Triple-Band Square Split-Ring Resonator Metamaterial Absorber Design with High Effective Medium Ratio for 5G Sub-6 GHz Applications
Abstract
1. Introduction
2. Unit Cell Design and Analysis
3. MMA Design Analysis
4. Results Analysis
5. Measurement
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jiang, L.; Yi, Y.; Tang, Y.; Li, Z.; Yi, Z.; Liu, L.; Chen, X.; Jian, R.; Wu, P.; Yan, P. A high quality factor ultra-narrow band perfect metamaterial absorber for monolayer molybdenum disulfide. Chin. Phys. B 2021, 31, 038101. [Google Scholar] [CrossRef]
- Fang, S.; Zhou, S.; Yurchenko, D.; Yang, T.; Liao, W.-H. Multistability phenomenon in signal processing, energy harvesting, composite structures, and metamaterials: A review. Mech. Syst. Signal Process. 2022, 166, 108419. [Google Scholar] [CrossRef]
- Hengbo, X. Design, simulation, and measurement of a multiband tunable metamaterial filter. Opt. Mater. 2022, 127, 112253. [Google Scholar] [CrossRef]
- Hakim, M.L.; Alam, T.; Islam, M.T.; Baharuddin, M.H.; Alzamil, A.; Islam, M.S. Quad-Band Polarization-Insensitive Square Split-Ring Resonator (SSRR) with an Inner Jerusalem Cross Metamaterial Absorber for Ku-and K-Band Sensing Applications. Sensors 2022, 22, 4489. [Google Scholar] [CrossRef]
- Sha, W.; Xiao, M.; Huang, M.; Gao, L. Topology-optimized freeform thermal metamaterials for omnidirectionally cloaking sensors. Mater. Today Phys. 2022, 28, 100880. [Google Scholar] [CrossRef]
- Silalahi, H.M.; Chen, Y.-P.; Shih, Y.-H.; Chen, Y.-S.; Lin, X.-Y.; Liu, J.-H.; Huang, C.-Y. Floating terahertz metamaterials with extremely large refractive index sensitivities. Photonics Res. 2021, 9, 1970–1978. [Google Scholar] [CrossRef]
- Wang, W.; Yan, F.; Tan, S.; Zhou, H.; Hou, Y. Ultrasensitive terahertz metamaterial sensor based on vertical split ring resonators. Photonics Res. 2017, 5, 571–577. [Google Scholar] [CrossRef]
- Miao, X.; Xiao, Z.; Cui, Z.; Zheng, T.; Wang, X. Ultra-wideband and Multifunctional Metamaterial Polarization Rotator in Terahertz Band. Plasmonics 2022, 17, 1379–1386. [Google Scholar] [CrossRef]
- Martinez, F.; Maldovan, M. Metamaterials: Optical, Acoustic, Elastic, Heat, Mass, Electric, Magnetic, and Hydrodynamic Cloaking. Mater. Today Phys. 2022, 27, 100819. [Google Scholar] [CrossRef]
- Alibakhshikenari, M.; Ali, E.M.; Soruri, M.; Dalarsson, M.; Naser-Moghadasi, M.; Virdee, B.S.; Stefanovic, C.; Pietrenko-Dabrowska, A.; Koziel, S.; Szczepanski, S. A comprehensive survey on antennas on-chip based on metamaterial, metasurface, and substrate integrated waveguide principles for millimeter-waves and terahertz integrated circuits and systems. IEEE Access 2022, 10, 3668–3692. [Google Scholar] [CrossRef]
- Shahidul Islam, M.; Islam, M.T.; Almutairi, A.F.; Beng, G.K.; Misran, N.; Amin, N. Monitoring of the human body signal through the Internet of Things (IoT) based LoRa wireless network system. Appl. Sci. 2019, 9, 1884. [Google Scholar] [CrossRef]
- Rahman, A.; Islam, M.T.; Singh, M.J.; Kibria, S.; Akhtaruzzaman, M. Electromagnetic performances analysis of an ultra-wideband and flexible material antenna in microwave breast imaging: To implement a wearable medical bra. Sci. Rep. 2016, 6, 38906. [Google Scholar] [CrossRef] [PubMed]
- Nordin, M.A.W.; Islam, M.T.; Misran, N. Design of a compact ultrawideband metamaterial antenna based on the modified split-ring resonator and capacitively loaded strips unit cell. Prog. Electromagn. Res. 2013, 136, 157–173. [Google Scholar] [CrossRef]
- Azim, R.; Islam, M.; Mandeep, J.; Mobashsher, A. A planar circular ring ultra-wideband antenna with dual band-notched characteristics. J. Electromagn. Waves Appl. 2012, 26, 2022–2032. [Google Scholar] [CrossRef]
- Azim, R.; Islam, M.T.; Misran, N. Dual polarized microstrip patch antenna for Ku-band application. Inf. MIDEM-J. Microelectron. Electron. Compon. Mater. 2011, 41, 114–117. [Google Scholar]
- Wang, M.; Yang, Z.; Wu, J.; Bao, J.; Liu, J.; Cai, L.; Dang, T.; Zheng, H.; Li, E. Investigation of SAR reduction using flexible antenna with metamaterial structure in wireless body area network. IEEE Trans. Antennas Propag. 2018, 66, 3076–3086. [Google Scholar] [CrossRef]
- Abdulkarim, Y.I.; Mohanty, A.; Acharya, O.P.; Appasani, B.; Khan, M.S.; Mohapatra, S.; Muhammadsharif, F.F.; Dong, J. A Review on Metamaterial Absorbers: Microwave to Optical. Front. Phys. 2022, 10, 359. [Google Scholar] [CrossRef]
- Pérez-Armenta, C.; Ortega-Moñux, A.; Luque-González, J.M.; Halir, R.; Reyes-Iglesias, P.J.; Schmid, J.; Cheben, P.; Molina-Fernández, Í.; Wangüemert-Pérez, J.G. Polarization-independent multimode interference coupler with anisotropy-engineered bricked metamaterial. Photonics Res. 2022, 10, A57–A65. [Google Scholar] [CrossRef]
- Islam, M.T.; Misran, N. Study of specific absorption rate (SAR) in the human head by metamaterial attachment. IEICE Electron. Express 2010, 7, 240–246. [Google Scholar] [CrossRef]
- Hoque, A.; Tariqul Islam, M.; Almutairi, A.F.; Alam, T.; Jit Singh, M.; Amin, N. A polarization independent quasi-TEM metamaterial absorber for X and Ku band sensing applications. Sensors 2018, 18, 4209. [Google Scholar] [CrossRef]
- Misran, N.; Yusop, S.H.; Islam, M.T.; Ismail, M.Y. Analysis of parameterization substrate thickness and permittivity for concentric split ring square reflectarray element. J. Kejuruter. 2012, 23, 11–16. [Google Scholar]
- Khan, J.; Sehrai, D.A.; Khan, M.A.; Khan, H.A.; Ahmad, S.; Ali, A.; Arif, A.; Memon, A.A.; Khan, S. Design and performance comparison of rotated Y-shaped antenna using different metamaterial surfaces for 5G mobile devices. Comput. Mater. Contin 2019, 2, 409–420. [Google Scholar] [CrossRef]
- Tikhomirov, A.; Omelyanchuk, E.; Semenova, A. Recommended 5G frequency bands evaluation. In Proceedings of the 2018 Systems of Signals Generating and Processing in the Field of on Board Communications, Moscow, Russia, 14–15 March 2018; pp. 1–5. [Google Scholar]
- Wu, Y.; Wang, J.; Lai, S.; Zhu, X.; Gu, W. Transparent and flexible broadband absorber for the sub-6G band of 5G mobile communication. Opt. Mater. Express 2018, 8, 3351–3358. [Google Scholar] [CrossRef]
- Huawei. 5G Spectrum. Available online: https://www.huawei.com/en/public-policy/5g-spectrum (accessed on 1 January 2022).
- Guan, C.; Feng, R.; Ratni, B.; Ding, X.; Yi, J.; Jin, M.; Wu, Q.; Burokur, S.N. Broadband tunable metasurface platform enabled by dynamic phase compensation. Opt. Lett. 2022, 47, 573–576. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Wang, J.; Lai, S.; Zhu, X.; Gu, W. A transparent and flexible microwave absorber covering the whole WiFi waveband. AIP Adv. 2019, 9, 025309. [Google Scholar] [CrossRef]
- Cheng, Y.; Luo, H.; Chen, F. Broadband metamaterial microwave absorber based on asymmetric sectional resonator structures. J. Appl. Phys. 2020, 127, 214902. [Google Scholar] [CrossRef]
- Wang, Q.; Cheng, Y. Compact and low-frequency broadband microwave metamaterial absorber based on meander wire structure loaded resistors. AEU-Int. J. Electron. Commun. 2020, 120, 153198. [Google Scholar] [CrossRef]
- Chen, X.; Li, W.; Wu, Z.; Zhang, Z.; Zou, Y. Origami-based microwave absorber with a reconfigurable bandwidth. Opt. Lett. 2021, 46, 1349–1352. [Google Scholar] [CrossRef]
- Jain, P.; Singh, A.K.; Pandey, J.K.; Bansal, S.; Sardana, N.; Kumar, S.; Gupta, N.; Singh, A.K. An Ultrathin Compact Polarization-Sensitive Triple-band Microwave Metamaterial Absorber. J. Electron. Mater. 2021, 50, 1506–1513. [Google Scholar] [CrossRef]
- Sood, D. Ultrathin Compact Triple-Band Polarization-Insensitive Metamaterial Microwave Absorber. In Mobile Radio Communications and 5G Networks; Springer: Berlin/Heidelberg, Germany, 2021; pp. 607–617. [Google Scholar]
- Kaur, K.P.; Upadhyaya, T.; Palandoken, M.; Gocen, C. Ultrathin dual-layer triple-band flexible microwave metamaterial absorber for energy harvesting applications. Int. J. RF Microw. Comput.-Aided Eng. 2019, 29, e21646. [Google Scholar] [CrossRef]
- Singh, A.K.; Abegaonkar, M.P.; Koul, S.K. A triple band polarization insensitive ultrathin metamaterial absorber for S-C-and X-bands. Prog. Electromagn. Res. M 2019, 77, 187–194. [Google Scholar] [CrossRef]
- Zeng, X.; Gao, M.; Zhang, L.; Wan, G.; Hu, B.J.M.; Letters, O.T. Design of a triple-band metamaterial absorber using equivalent circuit model and interference theory. Microw. Opt. Technol. Lett. 2018, 60, 1676–1681. [Google Scholar] [CrossRef]
- Alkurt, F.Ö.; Bağmancı, M.; Karaaslan, M.; Bakır, M.; Altıntaş, O.; Karadağ, F.; Akgöl, O.; Ünal, E. Design of a dual band metamaterial absorber for Wi-Fi bands. Proc. AIP Conf. Proc. 2018, 1935, 060001. [Google Scholar]
- Tofigh, F.; Amiri, M.; Shariati, N.; Lipman, J.; Abolhasan, M. Polarization-insensitive metamaterial absorber for crowd estimation based on electromagnetic energy measurements. IEEE Trans. Antennas Propag. 2019, 68, 1458–1467. [Google Scholar] [CrossRef]
- Zha, D.; Dong, J.; Cao, Z.; Zhang, Y.; He, F.; Li, R.; He, Y.; Miao, L.; Bie, S.; Jiang, J. A multimode, broadband and all-inkjet-printed absorber using characteristic mode analysis. Opt. Express 2020, 28, 8609–8618. [Google Scholar] [CrossRef] [PubMed]
- D. C. AG. CST Studio Suite. Available online: https://www.3ds.com/products-services/simulia/products/cst-studio-suite/ (accessed on 1 August 2022).
- Hakim, M.L.; Alam, T.; Almutairi, A.F.; Mansor, M.F.; Islam, M.T. Polarization insensitivity characterization of dual-band perfect metamaterial absorber for K band sensing applications. Sci. Rep. 2021, 11, 17829. [Google Scholar] [CrossRef]
- Cheng, Y.; Chen, F.; Luo, H. Plasmonic chiral metasurface absorber based on bilayer fourfold twisted semicircle nanostructure at optical frequency. Nanoscale Res. Lett. 2021, 16, 12. [Google Scholar] [CrossRef]
- Wu, T.; Li, W.; Chen, S.; Guan, J. Wideband frequency tunable metamaterial absorber by splicing multiple tuning ranges. Results Phys. 2021, 20, 103753. [Google Scholar] [CrossRef]
- Agarwal, M.; Meshram, M.K. An approach for circuit modeling of a multiband resonators based planar metamaterial absorber. Microw. Opt. Technol. Lett. 2021, 63, 181–187. [Google Scholar] [CrossRef]
- de Araújo, J.B.O.; Siqueira, G.L.; Kemptner, E.; Weber, M.; Junqueira, C.; Mosso, M.M. An ultrathin and ultrawideband metamaterial absorber and an equivalent-circuit parameter retrieval method. IEEE Trans. Antennas Propag. 2020, 68, 3739–3746. [Google Scholar] [CrossRef]
- PathWave Advance Design System (ADS). Available online: https://www.keysight.com/sg/en/lib/resources/sofware-releases/pathwave-ads-2019.html (accessed on 1 January 2022).
- Qiu, Y.; Zhang, P.; Li, Q.; Zhang, Y.; Li, W. A perfect selective metamaterial absorber for high-temperature solar energy harvesting. Sol. Energy 2021, 230, 1165–1174. [Google Scholar] [CrossRef]
- Hakim, M.L.; Alam, T.; Soliman, M.S.; Sahar, N.M.; Baharuddin, M.H.; Almalki, S.H.; Islam, M.T. Polarization insensitive symmetrical structured double negative (DNG) metamaterial absorber for Ku-band sensing applications. Sci. Rep. 2022, 12, 479. [Google Scholar] [CrossRef] [PubMed]
- Angiulli, G.; Versaci, M. Retrieving the Effective Parameters of an Electromagnetic Metamaterial Using the Nicolson-Ross-Weir Method: An Analytic Continuation Problem Along the Path Determined by Scattering Parameters. IEEE Access 2021, 9, 77511–77525. [Google Scholar] [CrossRef]
- Shukoor, M.A.; Dey, S. Novel dual-mode polarization insensitive wide angular stable circular ring based deca-band absorber for RCS and EMI shielding applications. IEEE Trans. Electromagn. Compat. 2022, 64, 1337–1345. [Google Scholar] [CrossRef]
- Hossain, A.; Islam, M.T.; Misran, N.; Islam, M.S.; Samsuzzaman, M. A mutual coupled spider net-shaped triple split ring resonator based epsilon-negative metamaterials with high effective medium ratio for quad-band microwave applications. Results Phys. 2021, 22, 103902. [Google Scholar] [CrossRef]
- Kalraiya, S.; Chaudhary, R.K.; Gangwar, R.K. Polarization independent triple band ultrathin conformal metamaterial absorber for C-and X-frequency bands. AEU-Int. J. Electron. Commun. 2021, 135, 153752. [Google Scholar] [CrossRef]
- Wartak, M.S.; Tsakmakidis, K.L.; Hess, O. Introduction to metamaterials. Phys. Can. 2011, 67, 30–34. [Google Scholar]
- Hakim, M.L.; Alam, T.; Islam, M.S.; Salaheldeen M., M.; Almalki, S.H.A.; Baharuddin, M.H.; Alsaif, H.; Islam, M.T. Wide-Oblique-Incident-Angle Stable Polarization-Insensitive Ultra-Wideband Metamaterial Perfect Absorber for Visible Optical Wavelength Applications. Materials 2022, 15, 2201. [Google Scholar] [CrossRef]
- Chen, Q.; Bie, S.; Yuan, W.; Xu, Y.; Xu, H.; Jiang, J. Low frequency absorption properties of a thin metamaterial absorber with cross-array on the surface of a magnetic substrate. J. Phys. D Appl. Phys. 2016, 49, 425102. [Google Scholar] [CrossRef]
- Garg, P.; Jain, P. Isolation improvement of MIMO antenna using a novel flower shaped metamaterial absorber at 5.5 GHz WiMAX band. IEEE Trans. Circuits Syst. II Express Briefs 2019, 67, 675–679. [Google Scholar] [CrossRef]
- Zhang, Q.-L.; Jin, Y.-T.; Feng, J.-Q.; Lv, X.; Si, L.-M. Mutual coupling reduction of microstrip antenna array using metamaterial absorber. In Proceedings of the 2015 IEEE MTT-S International Microwave Workshop Series on Advanced Materials and Processes for RF and THz Applications (IMWS-AMP), Suzhou, China, 1–3 July 2015; pp. 1–3. [Google Scholar]
- Merzaki, F.; Besnier, P.; Himdi, M.; Castel, X.; Sergolle, M.; Levavasseur, T.; Caldamone, P. A Compact Double-Sided FSS Absorbing Wall for Decoupling 5G Antenna Arrays. IEEE Trans. Electromagn. Compat. 2021, 64, 303–314. [Google Scholar] [CrossRef]
- Chen, H.; Guo, L.; Li, M.; Destruel, A.; Liu, C.; Weber, E.; Liu, F.; Crozier, S. Metamaterial-inspired radiofrequency (RF) shield with reduced specific absorption rate (SAR) and improved transmit efficiency for UHF MRI. IEEE Trans. Biomed. Eng. 2020, 68, 1178–1189. [Google Scholar] [CrossRef] [PubMed]
- Hannan, S.; Islam, M.T.; Soliman, M.S.; Faruque, M.R.I.; Misran, N.; Islam, M. A co-polarization-insensitive metamaterial absorber for 5G n78 mobile devices at 3.5 GHz to reduce the specific absorption rate. Sci. Rep. 2022, 12, 11193. [Google Scholar] [CrossRef] [PubMed]
- Amiri, M.; Tofigh, F.; Shariati, N.; Lipman, J.; Abolhasan, M. Review on metamaterial perfect absorbers and their applications to IoT. IEEE Internet Things J. 2020, 8, 4105–4131. [Google Scholar] [CrossRef]
- Bakır, M.; Karaaslan, M.; Unal, E.; Akgol, O.; Sabah, C. Microwave metamaterial absorber for sensing applications. Opto-Electron. Rev. 2017, 25, 318–325. [Google Scholar] [CrossRef]
Parameters | Value (mm) |
---|---|
R1 | 8.90 |
R2 | 5.00 |
G1 | 1.40 |
G2 | 0.53 |
L1 | 0.60 |
L2 | 2.80 |
L3 | 0.60 |
L4 | 0.40 |
W1 | 0.40 |
W2 | 0.50 |
h | 1.60 |
Design | Resonance Frequency (GHz) | Maximum Absorption Frequency (GHz) | Pack Absorption |
---|---|---|---|
Design 1 | 2.72–2.79 | 2.76 | 97% |
Design 2 | 2.50–2.54 | 2.52 | 92% |
5.94–6.14 | 6.04 | 84% | |
Design 3 | 4.92–5.04 | 4.98 | 93% |
Final Design | 2.47–2.52 | 2.5 | 90% |
4.82–4.97 | 4.9 | 99% | |
5.9–6.11 | 6 | 97% |
Mode | Permeability (Less than Zero) | Permittivity (Less than Zero) |
---|---|---|
TE | 4.035–4.95, 4.98–5.96, 6.115–7 | 2–4.03, 4.925–4.99, 5.955–6.13 |
EM Mode | Frequency GHz | Permeability | Permittivity | Refractive Index | |||
---|---|---|---|---|---|---|---|
Real | Imaginary | Real | Imaginary | Real | Imaginary | ||
TE | 2.5 | 185.14 | −196.032 | −83.43 | −148.299 | 26.10 | −212.603 |
4.9 | −58.04 | −82.8933 | 21.67 | −89.6942 | −17.95 | −94.9491 | |
6 | 16.27 | −49.2774 | −52.29 | −98.8149 | −6.38 | −75.90 |
Ref. | MMA | Size Length × Width × Thickness mm3 | Substrate | Operating Frequency (GHz) | Absorption % | Metamaterial Property | EMR |
---|---|---|---|---|---|---|---|
[24] | Four C shape ring | 40 × 20 × 6.25 | PET-PDMS-PET | 3.2–11 | 80% | N/A | 2.34 |
[27] | Split square ring | 40 × 40 × 11 | PET-PDMS-PET | 2.2–5.83 | 80% | N/A | 3.40 |
[38] | Three square rings | 32.4 × 34 × 0.1 | PET | 1–4.5 | 90% | - | 8.82 |
[31] | Two modified rings | 10 × 10 × 1.6 | FR-4 | 3.36, 3.95, 10.48 | 92.9%, 96.8%, 99.9% | SNG | 8.92 |
[32] | Three Concentric metallic resonators | 10 × 10 × 0.8 | FR-4 | 3.95, 5.92, 9.21 | 92.2%, 94.5%, 98.7% | N/A | 7.59 |
[33] | Six distinct concentric rings | 33.5 × 33.5 × 6 | Neoprene rubber | 1.75, 2.17, 2.6 | 96.91%, 96.41%, 90.12% | N/A | 5.11 |
[34] | Triple circular slot ring | 14 × 14 × 1 | FR-4 | 2.9, 4.18, 9.25 | 97%, 96.45%, 98.20% | N/A | 7.38 |
[35] | Circular ring and inner Jerusalem cross | 13.8 × 13.8 × 1 | FR-4 | 4.4, 6.05, 13.9 | 97% | N/A | 4.94 |
[36] | Two C shape square ring | 34 × 34 × 3.2 | FR-4 | 2.45 and 5 | 90%, 99% | N/A | 3.60 |
[37] | Split circular rings | 18 × 18 × 1.75 | Rogers RO 3003 | 2.4, 5.1 | 99% | N/A | 6.94 |
proposed | Square splits ring resonator | 9.5 × 9.5 × 1.6 | FR-4 | 2.5, 4.9, 6 | 90%, 99%, 97% | SNG | 15 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hakim, M.L.; Islam, M.T.; Alam, T.; Abdul Rahim, S.K.; Bais, B.; Islam, M.S.; Soliman, M.S. Triple-Band Square Split-Ring Resonator Metamaterial Absorber Design with High Effective Medium Ratio for 5G Sub-6 GHz Applications. Nanomaterials 2023, 13, 222. https://doi.org/10.3390/nano13020222
Hakim ML, Islam MT, Alam T, Abdul Rahim SK, Bais B, Islam MS, Soliman MS. Triple-Band Square Split-Ring Resonator Metamaterial Absorber Design with High Effective Medium Ratio for 5G Sub-6 GHz Applications. Nanomaterials. 2023; 13(2):222. https://doi.org/10.3390/nano13020222
Chicago/Turabian StyleHakim, Mohammad Lutful, Mohammad Tariqul Islam, Touhidul Alam, Sharul Kamal Abdul Rahim, Badariah Bais, Md. Shabiul Islam, and Mohamed S. Soliman. 2023. "Triple-Band Square Split-Ring Resonator Metamaterial Absorber Design with High Effective Medium Ratio for 5G Sub-6 GHz Applications" Nanomaterials 13, no. 2: 222. https://doi.org/10.3390/nano13020222
APA StyleHakim, M. L., Islam, M. T., Alam, T., Abdul Rahim, S. K., Bais, B., Islam, M. S., & Soliman, M. S. (2023). Triple-Band Square Split-Ring Resonator Metamaterial Absorber Design with High Effective Medium Ratio for 5G Sub-6 GHz Applications. Nanomaterials, 13(2), 222. https://doi.org/10.3390/nano13020222