Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (26)

Search Parameters:
Keywords = specific absorption ratio (SAR)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 2875 KiB  
Article
Sustainable THz SWIPT via RIS-Enabled Sensing and Adaptive Power Focusing: Toward Green 6G IoT
by Sunday Enahoro, Sunday Cookey Ekpo, Mfonobong Uko, Fanuel Elias, Rahul Unnikrishnan, Stephen Alabi and Nurudeen Kolawole Olasunkanmi
Sensors 2025, 25(15), 4549; https://doi.org/10.3390/s25154549 - 23 Jul 2025
Viewed by 351
Abstract
Terahertz (THz) communications and simultaneous wireless information and power transfer (SWIPT) hold the potential to energize battery-less Internet-of-Things (IoT) devices while enabling multi-gigabit data transmission. However, severe path loss, blockages, and rectifier nonlinearity significantly hinder both throughput and harvested energy. Additionally, high-power THz [...] Read more.
Terahertz (THz) communications and simultaneous wireless information and power transfer (SWIPT) hold the potential to energize battery-less Internet-of-Things (IoT) devices while enabling multi-gigabit data transmission. However, severe path loss, blockages, and rectifier nonlinearity significantly hinder both throughput and harvested energy. Additionally, high-power THz beams pose safety concerns by potentially exceeding specific absorption rate (SAR) limits. We propose a sensing-adaptive power-focusing (APF) framework in which a reconfigurable intelligent surface (RIS) embeds low-rate THz sensors. Real-time backscatter measurements construct a spatial map used for the joint optimisation of (i) RIS phase configurations, (ii) multi-tone SWIPT waveforms, and (iii) nonlinear power-splitting ratios. A weighted MMSE inner loop maximizes the data rate, while an outer alternating optimisation applies semidefinite relaxation to enforce passive-element constraints and SAR compliance. Full-stack simulations at 0.3 THz with 20 GHz bandwidth and up to 256 RIS elements show that APF (i) improves the rate–energy Pareto frontier by 30–75% over recent adaptive baselines; (ii) achieves a 150% gain in harvested energy and a 440 Mbps peak per-user rate; (iii) reduces energy-efficiency variance by half while maintaining a Jain fairness index of 0.999;; and (iv) caps SAR at 1.6 W/kg, which is 20% below the IEEE C95.1 safety threshold. The algorithm converges in seven iterations and executes within <3 ms on a Cortex-A78 processor, ensuring compliance with real-time 6G control budgets. The proposed architecture supports sustainable THz-powered networks for smart factories, digital-twin logistics, wire-free extended reality (XR), and low-maintenance structural health monitors, combining high-capacity communication, safe wireless power transfer, and carbon-aware operation for future 6G cyber–physical systems. Full article
Show Figures

Figure 1

15 pages, 3428 KiB  
Article
An Enhanced Circularly Polarized Textile Antenna Using a Metasurface and Slot-Patterned Ground for Off-Body Communications
by Yong-Deok Kim, Tu Tuan Le and Tae-Yeoul Yun
Micromachines 2025, 16(7), 799; https://doi.org/10.3390/mi16070799 - 9 Jul 2025
Viewed by 346
Abstract
This paper presents an enhanced circularly polarized (CP) all-textile antenna using a metasurface (MS) and slot-patterned ground (SPG) for 5.8 GHz industry, scientific, and medical (ISM)-band applications in off-body communications. The 3 × 3 MS, capable of converting the incident wave into an [...] Read more.
This paper presents an enhanced circularly polarized (CP) all-textile antenna using a metasurface (MS) and slot-patterned ground (SPG) for 5.8 GHz industry, scientific, and medical (ISM)-band applications in off-body communications. The 3 × 3 MS, capable of converting the incident wave into an orthogonal direction with equal magnitude and a 90° phase difference, converts the linearly polarized (LP) wave, radiated from the fundamental radiator with a corner-truncated slot square-patch configuration, into being CP. The SPG, consisting of periodic slots with two different sizes of corner-truncated slots, redistributes the surface current on the ground plane, enhancing the axial ratio bandwidth (ARBW) of the proposed antenna. The novel combination of MS and SPG not only enables the generation and enhancement of CP characteristics but also significantly improves the impedance bandwidth (IBW), gain, and radiation efficiency by introducing additional surface wave resonances. The proposed antenna is composed of a conductive textile and a felt substrate, offering comfort and flexibility for applications where the antenna is placed in close proximity to the human body. The proposed antenna is simulated under bending in various directions, showing exceptionally similar characteristics to a flat condition. The proposed antenna is fabricated and is then verified by measurements in both free space and a human body environment. The measured IBW is 36.3%, while the ARBW is 18%. The measured gain and radiation efficiency are 6.39 dBic and 64.7%, respectively. The specific absorption rate (SAR) is simulated, and the results satisfy both US and EU safety standards. Full article
(This article belongs to the Special Issue Metasurface-Based Devices and Systems)
Show Figures

Figure 1

22 pages, 5709 KiB  
Systematic Review
Comparative Study of Minimally Invasive Microwave Ablation Applicators
by Nikolaos Karkanis, Theodoros N. F. Kaifas, Theodoros Samaras and George A. Kyriacou
Appl. Sci. 2025, 15(4), 2142; https://doi.org/10.3390/app15042142 - 18 Feb 2025
Viewed by 787
Abstract
This work presents a comparative analysis of microwave ablation applicators, including both antenna-based and open waveguide designs, which are guided and inserted into tumors via catheters. Applicators previously proposed in the literature are evaluated through both electromagnetic and thermal simulations. The objective is [...] Read more.
This work presents a comparative analysis of microwave ablation applicators, including both antenna-based and open waveguide designs, which are guided and inserted into tumors via catheters. Applicators previously proposed in the literature are evaluated through both electromagnetic and thermal simulations. The objective is to assess temperature distribution within the tumor and surrounding healthy tissues; with a focus on identifying patterns of heat diffusion. Although a variety of applicators have been designed, each typically operates at different central frequency or targets specific tumor shapes and tissue types. In this study, we standardize conditions by analyzing multiple applicators’ designs for the same tumor type. The results highlight the shape of the ablation zone and corresponding temperature distribution, offering insights into potential healthy tissue damage. This comparative analysis provides critical information for optimizing microwave ablation applicators for more precise and effective treatment. Full article
Show Figures

Figure 1

36 pages, 55356 KiB  
Article
High-Gain Miniaturized Multi-Band MIMO SSPP LWA for Vehicular Communications
by Tale Saeidi, Sahar Saleh, Nick Timmons, Christopher McDaid, Ahmed Jamal Abdullah Al-Gburi, Faroq Razzaz and Saeid Karamzadeh
Technologies 2025, 13(2), 66; https://doi.org/10.3390/technologies13020066 - 4 Feb 2025
Cited by 1 | Viewed by 1672
Abstract
This paper introduces a novel miniaturized, four-mode, semi-flexible leaky wave Multiple-Input Multiple-Output (MIMO) antenna specifically designed to advance vehicular communication systems. The proposed antenna addresses key challenges in 5G low- and high-frequency bands, including millimeter-wave communication, by integrating innovative features such as a [...] Read more.
This paper introduces a novel miniaturized, four-mode, semi-flexible leaky wave Multiple-Input Multiple-Output (MIMO) antenna specifically designed to advance vehicular communication systems. The proposed antenna addresses key challenges in 5G low- and high-frequency bands, including millimeter-wave communication, by integrating innovative features such as a periodic Spoof Surface Plasmon Polariton Transmission Line (SSPP-TL) and logarithmic-spiral-like semi-circular strip patches parasitically fed via orthogonal ports. These design elements facilitate stable impedance matching and wide impedance bandwidths across operating bands, which is essential for vehicular networks. The hybrid combination of leaky wave and SSPP structures, along with a defected wide-slot ground structure and backside meander lines, enhances radiation characteristics by reducing back and bidirectional radiation. Additionally, a naturalization network incorporating chamfered-edge meander lines minimizes mutual coupling and introduces a fourth radiation mode at 80 GHz. Compact in size (14 × 12 × 0.25 mm3), the antenna achieves high-performance metrics, including S11 < −18.34 dB, dual-polarization, peak directive gains of 11.6 dBi (free space) and 14.6 dBi (on vehicles), isolation > 27 dB, Channel Capacity Loss (CCL) < 3, Envelope Correlation Coefficient (ECC) < 0.001, axial ratio < 2.25, and diversity gain (DG) > 9.85 dB. Extensive testing across various vehicular scenarios confirms the antenna’s robustness for Vehicle-to-Vehicle (V2V), Vehicle-to-Pedestrian (V2P), and Vehicle-to-Infrastructure (V2I) communication. Its exceptional performance ensures seamless connectivity with mobile networks and enhances safety through Specific Absorption Rate (SAR) compliance. This compact, high-performance antenna is a transformative solution for connected and autonomous vehicles, addressing critical challenges in modern automotive communication networks and paving the way for reliable and efficient vehicular communication systems. Full article
(This article belongs to the Collection Electrical Technologies)
Show Figures

Figure 1

18 pages, 8581 KiB  
Article
Scalp-Implanted Ultra-Wideband Circularly Polarized MIMO Antenna for Biotelemetry Systems
by Zhiwei Song, Youwei Shi, Xianren Zheng and Yuchao Wang
Sensors 2024, 24(23), 7522; https://doi.org/10.3390/s24237522 - 25 Nov 2024
Cited by 1 | Viewed by 1136
Abstract
This paper presents an innovative, compact, dual-element, implantable, ultra-wideband, circularly polarized multiple-input multiple-output (MIMO) antenna designed to operate within the 2.45 GHz industrial, scientific, and medical band, and both of its radiating units are circularly polarized antennas with polarization diversity. Specifically, antenna-1 exhibits [...] Read more.
This paper presents an innovative, compact, dual-element, implantable, ultra-wideband, circularly polarized multiple-input multiple-output (MIMO) antenna designed to operate within the 2.45 GHz industrial, scientific, and medical band, and both of its radiating units are circularly polarized antennas with polarization diversity. Specifically, antenna-1 exhibits left-handed circular polarization properties, while antenna-2 demonstrates right-handed circular polarization properties. The slots in the radiating patch and ground plane help the antenna achieve 690 MHz (2.14–2.83 GHz) ultra-wide bandwidth characteristics and circularly polarized characteristics. Additionally, a slit connecting two U-slots on the ground plane allows the antenna to achieve a wide effective circularly polarized axial ratio bandwidth of 400 MHz (2.23–2.63 GHz). The antenna is compact, with dimensions of 0.065 × 0.057 × 0.0042 λ030 represents the free-space wavelength corresponding to the lowest operating frequency). The proposed antenna system’s performance was evaluated with a seven-layer homogeneous human head model, a real human head model, and minced pork. This evaluation revealed that the antenna attained a peak gain of −24.1 dBi and an isolation level of 27.5 dB. Furthermore, the assessment included the antenna’s link margin (LM), key MIMO channel characteristics, and Specific Absorption Rate (SAR) metrics. The results indicate that the antenna performs exceptionally well. Full article
Show Figures

Figure 1

15 pages, 3606 KiB  
Article
Characteristic Mode-Based Dual-Mode Dual-Band of Single-Feed Antenna for On-/Off-Body Communication
by Tong Li, Jinwei Gao, Nouman Rasool, Muhammad Abdul Basit and Chen Chen
Electronics 2024, 13(14), 2733; https://doi.org/10.3390/electronics13142733 - 11 Jul 2024
Cited by 2 | Viewed by 1495
Abstract
A dual-band, dual-mode button antenna is proposed for emerging fifth-generation (5G) networks and Industrial, Scientific, and Medical (ISM) communication systems, as it operates at 3.5 GHz and 5.8 GHz, respectively. At the lower band, a monopole-like omnidirectional radiation pattern is achieved by loading [...] Read more.
A dual-band, dual-mode button antenna is proposed for emerging fifth-generation (5G) networks and Industrial, Scientific, and Medical (ISM) communication systems, as it operates at 3.5 GHz and 5.8 GHz, respectively. At the lower band, a monopole-like omnidirectional radiation pattern is achieved by loading shorting pins on curved strips for on-body communication. At the higher band, broadside circularly polarized radiation is achieved by loading an asymmetric U-shaped slot in the central chamferd patch for off-body communication. By using Characteristic Modal Analysis (CMA), a clear physical insight into the formation of dual polarization is provided. The −10 dB impedance bandwidth ranges from 3.48 to 3.60 GHz and 5.65 to 6.03 GHz, respectively. The 3 dB axial ratio (AR) bandwidth ranges from 5.71 to 5.85 GHz in the high band. Additionally, the antenna achieves a peak gain of 1.2 dBi in on-body mode and 6.9 dBi in off-body mode. The maximum specific absorption rate (SAR) calculated on the body tissues is below the US/EU standard thresholds of 1.6 W/kg and 2 W/kg. The measured results indicate that the antenna experiences only slight impact from human body loading and structural deformations. Given its notable features, the proposed design is well suited for Wireless Body Area Network (WBAN) applications. Full article
(This article belongs to the Special Issue Antennas for Digital Healthcare Detection and Monitoring Applications)
Show Figures

Figure 1

12 pages, 2279 KiB  
Article
Estimation of SAR Average in Rats during 5G NR Chronic Exposure
by Ramdas Makhmanazarov, Ilya Tseplyaev, Sergey Shipilov and Natalya Krivova
Appl. Sci. 2024, 14(1), 208; https://doi.org/10.3390/app14010208 - 26 Dec 2023
Cited by 1 | Viewed by 2091
Abstract
To study physiological reactions in the brain and skin of higher mammals exposed to chronic radiofrequency radiation, specific absorption ratio (SAR) determination is required and time-consuming numerical methods are used. The paper deals with the estimation of the whole-body specific absorption rate (SAR) [...] Read more.
To study physiological reactions in the brain and skin of higher mammals exposed to chronic radiofrequency radiation, specific absorption ratio (SAR) determination is required and time-consuming numerical methods are used. The paper deals with the estimation of the whole-body specific absorption rate (SAR) in rats chronically exposed to external electromagnetic fields, as well as the development of a laboratory setup simulating the operation of a fifth-generation 5G New Radio base station (with a signal bandwidth of 15 MHz and a carrier frequency of 2.4 GHz). The paper presents a modified method for theoretical SAR estimation for one-sided irradiation and distributed absorption. Mean whole-body SAR values were estimated by the proposed method and numerically modeled with the CST Microwave Studio simulation software 2020package using primitive rat models. Dielectric parameters in the numerical simulation were used from the software library. The IEEE/IEC 62704-1 algorithm was used to investigate SAR in numerical simulations. The theoretical estimates and numerical simulations were compared for different SAR distributions and were found to be qualitatively comparable. The differences between approximate theoretical estimates and numerical simulations are 7% and 10% for distributed and non-distributed absorptions, respectively. The proposed method, which takes into account the decreasing power flux density, can be used to estimate the approximate whole-body SAR during chronic electromagnetic field exposure in rats. Full article
(This article belongs to the Special Issue Electromagnetic Fields (EMF) Applications in Medicine)
Show Figures

Figure 1

16 pages, 5336 KiB  
Article
Analysis of Electromagnetic Radiation of Mobile Base Stations Co-located with High-Voltage Transmission Towers
by Zhichao Yang, Dong Dang, Xu Cheng, Juan Mo, Xiaoyu Zhou, Yuqun Fang and Yong Peng
Symmetry 2023, 15(6), 1252; https://doi.org/10.3390/sym15061252 - 13 Jun 2023
Cited by 3 | Viewed by 2705
Abstract
This paper presents the analysis of electromagnetic radiation of mobile base stations co-located with high-voltage transmission towers. Although the layout of power poles and towers is uniform and symmetrical, the electromagnetic field radiated to the outside world is asymmetric. Field measurements were conducted [...] Read more.
This paper presents the analysis of electromagnetic radiation of mobile base stations co-located with high-voltage transmission towers. Although the layout of power poles and towers is uniform and symmetrical, the electromagnetic field radiated to the outside world is asymmetric. Field measurements were conducted in different co-located base station scenarios, and the field strength results in both the vertical and horizontal directions were analyzed in depth. Then, the ray tracing simulation method was used to obtain the electromagnetic field distribution characteristics for the 5G base station co-located high-voltage tower. Finally, the specific absorption rate (SAR) was adopted to evaluate human exposure in co-located base station scenarios, and a physical area-based human exposure assessment method proposed. The obtained results can be useful for inspectors of mobile base stations co-located with high-voltage transmission towers to avoid or reduce the impact of electromagnetic radiation. Full article
Show Figures

Figure 1

17 pages, 4314 KiB  
Article
Analyzing the SAR in Human Head Tissues under Different Exposure Scenarios
by Ahmet Turgut and Begum Korunur Engiz
Appl. Sci. 2023, 13(12), 6971; https://doi.org/10.3390/app13126971 - 9 Jun 2023
Cited by 10 | Viewed by 7278
Abstract
This paper deals with the assessment of induced specific absorption rate (SAR) in various human models under different exposure scenarios, including both laboratory measurements and simulations. Firstly, SAR values were measured in a standardized SAR laboratory using a phantom for two radiofrequency electromagnetic [...] Read more.
This paper deals with the assessment of induced specific absorption rate (SAR) in various human models under different exposure scenarios, including both laboratory measurements and simulations. Firstly, SAR values were measured in a standardized SAR laboratory using a phantom for two radiofrequency electromagnetic field (RF-EMF) sources at 900 MHz and 1800 MHz. These laboratory measurements served as a reference for SAR calculations conducted on a specific anthropomorphic mannequin (SAM) using a computer simulation technology (CST) program, thus enabling the determination of antenna location and excitation signal levels for further evaluation. Subsequently, simulations were carried out with CST to evaluate average SAR for the head and for specific head tissues such as the brain, muscles, and fat. Realistic computational human models were also used alongside SAM in CST to explore the influence of gender, age, and tissue type on SAR. Various power levels representing low, moderate, and high RF-EMF exposure were applied to the human models to compare against basic restrictions and reference levels. The simulation results indicate significantly higher SAR values calculated for 1800 MHz compared with 900 MHz. The ratio of the highest SAR values at 1800 MHz to 900 MHz is approximately 1.70 for a baby, 2.59 for a child, and 2.84 for both adult female and adult male. While the SAR values for the brain, fat, muscle, and head are comparable at 900 MHz for the baby, the brain’s SAR value at 1800 MHz stands out significantly from the other tissues. In contrast with the baby, the difference in SAR values between 900 MHz and 1800 MHz is more pronounced for the child, adult female and adult male. The lowest SAR values at 900 MHz and 1800 MHz were obtained for brain tissue in all human models, while the head has the highest SAR value. The maximum SAR change ratio between the brain and the head is calculated to be 4.44 for the male at 1800 MHz. The results reveal that, although the applied electromagnetic field levels were below reference levels for general public local exposure, some local SAR values exceeded the International Commission of Non-Ionizing Radiation Protection’s basic restriction for the general public at certain power levels, particularly at 1800 MHz. The SAR analysis derived from this study is significant in understanding the impact of wireless technologies on health, establishing safety standards, guiding technology advancement, conducting risk assessments, and increasing public awareness. Full article
(This article belongs to the Special Issue Exposure to Environmental Pollutants and Effects on Human Health)
Show Figures

Figure 1

20 pages, 6904 KiB  
Article
Circularly Polarized Textile Sensors for Microwave-Based Smart Bra Monitoring System
by Dalia N. Elsheakh, Yasmine K. Elgendy, Mennatullah E. Elsayed and Angie R. Eldamak
Micromachines 2023, 14(3), 586; https://doi.org/10.3390/mi14030586 - 28 Feb 2023
Cited by 15 | Viewed by 2978
Abstract
This paper presents a conformal and biodegradable circularly polarized microwave sensor (CPMS) that can be utilized in several medical applications. The proposed textile sensor can be implemented in a Smart Bra system for breast cancer detection (BCD) and a wireless body area network [...] Read more.
This paper presents a conformal and biodegradable circularly polarized microwave sensor (CPMS) that can be utilized in several medical applications. The proposed textile sensor can be implemented in a Smart Bra system for breast cancer detection (BCD) and a wireless body area network (WBAN). The proposed sensor is composed of a wideband circularly polarized (CP) textile-based monopole antenna with an overall size of 33.5 × 33.5 mm2 (0.2 λo × 0.2 λo) and CPW feed line. The radiating element and ground are fabricated using silver conductive fabric and stitched to a cotton substrate of thickness 2 mm. In the proposed design, a slot is etched in the radiating element to extend bandwidth from 1.8 to 8 GHz at |S11| ≤ −10 dB. It realizes a circularly polarized output with AR ≤ 3 dB operation band from 1.8 to 4 GHz and an average gain of 6 dBi. The proposed CPMS’s performance is studied both off-body (air) and on-body in proximity to breast models with and without tumors using near-field microwave imaging. Moreover, the axial ratio is recorded as a feature for a circularly polarized antenna and adds another degree of freedom for cancer detection and data analysis. It assists in detecting tumors in the breast by analyzing the magnitude of the electric field components in vertical and horizontal directions. Finally, the radiation properties are recorded, as well as the specific absorption rate (SAR), to ensure safe operation. The proposed CPMS covers a bandwidth of 1.8–8 GHz with SAR values following the 1 g and 10 g standards. The proposed work demonstrates the feasibility of using textile antennas in wearables, microwave sensing systems, and wireless body area networks (WBANs). Full article
(This article belongs to the Special Issue Microwave Antennas: From Fundamental Research to Applications)
Show Figures

Figure 1

14 pages, 2228 KiB  
Article
Towards the Standardization of Photothermal Measurements of Iron Oxide Nanoparticles in Two Biological Windows
by Daniel Arranz, Rosa Weigand and Patricia de la Presa
Nanomaterials 2023, 13(3), 450; https://doi.org/10.3390/nano13030450 - 22 Jan 2023
Cited by 7 | Viewed by 2130
Abstract
A systematic study on laser-induced heating carried out in two biological windows (800 nm and 1053 nm) for Fe3O4 nanoparticles in water suspension showed evidence of the strong dependence of the specific absorption rate (SAR) on extrinsic parameters such as [...] Read more.
A systematic study on laser-induced heating carried out in two biological windows (800 nm and 1053 nm) for Fe3O4 nanoparticles in water suspension showed evidence of the strong dependence of the specific absorption rate (SAR) on extrinsic parameters such as the vessel volume or laser spot size. The results show that a minimum of 100 μL must be used in order to obtain vessel-size-independent SARs. In addition, at a constant intensity but different laser powers and spot size ratios, the SARs can differ by a three-fold factor, showing that the laser power and irradiated area strongly affect the heating curves for both wavelengths. The infrared molecular absorber IRA 980B was characterized under the same experimental conditions, and the results confirm the universality of the SARs’ dependence on these extrinsic parameters. Based on these results, we propose using solutions of IRA 980B as a standard probe for SAR measurements and employing the ratio SARiron oxide/SARIRA 980B to compare different measurements performed in different laboratories. This measurement standardization allows us to extract more accurate information about the heating performance of different nanoparticles. Full article
Show Figures

Figure 1

15 pages, 4574 KiB  
Article
Triple-Band Square Split-Ring Resonator Metamaterial Absorber Design with High Effective Medium Ratio for 5G Sub-6 GHz Applications
by Mohammad Lutful Hakim, Mohammad Tariqul Islam, Touhidul Alam, Sharul Kamal Abdul Rahim, Badariah Bais, Md. Shabiul Islam and Mohamed S. Soliman
Nanomaterials 2023, 13(2), 222; https://doi.org/10.3390/nano13020222 - 4 Jan 2023
Cited by 26 | Viewed by 4214
Abstract
This article proposes a square split-ring resonator (SSRR) metamaterial absorber (MMA) for sub-6 GHz application. The unit cell of the MMA was designed and fabricated on commercially available low-cost FR-4 substrate material with a dielectric constant o 4.3. The higher effective medium ratio [...] Read more.
This article proposes a square split-ring resonator (SSRR) metamaterial absorber (MMA) for sub-6 GHz application. The unit cell of the MMA was designed and fabricated on commercially available low-cost FR-4 substrate material with a dielectric constant o 4.3. The higher effective medium ratio (EMR) of the designed unit cell shows the compactness of the MMA. The dimension of the unit cell is 9.5 × 9.5 × 1.6 mm3, which consists of two split rings and two arms with outer SSRR. The proposed MMA operates at 2.5 GHz, 4.9 GHz, and 6 GHz frequency bands with a 90% absorption peak and shows a single negative metamaterial property. The E-field, H-field, and surface current are also explored in support of absorption analysis. Moreover, the equivalent circuit model of the proposed MMA is modelled and simulated to validate the resonance behavior of the MMA structure. Finally, the proposed MMA can be used for the specific frequency bands of 5G applications such as signal absorption, crowdsensing, SAR reduction, etc. Full article
(This article belongs to the Special Issue Metamaterial Technology for Wireless Communication Systems)
Show Figures

Figure 1

21 pages, 14300 KiB  
Article
Wearable Polarization Conversion Metasurface MIMO Antenna for Biomedical Applications in 5 GHz WBAN
by Rigeng Wu, Jian Dong and Meng Wang
Biosensors 2023, 13(1), 73; https://doi.org/10.3390/bios13010073 - 1 Jan 2023
Cited by 36 | Viewed by 4059
Abstract
This paper presents a wearable metasurface multiple-input multiple-output (MIMO) antenna for biomedical applications in a 5 GHz wireless body area network (WBAN) with broadband, circular polarization (CP), and high gain. The physical properties of the MIMO antenna element and the principles of polarization [...] Read more.
This paper presents a wearable metasurface multiple-input multiple-output (MIMO) antenna for biomedical applications in a 5 GHz wireless body area network (WBAN) with broadband, circular polarization (CP), and high gain. The physical properties of the MIMO antenna element and the principles of polarization conversion are analyzed in-depth using characteristic mode analysis. For the proposed MIMO antenna, the measured −10 dB impedance bandwidth is 34.87% (4.76–6.77 GHz), and the 3 dB axial ratio bandwidth is 22.94% (4.9–6.17 GHz). By adding an isolation strip, the measured isolation of the two antenna elements is greater than 19.85 dB. The overall size of the MIMO antenna is 1.67λ0 × 0.81λ0 × 0.07λ0 at 5.6 GHz, and the maximum gain is 7.95 dBic. The envelope correlation coefficient (ECC) is less than 0.007, with the maximum diversity gain greater than 9.98 dB, and the channel capacity loss is less than 0.29 b/s/Hz. The specific absorption rate (SAR) of the wearable MIMO antenna is simulated by the human tissue model, which proves that the proposed antenna conforms to international standards and is harmless to humans. The proposed wearable metasurface MIMO antenna has CP, broadband, high gain, low ECC, and low SAR, which can be used in wearable devices for biomedical applications. Full article
(This article belongs to the Special Issue Devices and Wearable Devices toward Innovative Applications)
Show Figures

Figure 1

20 pages, 8796 KiB  
Article
Study on the Effect of Non-Symmetrical Current Distribution Controlled by Capacitor Placement in Radio-Frequency Coils for 7T MRI
by Daniel Hernandez, Taewoo Nam, Yonghwa Jeong, Donghyuk Kim and Kyoung-Nam Kim
Biosensors 2022, 12(10), 867; https://doi.org/10.3390/bios12100867 - 12 Oct 2022
Cited by 3 | Viewed by 2511
Abstract
In this paper, we present a study on the effects of varying the position of a single tuning capacitor in a circular loop coil as a mechanism to control and produce non-symmetric current distribution, such that could be used for magnetic resonance imaging [...] Read more.
In this paper, we present a study on the effects of varying the position of a single tuning capacitor in a circular loop coil as a mechanism to control and produce non-symmetric current distribution, such that could be used for magnetic resonance imaging (MRI) operating at ultra-high frequency (UHF). This study aims to demonstrate that the position of the tuning capacitor of a circular loop could improve the coupling between adjacent coils, used to optimize transmission field uniformity or intensity, improve signal-to-noise ratio (SNR) or specific absorption rate (SAR). A typical loop coil used in MRI consists of symmetrically distributed capacitors along the coil; this design is able to produce uniform current distributions inside the coil. However, in UHF conditions, the magnetic flux density (|B1+|) field produced by this setup may exhibit field distortion, requiring a method of controlling the field distribution and improving the field intensity of the circular loop coil. The control mechanism investigated in this study is based on the position of the tuning capacitor in the circular coil, the capacitor position was varied from 15° to 345°, in steps of 15°. We performed electromagnetic (EM) simulations, fabricated the coils, and performed MRI experiments at 7T, with each of the coils with capacitor position from 15° to 345° to determine the effects on field intensity, coupling between adjacent coils, SAR, and applications for field uniformity optimization. For the case of free space, a coil with capacitor position at 15° showed higher field intensity compared to the reference coil; while an improved decoupling was achieved when a coil had the capacitor placed at 180° and the other coil at 90°; in a similar matter, we discuss the results for SAR, field uniformity and an application with an array coil for the spinal cord. Full article
(This article belongs to the Section Biosensors and Healthcare)
Show Figures

Figure 1

15 pages, 2476 KiB  
Article
Engineering Gold Shelled Nanomagnets for Pre-Setting the Operating Temperature for Magnetic Hyperthermia
by Elis Regina Lima Siqueira, Willie Oliveira Pinheiro, Victor Raul Romero Aquino, Breno Cunha Pinto Coelho, Andris Figueiroa Bakuzis, Ricardo Bentes Azevedo, Marcelo Henrique Sousa and Paulo Cesar Morais
Nanomaterials 2022, 12(16), 2760; https://doi.org/10.3390/nano12162760 - 12 Aug 2022
Cited by 6 | Viewed by 2116
Abstract
This study investigated the fabrication of spherical gold shelled maghemite nanoparticles for use in magnetic hyperthermia (MHT) assays. A maghemite core (14 ± 3 nm) was used to fabricate two samples with different gold thicknesses, which presented gold (g)/maghemite (m) content ratios of [...] Read more.
This study investigated the fabrication of spherical gold shelled maghemite nanoparticles for use in magnetic hyperthermia (MHT) assays. A maghemite core (14 ± 3 nm) was used to fabricate two samples with different gold thicknesses, which presented gold (g)/maghemite (m) content ratios of 0.0376 and 0.0752. The samples were tested in MHT assays (temperature versus time) with varying frequencies (100–650 kHz) and field amplitudes (9–25 mT). The asymptotic temperatures (T) of the aqueous suspensions (40 mg Fe/mL) were found to be in the range of 59–77 °C (naked maghemite), 44–58 °C (g/m=0.0376) and 33–51 °C (g/m=0.0752). The MHT data revealed that T could be successful controlled using the gold thickness and cover the range for cell apoptosis, thereby providing a new strategy for the safe use of MHT in practice. The highest SAR (specific absorption rate) value was achieved (75 kW/kg) using the thinner gold shell layer (334 kHz, 17 mT) and was roughly twenty times bigger than the best SAR value that has been reported for similar structures. Moreover, the time that was required to achieve T could be modeled by changing the thermal conductivity of the shell layer and/or the shape/size of the structure. The MHT assays were pioneeringly modeled using a derived equation that was analytically identical to the Box–Lucas method (which was reported as phenomenological). Full article
Show Figures

Graphical abstract

Back to TopTop