and Yitao Liao
Appl. Sci. 2026, 16(3), 1222; https://doi.org/10.3390/app16031222 (registering DOI) - 24 Jan 2026
Abstract
The strategic selection of lens geometry—spherical versus plane—decisively shapes the opto-thermal performance boundary of deep ultraviolet light-emitting diodes (DUV-LEDs), thereby governing their efficacy in application-specific photochemical processes. This study demonstrates that spherical lenses, by virtue of their superior light-collecting geometry, significantly enhance optical [...] Read more.
The strategic selection of lens geometry—spherical versus plane—decisively shapes the opto-thermal performance boundary of deep ultraviolet light-emitting diodes (DUV-LEDs), thereby governing their efficacy in application-specific photochemical processes. This study demonstrates that spherical lenses, by virtue of their superior light-collecting geometry, significantly enhance optical extraction efficiency and thermal management performance compared to conventional plane lenses. These engineered performance characteristics translate directly into divergent functional outcomes: spherical lenses enable rapid, high-intensity processing, while plane lenses are better suited for controlled, sustained operation. The findings establish a fundamental principle for DUV-LED packaging design: lens geometry can be tailored to optimize efficiency for distinct photochemical tasks, providing a clear pathway from device engineering to application-driven performance. Full article
(This article belongs to the Special Issue Advanced Photonics and Optical Communication)
19 pages, 728 KB  
Article
Effect of Growth Substrate on Yield and Chemical Composition of Pot-Grown Portulaca oleracea
by Nikolaos Polyzos, Antonios Chrysargyris, Nikolaos Tzortzakis and Spyridon A. Petropoulos
Agronomy 2026, 16(3), 297; https://doi.org/10.3390/agronomy16030297 (registering DOI) - 24 Jan 2026
Abstract
The use of manure as a growing medium for horticultural crop cultivation is a sustainable practice that may allow a reduction in the production costs and the environmental burden of bulky waste management. For this purpose, the current study investigated the partial substitution [...] Read more.
The use of manure as a growing medium for horticultural crop cultivation is a sustainable practice that may allow a reduction in the production costs and the environmental burden of bulky waste management. For this purpose, the current study investigated the partial substitution of peat with manure at various rates (0% (GS1), 100% (GS2), 80% (GS3), 60% (GS4), 40% (GS5), and 20% (GS6)) in pot-cultivated purslane. Our results indicate that the substitution of peat with manure may increase crop yield by 60% to 80%. Moreover, the nutritional value was improved for specific manure rates; for example, the ash and carbohydrate contents in leaves increased at 60% and 20%, respectively, while the fat and carbohydrate contents in shoots increased at 80% and 20%, respectively. P content increased in both leaves and shoots when manure was added to the growing medium, while application at low rates (e.g., 20%) resulted in decreased N and K content. Finally, regarding leaf total phenol and flavonoid contents, as well as antioxidant activity in 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2′-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) assays, values increased when manure was added at 40% to 60%; in shoots, increased values were observed for these parameters when manure was applied at 0% or 100%. In conclusion, our results suggest that peat substitution with manure is a viable, sustainable practice in purslane cultivation in pots without compromising the yield and quality parameters of plants. However, more species and different types of manure must be tested to design tailor-made growing media for horticultural crops. Full article
(This article belongs to the Section Horticultural and Floricultural Crops)
13 pages, 2132 KB  
Article
Vaccination with Lipid Nanoparticle-Delivered VP2-DNA Elicits Immune Protection in Chickens Against Novel Variant Infectious Bursal Disease Virus (nVarIBDV)
by Yulong Zhang, Ziwen Wu, Hangbo Yu, Guodong Wang, Runhang Liu, Dan Ling, Erjing Ke, Xianyun Liu, Tengfei Xu, Suyan Wang, Yuntong Chen, Yongzhen Liu, Hongyu Cui, Yanping Zhang, Yulu Duan, Yulong Gao and Xiaole Qi
Vaccines 2026, 14(2), 113; https://doi.org/10.3390/vaccines14020113 (registering DOI) - 24 Jan 2026
Abstract
Background/Objective: Infectious bursal disease (IBD) is an acute and highly contagious immunosuppressive disease in chickens caused by infectious bursal disease virus (IBDV). In recent years, a novel variant IBDV (nVarIBDV) has emerged and spread widely, inducing severe immunosuppression and posing a substantial threat [...] Read more.
Background/Objective: Infectious bursal disease (IBD) is an acute and highly contagious immunosuppressive disease in chickens caused by infectious bursal disease virus (IBDV). In recent years, a novel variant IBDV (nVarIBDV) has emerged and spread widely, inducing severe immunosuppression and posing a substantial threat to the poultry industry. More importantly, owing to antigenic variations, nVarIBDV can escape the immune protection of the existing vaccines. Therefore, it is imperative to develop a new vaccine that is antigenically matched to nVarIBDV. Methods: The major protective antigen gene VP2 of the representative nVarIBDV strain SHG19 was inserted into the eukaryotic expression plasmid pCAGGS to construct the recombinant plasmid pCASHGVP2. Subsequently, pCASHGVP2 was encapsulated in lipid nanoparticles (LNPs) to form pCASHGVP2-LNP nanoparticles. Finally, using the SPF chicken model, the immune efficacy of pCASHGVP2-LNP was preliminarily assessed by administering two vaccine doses (10 and 20 μg) and two immunization regimens (single or double immunization). Results: Efficient VP2 protein expression from pCASHGVP2 was confirmed by in vitro transfection experiments. The prepared pCASHGVP2-LNP nanoparticles exhibited an optimal particle size distribution and acceptable polydispersity index, indicating a homogeneous formulation. Furthermore, animal experiments showed that the candidate DNA vaccine elicited specific neutralizing antibodies after double immunization and protected immunized chickens from disease induced by nVarIBDV challenge. Conclusions: This study reports the first development of an LNP-encapsulated VP2 DNA vaccine (pCASHGVP2-LNP) against nVarIBDV, highlighting its potential application for the prevention of nVarIBDV. Full article
(This article belongs to the Special Issue Advances in DNA Vaccine Research)
20 pages, 2130 KB  
Article
Valorizing Pruning Residues into Biochar for Remediating Acidified Cropland Soil: Effects on Fertility, Enzymes, and Bacterial Communities
by Haowen Li, Yingmei Huang, Juntao Zhang, Yongxin Liang, Jialong Wu and Kexing Liu
Agronomy 2026, 16(3), 296; https://doi.org/10.3390/agronomy16030296 (registering DOI) - 24 Jan 2026
Abstract
Intensive agriculture has intensified soil acidification in southern China, threatening crop productivity and ecosystem sustainability. Biochar can neutralize acidity, improve pH buffering, and enhance nutrient retention and microbial habitat in acidic soils. Accordingly, we produced biochars from pruned eucalyptus (ABC), camphora (ZBC), and [...] Read more.
Intensive agriculture has intensified soil acidification in southern China, threatening crop productivity and ecosystem sustainability. Biochar can neutralize acidity, improve pH buffering, and enhance nutrient retention and microbial habitat in acidic soils. Accordingly, we produced biochars from pruned eucalyptus (ABC), camphora (ZBC), and guava (FBC) branches via pyrolysis at 500 °C. The three biochars were characterized by elemental analysis, Fourier Transform Infrared Spectroscopy (FTIR), and SEM (Scanning Electron Microscopy), and their effects on soil properties, enzyme activities, and bacterial communities were evaluated through a 56-day incubation experiment in an acidified, continuously cropped soil. Physicochemical characterization revealed that ZBC and FBC possessed more oxygen-containing functional groups and greater potential for pH buffering and nutrient release, whereas ABC exhibited higher aromaticity and structural stability. Biochar significantly increased soil pH by 0.62–1.42 units and improved nutrient availability and carbon pools (p < 0.05). Additionally, 4% ZBC increased urease and sucrase activities by 21.54% and 79.34%, respectively, while 2% FBC increased cellulase activity by 25.99%. High-throughput sequencing identified Acidobacteria and Proteobacteria as the dominant phyla; ZBC and FBC at 0.5% and 2% significantly increased Shannon and Chao1 indices. Redundancy analysis indicated that available potassium, pH, soil organic carbon, urease, sucrase, and cellulase were the primary drivers of bacterial community variation and positively associated with carbon-cycling phyla. These findings demonstrate that feedstock-specific biochar properties critically regulate soil biogeochemical processes, offering a sustainable strategy to remediate acidified soils and valorize agroforestry residues. Full article
(This article belongs to the Section Soil and Plant Nutrition)
14 pages, 1457 KB  
Article
Multiplex qPCR Assay for Simultaneous Detection of Three PST-Producing Dinoflagellates in the East China Sea off Southern Korea
by Jung Soo Heo, Biet Thanh Tran, Keun-Yong Kim, Sunju Kim, Seok Hyun Youn and Tae Gyu Park
Biology 2026, 15(3), 219; https://doi.org/10.3390/biology15030219 (registering DOI) - 24 Jan 2026
Abstract
Paralytic shellfish toxins (PSTs) are produced by several toxic species of the dinoflagellate genera Alexandrium and Gymnodinium, and they pose significant threats to marine ecosystems and public health. Rapid and accurate detection of harmful algal blooms (HABs) is essential for effective management. [...] Read more.
Paralytic shellfish toxins (PSTs) are produced by several toxic species of the dinoflagellate genera Alexandrium and Gymnodinium, and they pose significant threats to marine ecosystems and public health. Rapid and accurate detection of harmful algal blooms (HABs) is essential for effective management. In this study, we developed a multiplex quantitative real-time PCR (qPCR) assay targeting the 28S ribosomal DNA region to simultaneously detect three PST-producing dinoflagellates, Alexandrium catenella, A. pacificum, and Gymnodinium catenatum, in the East China Sea off southern Korea. Species-specific primers and hydrolysis probes labeled with distinct fluorophores were validated for simultaneous detection. The standard curves showed strong linearity (R2 > 0.99) and high amplification efficiencies (95.268–99.325%). No cross-reactivity was observed among the 20 non-target microalgal species. Field application of the assay using environmental DNA (eDNA) samples collected during spring successfully detected A. catenella and A. pacificum, whereas G. catenatum was not detected during the survey period. This multiplex qPCR assay provides a rapid and reliable molecular tool for early detection and spatial monitoring of potentially PST-producing dinoflagellates, supporting sustainable HAB management in East Asian coastal ecosystems. Full article
(This article belongs to the Section Ecology)
Show Figures

Figure 1

23 pages, 2066 KB  
Article
Intelligent Attention-Driven Deep Learning for Hip Disease Diagnosis: Fusing Multimodal Imaging and Clinical Text for Enhanced Precision and Early Detection
by Jinming Zhang, He Gong, Pengling Ren, Shuyu Liu, Zhengbin Jia, Lizhen Wang and Yubo Fan
Medicina 2026, 62(2), 250; https://doi.org/10.3390/medicina62020250 (registering DOI) - 24 Jan 2026
Abstract
Background: Hip joint disorders exhibit diverse and overlapping radiological features, complicating early diagnosis and limiting the diagnostic value of single-modality imaging. Isolated imaging or clinical data may therefore inadequately represent disease-specific pathological characteristics. Methods: This retrospective study included 605 hip joints [...] Read more.
Background: Hip joint disorders exhibit diverse and overlapping radiological features, complicating early diagnosis and limiting the diagnostic value of single-modality imaging. Isolated imaging or clinical data may therefore inadequately represent disease-specific pathological characteristics. Methods: This retrospective study included 605 hip joints from Center A (2018–2024), comprising normal hips, osteoarthritis, osteonecrosis of the femoral head (ONFH), and femoroacetabular impingement (FAI). An independent cohort of 24 hips from Center B (2024–2025) was used for external validation. A multimodal deep learning framework was developed to jointly analyze radiographs, CT volumes, and clinical texts. Features were extracted using ResNet50, 3D-ResNet50, and a pretrained BERT model, followed by attention-based fusion for four-class classification. Results: The combined Clinical+X-ray+CT model achieved an AUC of 0.949 on the internal test set, outperforming all single-modality models. Improvements were consistently observed in accuracy, sensitivity, specificity, and decision curve analysis. Grad-CAM visualizations confirmed that the model attended to clinically relevant anatomical regions. Conclusions: Attention-based multimodal feature fusion substantially improves diagnostic performance for hip joint diseases, providing an interpretable and clinically applicable framework for early detection and precise classification in orthopedic imaging. Full article
(This article belongs to the Special Issue Artificial Intelligence in Medicine: Shaping the Future of Healthcare)
Show Figures

Figure 1

27 pages, 10800 KB  
Article
Integrative RNA-Seq and TCGA-BRCA Analyses Highlight the Role of LINC01133 in Triple-Negative Breast Cancer
by Leandro Teodoro Júnior, Henrique César de Jesus-Ferreira, Mari Cleide Sogayar and Milton Yutaka Nishiyama-Jr.
Biomedicines 2026, 14(2), 268; https://doi.org/10.3390/biomedicines14020268 (registering DOI) - 24 Jan 2026
Abstract
Background: Triple-negative breast cancers (TNBCs) are among the most aggressive breast tumors, due not only to the absence of clinically functional biomarkers used in other molecular subtypes, but also their marked heterogeneity and pronounced migratory and invasive behavior. The search for new molecules [...] Read more.
Background: Triple-negative breast cancers (TNBCs) are among the most aggressive breast tumors, due not only to the absence of clinically functional biomarkers used in other molecular subtypes, but also their marked heterogeneity and pronounced migratory and invasive behavior. The search for new molecules of interest for risk prediction, diagnosis and therapy stems from the class of long non-coding RNAs (lncRNAs), which often display context-dependent (“dual”) functions and tissue specificity. Among them, lncRNA LINC01133 stands out for its dysregulation across cancer, although its molecular role in TNBC remains unclear. Methods: In the present study, we used the human TNBC cell line Hs578T to generate a cell panel comprising the parental line (Hs578T_wt), the control line (Hs578T_ctr), and the LINC01133 knockout line (Hs578T_ko). Subsequently, we performed bulk RNA-Seq to identify KO-associated Differentially Expressed Genes (DEGs) using ko_vs_ctr as the primary contrast. Functional interpretation was achieved by Over-Representation Analysis (ORA) using Gene Ontology. We then conducted a comparative patient-cohort analysis using TCGA-BRCA Basal-like/TNBC cases (TCGA/BRCA n = 1098; Basal-like/TNBC n = 199), classified with the AIMS algorithm, and evaluated concordance between KO-associated signatures and patient tumor expression patterns via trend-based analyses across the LINC01133 expression levels and associated genes. Results: A total of 265 KO-dominant DEGs were identified in Hs578T_ko, reflecting transcriptional changes consistent with tumor progression, with enrichment of pathways associated with LINC01133 knockout including cell adhesion, cell–cell interactions, epithelial–mesenchymal transition (EMT), and extracellular matrix (ECM) remodeling. The main DEGs included ITIH5, GLUL, CACNB2, PDX1, ASPN, PTGER3, MFAP4, PI15, EPHB6, and CPA3 with additional candidates, such as KAZN and the lncRNA gene SSC4D, which have been implicated in migration/invasion, ECM remodeling, or signaling across multiple tumor contexts. Translational analyses in TCGA-BRCA basal-like tumors suggested a descriptive association in which lower LINC01133 levels were accompanied by shifts in the expression trends of genes linked to ECM/EMT programs and modulation of genes related to cell adhesion and protease inhibition. Conclusions: These results suggest a transcriptional model in which LINC01133 is associated with TNBC-related gene expression programs in a concentration-dependent manner, with loss of LINC01133 being associated with a transcriptomic shift toward pro-migratory/ECM remodeling signatures. While functional validation is required to establish causality, these data support LINC01133 as a molecule of interest in breast cancer research. Full article
(This article belongs to the Special Issue Bioinformatics Analysis of RNA for Human Health and Disease)
Show Figures

Figure 1

24 pages, 3394 KB  
Article
Revisiting the Waste Kuznets Curve: A Spatial Panel Analysis of Household Waste Fractions Across Polish Sub-Regions
by Arkadiusz Kijek and Agnieszka Karman
Sustainability 2026, 18(3), 1204; https://doi.org/10.3390/su18031204 (registering DOI) - 24 Jan 2026
Abstract
This study examines the relationship between income and municipal waste generation within the Waste Kuznets Curve (WKC) framework, with a focus on selected disaggregated household waste fractions (paper and cardboard, glass, bulky waste, and biowaste). The aim is to assess whether increases in [...] Read more.
This study examines the relationship between income and municipal waste generation within the Waste Kuznets Curve (WKC) framework, with a focus on selected disaggregated household waste fractions (paper and cardboard, glass, bulky waste, and biowaste). The aim is to assess whether increases in earnings per capita are associated with non-linear waste dynamics once spatial interactions and local socio-demographic characteristics are taken into account. The study employs a spatial panel dataset for 378 Polish counties over the period 2017–2024. Fixed-effects panel models, supplemented with random-effects panel models with Mundlak’s approach, are estimated alongside spatial panel specifications. Control variables include population ageing, urbanisation, and tourism, while spatial effects are decomposed into direct and indirect impacts. The results indicate that, in non-spatial models, an inverted U-shaped relationship between earnings and waste generation is observed for most waste fractions. However, once spatial dependence is explicitly incorporated, income effects weaken. In contrast, demographic structure—the share of retirement-age population—emerges as a robust and spatially persistent determinant of waste generation. Urbanisation and tourism exert only a limited influence across waste fractions. The paper advances WKC research by using spatial econometric methods and disaggregated waste fractions at the county level. The evidence suggests that conclusions about income-driven waste decoupling are sensitive to spatial dependence, emphasising the need for locally tailored waste management strategies. Full article
(This article belongs to the Special Issue Innovation in Circular Economy and Sustainable Development)
Show Figures

Figure 1

16 pages, 9506 KB  
Article
Endocannabinoid System Modulates Glial Responses and Motoneuron Preservation After Spinal Cord Ventral Root Axotomy
by Caroline Machado Tomazelli, Alexandre Leite Rodrigues de Oliveira and Luciana Politti Cartarozzi
Neuroglia 2026, 7(1), 6; https://doi.org/10.3390/neuroglia7010006 (registering DOI) - 24 Jan 2026
Abstract
Background/Objectives: Injuries to spinal ventral roots induce complex retrograde reactions that compromise motoneuron survival, synaptic organization, and glial responses, ultimately limiting the potential for regeneration. The endocannabinoid system (ECS) has emerged as a crucial modulator of neuroprotective processes, primarily through the activation of [...] Read more.
Background/Objectives: Injuries to spinal ventral roots induce complex retrograde reactions that compromise motoneuron survival, synaptic organization, and glial responses, ultimately limiting the potential for regeneration. The endocannabinoid system (ECS) has emerged as a crucial modulator of neuroprotective processes, primarily through the activation of CB1 and CB2. However, the individual and combined contributions of these receptors to post-injury spinal responses remain poorly understood. Here, we examined the effects of selective blockade of CB1 and CB2 receptors in a murine model of ventral root crush (VRC). Methods: Female C57BL/6JUnib mice received daily intraperitoneal injections of the CB1 antagonist AM-251 and/or the CB2 antagonist AM-630 (1 mg/kg) for 14 days post-lesion. At 28 days after injury, spinal cords were analyzed for motoneuron survival (Nissl staining), glial responses (immunohistochemistry for GFAP and Iba-1), and synaptic coverage (immunohistochemistry for synaptophysin). Results: Selective blockade of CB2 receptors led to a marked reduction in motoneuron survival, enhanced microglial activation-associated morphology (morphological classification and Sholl analysis), and decreased synaptic coverage. CB1 blockade produced milder, context-dependent effects. Dual blockade exacerbated all outcomes, indicating complementary CB1/CB2 functions in the spinal microenvironment. Conclusions: Under the conditions tested, CB2 signaling is necessary for motoneuron preservation, limiting microglial activation-associated morphology, and maintaining synaptic coverage after VRC. The knowledge of specific actions of CB1 and CB2 provides mechanistic insight into the neuroprotective potential of endocannabinoid signaling and reinforces its therapeutic relevance for motoneuron preservation and functional recovery after axotomy. Full article
19 pages, 856 KB  
Review
Preventing Postpericardiotomy Syndrome: Current Evidence and Future Directions
by Christos E. Ballas, Thomas Theologou, Evangelia Samara, Fotios Barkas, Theodora Bampali, Kyriakos Kintzoglanakis, Christos Diamantis, Petros Tzimas, Christos S. Katsouras and Christos Alexiou
J. Cardiovasc. Dev. Dis. 2026, 13(2), 63; https://doi.org/10.3390/jcdd13020063 (registering DOI) - 24 Jan 2026
Abstract
Postpericardiotomy syndrome (PPS) is the most frequent inflammatory after-effect of cardiac surgery and is characterized by high morbidity, delayed hospitalization, and increased long-term mortality rates. Although PPS is common, empirical anti-inflammatory therapy has historically been employed for its prevention, and mechanism-based approaches have [...] Read more.
Postpericardiotomy syndrome (PPS) is the most frequent inflammatory after-effect of cardiac surgery and is characterized by high morbidity, delayed hospitalization, and increased long-term mortality rates. Although PPS is common, empirical anti-inflammatory therapy has historically been employed for its prevention, and mechanism-based approaches have not yet been standardized. In this literature review, which was conducted on the basis of randomized controlled trials, meta-analyses, cohort studies, and mechanistic research regarding pharmacologic interventions, surgical modalities, and biomarker-based preventive strategies, the deficiencies of a critical synthesis of existing preventive strategies and emerging risk stratification instruments for PPS are addressed. The review affirms that the most evidence-based pharmacologic intervention is colchicine, which demonstrates a consistent reduction in PPS incidence across a range of randomized trials. Nonsteroidal anti-inflammatory drugs show variable responses, whereas corticosteroids are no longer recommended for routine prophylaxis due to relapse. Specific anti–interleukin-1 therapies represent a promising novel approach for high-risk patients. Surgical interventions, such as pericardial closure using biomaterials and posterior pericardiotomy, are important and do not lead to increased hemodynamic complications, while postoperative effusions, atrial fibrillation, and tamponade are reduced. Less invasive methods may also be employed to mitigate inflammatory causes, particularly in valve-sparing procedures and congenital operations. Emerging biomarker data, including postoperative neutrophil-to-lymphocyte ratios, C-reactive protein levels, and pericardial fluid cytokines, enable the identification of high-risk patients and form the basis for a personalized prevention approach. In summary, pharmacologic prophylaxis, innovative surgical techniques, and biomarker-based risk stratification represent a pathway toward reducing the incidence and burden of PPS in modern cardiac surgery. Full article
(This article belongs to the Section Acquired Cardiovascular Disease)
Show Figures

Figure 1

15 pages, 4315 KB  
Review
Disulfiram and Its Derivatives: An Immortal Phoenix of Drug Repurposing
by Ziad Omran and Omeima Abdullah
Pharmaceuticals 2026, 19(2), 200; https://doi.org/10.3390/ph19020200 (registering DOI) - 24 Jan 2026
Abstract
Disulfiram (DSF) is a well-established inhibitor of aldehyde dehydrogenases (ALDHs) and an FDA-approved drug for chronic alcoholism. DSF has gained attention as a versatile scaffold for drug repurposing. Its metabolite, diethyldithiocarbamate (DDTC), mediates multiple biological effects via metal chelation and covalent modification of [...] Read more.
Disulfiram (DSF) is a well-established inhibitor of aldehyde dehydrogenases (ALDHs) and an FDA-approved drug for chronic alcoholism. DSF has gained attention as a versatile scaffold for drug repurposing. Its metabolite, diethyldithiocarbamate (DDTC), mediates multiple biological effects via metal chelation and covalent modification of key cysteine residues. Beyond its established anticancer properties, DSF modulates cancer stem cells, reactive oxygen species, proteasome function, and drug-resistance pathways. It also shows promise in metabolic disorders, including type 2 diabetes and obesity, by targeting enzymes such as fructose-1,6-bisphosphatase and α-glucosidase, and influences energy expenditure and autophagy. DSF exhibits antimicrobial and antiparasitic activity, enhances antibiotic efficacy against multidrug-resistant bacteria, and demonstrates antischistosomal and anti-Trichomonas effects, while also providing radioprotective benefits. The clinical translation of DSF is limited by poor solubility, rapid metabolism, and off-target effects; consequently, the development of DSF analogs has become a major focus. Structural optimization has yielded derivatives with improved selectivity, stability, solubility, and target specificity, enabling precise modulation of key enzymes while reducing adverse effects. A key structure-based strategy involves introducing bulkier substituents to exploit differences in ALDH active-site architecture and achieve target selectivity. This concept is exemplified by compounds (1) and (2), in which bulky substituents confer selective inhibition of ALDH1A1 while sparing ALDH2. This review provides a comprehensive overview of DSF analogs, their molecular mechanisms, and therapeutic potential, highlighting their promise as multifunctional agents for cancer, metabolic disorders, infectious diseases, and radioprotection. Full article
(This article belongs to the Special Issue Sulfur-Containing Scaffolds in Medicinal Chemistry)
Show Figures

Figure 1

19 pages, 11499 KB  
Article
A Novel Plasticization Mechanism in Poly(Lactic Acid)/PolyEthyleneGlycol Blends: From Tg Depression to a Structured Melt State
by Nawel Mechernene, Lina Benkraled, Assia Zennaki, Khadidja Arabeche, Abdelkader Berrayah, Lahcene Mechernene, Amina Bouriche, Sid Ahmed Benabdellah, Zohra Bouberka, Ana Barrera and Ulrich Maschke
Polymers 2026, 18(3), 317; https://doi.org/10.3390/polym18030317 (registering DOI) - 24 Jan 2026
Abstract
Polylactic acid (PLA) is a promising biodegradable polymer whose widespread application is hindered by inherent brittleness. Polyethylene glycol (PEG) is a common plasticizer, but the effects of intermediate molecular weights, such as 4000 g/mol, on the coupled thermal, mechanical, and rheological properties of [...] Read more.
Polylactic acid (PLA) is a promising biodegradable polymer whose widespread application is hindered by inherent brittleness. Polyethylene glycol (PEG) is a common plasticizer, but the effects of intermediate molecular weights, such as 4000 g/mol, on the coupled thermal, mechanical, and rheological properties of PLA remain insufficiently understood. This study presents a comprehensive analysis of PLA plasticized with 0–20 wt% PEG 4000, employing differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA), and rheology. DSC confirmed excellent miscibility and a significant glass transition temperature (Tg) depression exceeding 19 °C for the highest concentration. A complex, non-monotonic evolution of crystallinity was observed, associated with the formation of different crystalline forms (α′ and α). Critically, DMA revealed that the material’s thermo-mechanical response is dominated by its thermal history: while the plasticizing effect is masked in highly crystalline, as-cast films, it is unequivocally demonstrated in quenched amorphous samples. The core finding emerges from a targeted rheological investigation. An anomalous increase in melt viscosity and elasticity at intermediate PEG concentrations (5–15 wt%), observed at 180 °C, was systematically shown to vanish at 190 °C and in amorphous samples. This proves that the anomaly stems from residual crystalline domains (α′ precursors) persisting near the melting point, not from a transient molecular network. These results establish that PEG 4000 is a highly effective PLA plasticizer whose impact is profoundly mediated by processing-induced crystallinity. This work provides essential guidelines for tailoring PLA properties by controlling thermal history to optimize flexibility and processability for advanced applications, specifically in melt-processing for flexible packaging. Full article
(This article belongs to the Section Polymer Physics and Theory)
Show Figures

Figure 1

15 pages, 2093 KB  
Article
Coupling Bayesian Optimization with Generalized Linear Mixed Models for Managing Spatiotemporal Dynamics of Sediment PFAS
by Fatih Evrendilek, Macy Hannan and Gulsun Akdemir Evrendilek
Processes 2026, 14(3), 413; https://doi.org/10.3390/pr14030413 (registering DOI) - 24 Jan 2026
Abstract
Conventional descriptive statistical approaches in per- and polyfluoroalkyl substance (PFAS) environmental forensics often fail under small-sample, ecosystem-level complexity, challenging the optimization of sampling, monitoring, and remediation strategies. This study presents an advance from passive description to adaptive decision-support for complex PFAS contamination. By [...] Read more.
Conventional descriptive statistical approaches in per- and polyfluoroalkyl substance (PFAS) environmental forensics often fail under small-sample, ecosystem-level complexity, challenging the optimization of sampling, monitoring, and remediation strategies. This study presents an advance from passive description to adaptive decision-support for complex PFAS contamination. By integrating Bayesian optimization (BO) via Gaussian Processes (GP) with a Generalized Linear Mixed Model (GLMM), we developed a signal-extraction framework for both understanding and action from limited data (n = 18). The BO/GP model achieved strong predictive performance (GP leave-one-out R2 = 0.807), while the GLMM confirmed significant overdispersion (1.62), indicating a patchy contamination distribution. The integrated analysis suggested a dominant spatiotemporal interaction: a transient, high-intensity perfluorooctane sulfonate (PFOS) plume that peaked at a precise location during early November (the autumn recharge period). Concurrently, the GLMM identified significant intra-sample variance (p = 0.0186), suggesting likely particulate-bound (colloid/sediment) transport, and detected n-ethyl perfluorooctane sulfonamidoacetic acid (NEtFOSAA) as a critical precursor (p < 0.0001), thus providing evidence consistent with the source as historic 3M aqueous film-forming foam. This coupled approach creates a dynamic, iterative decision-support system where signal-based diagnosis informs adaptive optimization, enabling mission-specific actions from targeted remediation to monitoring design. Full article
Show Figures

Figure 1

Back to TopTop