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Abstract: This article proposes a square split-ring resonator (SSRR) metamaterial absorber (MMA)
for sub-6 GHz application. The unit cell of the MMA was designed and fabricated on commercially
available low-cost FR-4 substrate material with a dielectric constant o 4.3. The higher effective
medium ratio (EMR) of the designed unit cell shows the compactness of the MMA. The dimension
of the unit cell is 9.5 × 9.5 × 1.6 mm3, which consists of two split rings and two arms with outer
SSRR. The proposed MMA operates at 2.5 GHz, 4.9 GHz, and 6 GHz frequency bands with a 90%
absorption peak and shows a single negative metamaterial property. The E-field, H-field, and surface
current are also explored in support of absorption analysis. Moreover, the equivalent circuit model
of the proposed MMA is modelled and simulated to validate the resonance behavior of the MMA
structure. Finally, the proposed MMA can be used for the specific frequency bands of 5G applications
such as signal absorption, crowdsensing, SAR reduction, etc.

Keywords: metamaterial absorber; square splits ring resonator; 5G sub-6 GHz applications; effective
medium ratio

1. Introduction

The metamaterial is a sub-wavelength artificial material that exhibits unusual elec-
tromagnetic (EM) behavior, such as negative permittivity or permeability and negative
or positive refractive index [1]. These properties make metamaterial-based microwave
devices extremely popular for various applications such as energy harvesters [2], filters [3],
sensors [4–7], polarization converters [8], invisible clocks [9], antenna design [10–15], SAR
reduction [16], absorber [17], and photonic devices [18–21]. Metamaterial also significantly
enables 5G wireless communication, which will be widely used for producing various
5G devices [22]. Currently, 5G communication is developing rapidly beyond expectation.
Lower frequency bands are widely used in LTE/4G; the higher-frequency mm-wave fre-
quency band is still under experimental exploration. Upcoming 5G communication will be
implemented in sub-6 GHz or 5G mid-band frequency [23]. For 5G (fifth-generation) com-
munication, 2.5/2.6 (B41/N41) GHz, 3.7–3.98 GHz, 4.94–4.99 GHz license, and 5.9–7.1 GHz
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unlicensed frequencies are allotted from the sub- 6 GHz band by the federal communication
commission (FCC). The MIIT of China officially announced the 2.5/2.6 (B41/N41) GHz
3.3–3.6 GHz and 4.8–5 GHz frequency bands. The maximum bandwidth requirement
for operating at this frequency is 40–100 MHz [23–25]. Therefore, there is a need to de-
sign a metamaterial absorber (MMA) to operate precisely at this frequency. However,
most researchers have developed absorbers that either operate in an ultra-width band or
show a random absorption peak [26]. This random absorption will change the device’s
efficiency. In [24,27], thick multi-layer substrate MMAs for ultra-width absorption are
presented, which operate at a 3.2–11 GHz and 2.2–5.83 GHz frequency, respectively. A
broadband sectional resonator base MMA is presented in [28] for a 7.18–8.8 GHz frequency.
In [29], a mandarin line base broadband MMA presented for 1.84–5.96 GHz. The authors
of [29] present an inkjet-printed PET substrate-based broadband MMA (1.0–4.5 GHz).
An origami-based microwave absorber is presented in [30] for reconfigurable absorption
bandwidth from 3.4 to 18 GHz frequency. Besides the triple absorption band, MMAs
are offered in [31–35] with various patch designs. Most MMAs used FR-4 substrate, and
complex patch designs also suffer from larger sizes (electrical wavelength). Several types
of metallic ring configurations have been used to achieve triple absorption bands, such as
two rings (3.36 GHz, 3.95 GHz, and 10.48 GHz) [31]; three concentric metallic resonators
(3.95 GHz, 5.92 GHz, 9.21 GHz) [32]; six distinct concentric rings (1.75 GHz, 2.17 GHz,
2.6 GHz) [33]; triple circular slot ring (2.9 GHz, 4.18 GHz, 9.25 GHz) [34]; circular ring; and
inner Jerusalem cross (4.4 GHz, 6.05 GHz, 13.9 GHz) [35]. Moreover, dual-band MMAs are
presented in [36,37] where the overall bandwidth is very low and does not cover a sub-6
GHz unlicensed spectrum. In [24,27,31–38], the MMA’s EMR value is in the range of 2–9,
where a higher EMR value is significant for designing a more compact structure for MMA.

Despite all these MMAs, there is a need for a new MMA design that will cover a sub-6
GHz license and unlicensed frequency spectra and can be used in upcoming 5G wireless
communications. This research takes the initiative for designing such types of MMAs. This
paper proposes triple-band MMAs, where the MMA can operate at 2.5 GHz, 4.9 GHz, and
6 GHz frequency bands with a narrow high absorption bandwidth.

2. Unit Cell Design and Analysis

Figure 1 displays the proposed three-layer (metal-dielectric-metal) MMA. The copper
has been used to design the MMA patch and ground layer. On the other hand, an FR4
substrate material with a dielectric constant of 4.3 and loss tangent of 0.002 was employed
as dielectric substrate material. The proposed unit cell patch adjusts two complementary
square rings with an additional adjacent arm. Simulation was accomplished utilizing
commercially available computer simulation technology (CST) 2022 microwave studio
software [39]. The default surface-based tetrahedral meshing was chosen to design the
MMA, and the unit cell boundary conditions were applied in the x- and y-directions, and
the transverse electric (TE) mode electromagnetic wave (EM) was applied towards the
negative z-direction. The design parameters are tabulated in Table 1. The absorption
property (A) of the projected MMA is determined by Equation (1) [40,41].

A = 1− S2
11 − S2

21 (1)

where S11 and S21 are the transmission and reflection coefficients, respectively. The conduc-
tivity of the copper ground is σ = 5.8 × 107 S/m resistivity ρ = 1.72 Ω-m and permeability
µ = 1. The skin depth of the EM wave is estimated by δ =

√
ρ/π f µ = 0.0148 mm. There-

fore, the EM wave will be blocked by the 0.035 mm thick ground layer, and the transmission
coefficient (S21) will be zero. Therefore, the absorption equation is

A = 1− S2
11 (2)

where absorption (A) depends on the designed MMA’s reflection coefficient (S11). Figure 2
shows the designed MMA’s absorption and S-parameters curve.
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Figure 1. (a) Perspective view and (b) Simulation setup of proposed MMA.

Table 1. Parameter’s list of proposed MMA.

Parameters Value (mm)

R1 8.90
R2 5.00
G1 1.40
G2 0.53
L1 0.60
L2 2.80
L3 0.60
L4 0.40
W1 0.40
W2 0.50
h 1.60
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Figure 2. S-parameters and absorption property of the proposed MMA.

Evaluation of the unit cell resonator is revealed in Figure 3a to realize the adsorption
behaviors of the projected MMA. The absorption curve of the various design steps is
presented in Figure 3b, and the peaks and maximum absorption of different designs are
listed in Table 2. A single square split ring resonator found a single absorption peak at
2.76 GHz resonant frequency. After adding additional adjacent parts at outer ring splits
in design 2, two peak absorptions are found at the s2.52 and 6.04 GHz frequencies. A
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small square splits ring is used in design 3, which shows a single absorption peak at
4.98 GHz. The final design is prepared by combining design 2 and design 3, which offer
three absorption peaks at 2.5, 4.9, and 6 GHz.
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Figure 3. (a) Design evaluation of projected MMA, (b) absorption plot of design evaluation.

Table 2. Peaks and maximum absorption of different designs.

Design Resonance
Frequency (GHz)

Maximum Absorption
Frequency (GHz) Pack Absorption

Design 1 2.72–2.79 2.76 97%

Design 2 2.50–2.54 2.52 92%
5.94–6.14 6.04 84%

Design 3 4.92–5.04 4.98 93%

Final Design
2.47–2.52 2.5 90%
4.82–4.97 4.9 99%
5.9–6.11 6 97%

3. MMA Design Analysis

An equivalent circuit of the projected absorber is described in Figure 4a [42–44], which
was simulated by the Path-Wave Advanced Design System (ADS) software by Keysight [45].
The outer ring, the additional part attached to it, and the inner split ring represent an RLC
circuit parallelly connected with the coupling capacitance between them. The inductance
L1, L2, and L3 were calculated using Equation (3) from the outer ring, outer ring additional
parts, and inner rings, respectively. In Equation (3), Ls is the inductance, the length of the
strip-line is l, the width of the strip-line is W, and D is the substrate thickness.

Ls = 0.00508l
[

ln
(

2l
W + D

)
+ 0.5 + 0.2235

(
W + D

l

)]
(3)

The associated capacitance C1, C2, and C3 are calculated by Equation (4) for lower,
middle, and upper frequencies, respectively, where f is the resonance frequency.

Cs =
1

4π2 f 2Ls
(4)
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Figure 4. (a) Equivalent circuit diagram of the proposed MMA, L1 = 27 nH, L2 = 13.62 nH, 19.5 nH,
C1 = 0.15 pF, C2 = 0.078 pF, C3 = 0.054 pF, C4 = 40.57 pF, C5 = 0.06 pF, C6 = 0.05 pF, R1 = 28.5 ohm,
R2 = 40.5 ohm, and R3 = 23.5-ohm (b) S11 curve from CST and ADS.

Coupling capacitances C4, C5, and C6 are calculated by Equation (5), where conducting
strip area is A, the distance between the two strips is d, and εr ε0 are the relative permittivity
and free space permittivity.

C = ε0εr
A
d

(5)

The associated resistance in the RLC circuit is determined by tuning for increment
and decrement of the S11 value. The calculated values were also slightly adjusted to
achieve a similar S11 curve to CST. Figure 4b shows the S11 parameter value of CST and
ADS simulation.

4. Results Analysis

The proposed MMA was simulated for the transverse electric (TE) mode of the EM

wave. The H-field and E-field directions of the TE mode are presented in Figure 5, where
→
H

and
→
E represent the H-field and E-field vector directions. There is no electric-field vector at

the TE mode in the wave propagation direction (
→
k ).
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The reflection coefficient (S11) relay on significantly on the metamaterial’s effective
impedance (ZEff), presented in Equation (6), where Zo is the free space impedance.

S11(ω) =
ZE f f − Z0

ZE f f − Z0
(6)
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Effective impedance is as follows:

ZE f f (ω) =
√

µ0µr(ω)/ε0εr(ω) (7)

In Equation (7), µo and ε0 are the free space permeability and permittivity, respectively.
The absorption property is also calculated by Equation (8) [46].

A(ω) =
4Re(Z)

[1 + Re(Z)]2 + [Im(Z)]2
(8)

In Equation (8), the unity absorption will be accomplished for the state, Real|Z| ≈ 1
and Imaginary|Z| ≈ 0 because no reflection will happen. The normalized Impedance of the
MMA is calculated by Equation (9) [47], which is characterized by frequency-dependent
relative permeability and permittivity.

Normalized impedance is as follows

Z = ZE f f (ω)/Z0 =
√

µr(ω)/εr(ω) (9)

Hence, impedance matching depends on the metamaterial property. The reflection
coefficient (S11) and transmission coefficient (S21) are extracted from the CST simulation.
The Nicolson–Ross–Wier method is used for calculating permeability (Equation (10)), and
permittivity (Equation (11)), where wave number is ko = 2π f /c, the velocity of light is c,
the thickness of substrate material is d, and f is the frequency. Permeability and permittivity
are used to calculate the refractive index using Equation (12) [47–49].

Permeability:

εr =
2

jkod

[
(1− S11 − S21)

(1 + S11 + S21)

]
(10)

Permittivity:

µr =
2

jkod

[
(1− S21 + S11)

(1 + S21 − S11)

]
(11)

Refractive index:

nr =
√

µr × εr =
c

jπ f d
×

√√√√ (S21 − 1)2 − S2
11

(S21 + 1)2 − S2
11

(12)

The proposed design’s transmission coefficient (S21) is zero, resulting in Equation (11);
it is easily assumed that the negative permittivity is entirely dependent on S11 because d
and ko are constant values. The square ring, splits, and gap settle the S11 of the proposed
structure; therefore, all these parameters influence the capacitance and inductance of
the resonator and alter the S11 value, which leads to negative permittivity. Figure 6a,b
present the permittivity and permeability plot for TE modes, and the range of negative
values (Real part) for both modes are listed in Table 3. At lower operating frequencies
(2.47–2.52 GHz), the value of permeability is positive, but the permittivity is negative.
Therefore, the lower frequency band has a single-negative (SNG) metamaterial behavior.
The middle band (4.82–4.97 GHz) has negative permeability (4.82–4.95 GHz), and negative
permittivity (4.925–4.99 GHz), from 4.925 to 4.95 GHz, has a double-negative (DNG) value.
The upper band (5.9–6.11 GHz) showed permeability or permittivity negative, alternatively.
Figure 6a,b show that the imaginary part of permeability and permittivity is negative at
the operating frequency band. Both the real and imaginary values of permittivity and
permeability are simultaneously important for the impedance matching of MMA. The
refractive index is also calculated by Equation (12), which is shown in Figure 6c.
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Figure 6. Metamaterial property of proposed absorber in the TE mode, (a) permeability, (b) permit-
tivity, and (c) refractive index plots.

Table 3. Permeability and permittivity (real values) at different frequencies.

Mode Permeability
(Less than Zero)

Permittivity
(Less than Zero)

TE 4.035–4.95, 4.98–5.96, 6.115–7 2–4.03, 4.925–4.99, 5.955–6.13

The metamaterial property at the resonant frequency is shown in Table 4, where the
real value of permeability and permittivity became alternatively negative at the resonance
frequency. The complex value of permittivity and permeability achieved a negative refrac-
tive index at 4.9 and 6 GHz frequency. Figure 7 illustrates the normalized impedance plot.
At 2.5, 4.9, and 6 GHz, resonance frequency. The imaginary, and real values of normalized
impedance are near zero and unity, respectively, obtaining near-unity absorption at reso-
nance peaks. The quality (Q) factor of the designed MMA is considered by Q = fc/∆ f ,
where fc is the center frequency, and ∆f is the full width at half maximum (FWHM). The
designed MMA shows a Q factor of 62.5, 44.54, and 33.33 at 2.5, 4.9, and 6 GHz resonance
frequencies, respectively, where corresponding FWHM are 40, 110, and 180 MHz. The
EMR is an essential factor in compact metamaterial absorber design. The higher EMR
value represents the compactness of MMA. The EMR of the designed MMA is 15, which
is determined by Equation (13) and shows the very compact structure of the intended
MMA [50]. The polarization angle investigation of the MMA is presented in Figure 8a,
which provides unique absorption up to 15◦; with an increment of polarization angle, the
peak absorption is reduced in the middle absorption band [40,51]. The absorption plot for
various oblique incident angles up to 45◦ is plotted in Figure 8b. The lower and middle
bands show an absorption and upper-frequency peaks shifted towards higher frequencies.
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This happens due to the asymmetric structure of the MMA. The variation in polarization
incident angle creates different electric and magnetic field intensities on the MMA patch,
which causes frequency shifting.

EMR =
Wavelength (mm)

Lenght of the Unit cell (mm)
(13)

Table 4. Metamaterial property (real and imaginary values) at the resonant frequency.

EM Mode
Frequency

GHz
Permeability Permittivity Refractive Index

Real Imaginary Real Imaginary Real Imaginary

TE
2.5 185.14 −196.032 −83.43 −148.299 26.10 −212.603
4.9 −58.04 −82.8933 21.67 −89.6942 −17.95 −94.9491
6 16.27 −49.2774 −52.29 −98.8149 −6.38 −75.90
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Figure 7. The normalized impedance of the proposed metamaterial absorber.

Nanomaterials 2023, 13, x FOR PEER REVIEW 9 of 15 
 

 

 

Figure 7. The normalized impedance of the proposed metamaterial absorber. 

 

Figure 8. (a) Polarization incident angle (TE Mode) and (b) oblique incident angle (TE mode) of the 

proposed absorber. 

Absorption behavior can also be understood from a detailed discussion of the mag-

netic field, electric field, and surface current distribution. Figure 9 reveals the TE mode’s 

surface current allocation for three resonance frequencies. At 2.5 GHz resonant frequency, 

the current moves in the anticlockwise direction in the outer ring, where an additional 

bend portion injunction makes an anti-parallel flow. On the other hand, there are two 

types of current distribution in the inner ring. The upper, lower, and left arms (outer side) 

have a clockwise current flow, whereas the upper, lower, and right arms (inner side) have 

an anticlockwise tendency. Overall, this current flow makes an anti-parallel flow, which 

defines permeability as the cause of the magnetic resonance. The current distribution on 

the top layer expresses permittivity, which stands for the electrical part of resonance at 2.5 

GHz resonant frequency. Figure 9 shows the surface current distribution of 4.9 GHz res-

onant frequency, where the current in the inner ring is rotating in a clockwise direction. 

In the outer ring, the left, upper, and lower arms (inner side) have an anticlockwise current 

flow; on the other side, the right, upper and lower arms (outer side) have a clockwise 

rotation. The adjacent part of the outer ring has an anti-parallel current flow with the inner 

and outer ring (right arm). The overall current flow makes an anti-parallel rotation, which 

generates a magnetic part of resonance at a 4.9 GHz resonant frequency. At 6 GHz reso-

nance frequency, the current in the upper, lower, and right arms of the outer ring is rotat-

ing anticlockwise and in the clockwise direction in the left arm. The current in the inner 

ring is flowing anticlockwise. However, the current flow in the left arm of the inner ring 

is clockwise; at 6 GHz resonant frequency, the overall current flow is anti-parallel, as 

demonstrated in Figure 9. 

2 3 4 5 6 7
-6

-4

-2

0

2

4

6

N
o

rm
a

li
z
e

d
 i

m
p

e
d

a
n

c
e

Frequency (GHz)

 Imaginary Part (TE) 

 Real Part (TE)

2 3 4 5 6 7
0

20

40

60

80

100

A
b

s
o

rp
ti

o
n

 %

Frequency (GHz)

 f=0o

 f=15o

 f=30o

 f=45o

2 3 4 5 6 7
0

20

40

60

80

100

A
b

s
o

rp
ti

o
n

%

Frequency (GHz)

 q=0o

 q=15o

 q=30o

 q=45o

(a) (b) 

Figure 8. (a) Polarization incident angle (TE Mode) and (b) oblique incident angle (TE mode) of the
proposed absorber.

Absorption behavior can also be understood from a detailed discussion of the magnetic
field, electric field, and surface current distribution. Figure 9 reveals the TE mode’s surface
current allocation for three resonance frequencies. At 2.5 GHz resonant frequency, the
current moves in the anticlockwise direction in the outer ring, where an additional bend
portion injunction makes an anti-parallel flow. On the other hand, there are two types of
current distribution in the inner ring. The upper, lower, and left arms (outer side) have
a clockwise current flow, whereas the upper, lower, and right arms (inner side) have an
anticlockwise tendency. Overall, this current flow makes an anti-parallel flow, which
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defines permeability as the cause of the magnetic resonance. The current distribution on
the top layer expresses permittivity, which stands for the electrical part of resonance at
2.5 GHz resonant frequency. Figure 9 shows the surface current distribution of 4.9 GHz
resonant frequency, where the current in the inner ring is rotating in a clockwise direction.
In the outer ring, the left, upper, and lower arms (inner side) have an anticlockwise current
flow; on the other side, the right, upper and lower arms (outer side) have a clockwise
rotation. The adjacent part of the outer ring has an anti-parallel current flow with the
inner and outer ring (right arm). The overall current flow makes an anti-parallel rotation,
which generates a magnetic part of resonance at a 4.9 GHz resonant frequency. At 6 GHz
resonance frequency, the current in the upper, lower, and right arms of the outer ring is
rotating anticlockwise and in the clockwise direction in the left arm. The current in the
inner ring is flowing anticlockwise. However, the current flow in the left arm of the inner
ring is clockwise; at 6 GHz resonant frequency, the overall current flow is anti-parallel, as
demonstrated in Figure 9.
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The relation between current allocation, magnetic field and electric field in time-
varying EM waves can be analyzed from Maxwell Equations (14) and (15) [52,53], where
Equation (14) is Faraday’s law of EM induction. Equation (15) represents the modified form
of Ampere’s law ∂D/∂t (displacement current).

∇× E = −∂B
∂t

(14)
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∇× H = J +
∂D
∂t

(15)

The relation of E and H vectors can be understood from Equations (16) and (17),

D(t) = ε(t)× E(t) (16)

B(t) = µ(t)× H(t) (17)

where B = magnetic flux density, D = electric flux density, and µ are the permittivity
and permeability, respectively. Considering time dependence e−jωt and by placing time
derivative jω in Equations (18) and (19), Maxwell’s equation is rewritten as,

∇× E = −jωµH (18)

∇× H = jωεE (19)

Figure 9 shows the e-field and h-field of TE mode at 2.5 GHz, 4.9 GHz, and 6 GHz.
At a 2.5 GHz frequency, the e-field strength is higher in the upper and lower arm and
adjacent parts of the outer ring. At a 4.9 GHz frequency, the e-field, concentered in the
inner ring splits and left arm, is responsible for 99% absorption. The e-field is condensed in
the outer ring left arm upper and lower corner, and the adjacent arm at 6 GHz frequency,
which generates 97% absorption peaks. This type of solid e-field continues in contrast to
the incident e-field, producing a stronger e-field than the incident e-field and producing
electrical resonance [54]. Electric and magnetic resonance need to co-occur to get maximum
absorption. Figure 9 presents the h-field distribution, where at 2.5 GHz resonant frequency,
a strong h-field appears in the outer ring. At 4.9 GHz frequency, the h-field intensity is
higher in the inner ring; on the other side, at 6 GHz resonant frequency, a strong h-field
occurs in the right and left arm of the exterior ring. The e-field and h-field act together to
achieve maximum absorption peak.

5. Measurement

The proposed absorber has been fabricated and measured. Figure 10 illustrates the
measurement setup, where the Vector Network Analyzer (VNA) has been used for mea-
surement. Three A-INFOMW WGs have been used for measuring each absorption band.
The lower frequency band (2.5 GHz), the middle band (4.9 GHz), and the upper band
(6 GHz) were measured using P/N:340WCAS, P/N:187WCAS, and P/N:137WCAS, re-
spectively. The waveguide is connected to the VNA via a coaxial cable. Figure 11 shows
the measurement result of S11 in dB and absorption as percentage, which is a reasonable
adjustment with simulated data and validates the results of the designed absorber.

Table 5 shows an elaborate comparison with the present MMA, where the MMA’s
patch design, size, substrate materials, operation frequency, absorption, and metamaterial
property are recorded. The proposed MMA operates in three specific bands at a sub-6 GHz
frequency, where References [27,38] have ultra-width absorption bands below 6 GHz. Ultra-
width absorption bands are above 6 GHz in [24], which is not suitable for specific frequency
applications. References [36,37] have dual-band absorption at sub-6 GHz frequency. Triple-
band absorption was achieved in [31,32,34,35], but the upper band exceeds the sub-6 GHz
frequency band. The metamaterial property has not been acknowledged except in [31],
where the metamaterial attributes of the designed MMA are discussed in detail. The patch
of the proposed MMA is less complex and smaller in size than other existing MMAs listed
in Table 5, which makes the proposed one more cost-effective than others; furthermore, the
one offered has an acceptable absorption peak compared with existing MMA.
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Figure 11. Simulated and measured results: (a) S11 parameters in dB, (b) absorption %.

Table 5. Comparisons with existing MMAs.

Ref. MMA
Size

Length ×Width ×
Thickness mm3

Substrate
Operating
Frequency

(GHz)
Absorption % Metamaterial

Property EMR

[24] Four C shape
ring 40 × 20 × 6.25 PET-PDMS-

PET 3.2–11 80% N/A 2.34

[27] Split square ring 40 × 40 × 11 PET-PDMS-
PET 2.2–5.83 80% N/A 3.40

[38] Three square
rings 32.4 × 34 × 0.1 PET 1–4.5 90% - 8.82

[31] Two modified
rings 10 × 10 × 1.6 FR-4 3.36, 3.95,

10.48
92.9%, 96.8%,

99.9% SNG 8.92

[32]
Three Concentric

metallic
resonators

10 × 10 × 0.8 FR-4 3.95, 5.92,
9.21

92.2%, 94.5%,
98.7% N/A 7.59

[33] Six distinct
concentric rings 33.5 × 33.5 × 6 Neoprene

rubber 1.75, 2.17, 2.6 96.91%, 96.41%,
90.12% N/A 5.11

[34] Triple circular
slot ring 14 × 14 × 1 FR-4 2.9, 4.18, 9.25 97%, 96.45%,

98.20% N/A 7.38
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Table 5. Cont.

Ref. MMA
Size

Length ×Width ×
Thickness mm3

Substrate
Operating
Frequency

(GHz)
Absorption % Metamaterial

Property EMR

[35]
Circular ring and
inner Jerusalem

cross
13.8 × 13.8 × 1 FR-4 4.4, 6.05, 13.9 97% N/A 4.94

[36] Two C shape
square ring 34 × 34 × 3.2 FR-4 2.45 and 5 90%, 99% N/A 3.60

[37] Split circular
rings 18 × 18 × 1.75 Rogers RO

3003 2.4, 5.1 99% N/A 6.94

proposed Square splits ring
resonator 9.5 × 9.5 × 1.6 FR-4 2.5, 4.9, 6 90%, 99%, 97% SNG 15

The designed MMA can be applicable in the field of 5G sub-6 GHz antenna design,
such as the mutual coupling reduction in MIMO antenna elements, by placing the MMA
horizontally between two antennae [55,56] or vertically [57], RCS reduction, and EMI
shielding [49], SAR reduction [58,59], IoT applications [60], microwave range sensing [61]
etc. The existing sub 6-GHz MMA in [55,56] achieved a single frequency at 5.5 GHz and
5.1 GHz frequency with EMR values of 6.05 and 12, respectively. The fractal-based MMA
in [57] shows absorption peaks at a 3.5 GHz frequency with an EMR of 9.96. Additionally,
the proposed MMA achieved a higher EMR value than [49,58,59,61] and multiple absorp-
tion frequency bands, which make the proposed one preferable over existing MMAs in the
range of sub-6 GHz frequency for 5G applications.

6. Conclusions

This paper presents a single-negative square split-ring resonator metamaterial absorber
for the 5G sub-6 GHz license and the unlicensed frequency spectrum. The proposed MMA
achieved 99% maximum absorption at 4.9 GHz frequency with high-quality factors at
2.5 GHz, 4.9 GHz, and 6 GHz resonance frequency. The EMR value of the designed MMA
represents that the proposed one is more compact than the existing MMAs, which is vital for
the size and cost of the device. The proposed MMA’s TE results and metamaterial property
analysis are presented and discussed in detail. An equivalent circuit model is also presented,
which will help designers in the upcoming generation of efficient absorbers for relative
applications. Finally, a detailed comparison is also made, prioritizing the proposed one over
existing work regarding size, absorption percentage, and specific frequency applications.
Therefore, the proposed MMA can be utilized in mobile phones or other electronic devices
to reduce SAR by absorbing EM waves and isolation reduction between two antennas.
Additionally, it can be used in the energy-harvesting application of microwave frequency.
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