Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (10,032)

Search Parameters:
Keywords = species–environment

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 624 KiB  
Article
Biodiversity Patterns and Community Construction in Subtropical Forests Driven by Species Phylogenetic Environments
by Pengcheng Liu, Jiejie Jiao, Chuping Wu, Weizhong Shao, Xuesong Liu and Liangjin Yao
Plants 2025, 14(15), 2397; https://doi.org/10.3390/plants14152397 (registering DOI) - 2 Aug 2025
Abstract
To explore the characteristics of species diversity and phylogenetic diversity, as well as the dominant processes of community construction, in different forest types (deciduous broad-leaved forest, mixed coniferous and broad-leaved forest, and Chinese fir plantation) in subtropical regions, analyze the specific driving patterns [...] Read more.
To explore the characteristics of species diversity and phylogenetic diversity, as well as the dominant processes of community construction, in different forest types (deciduous broad-leaved forest, mixed coniferous and broad-leaved forest, and Chinese fir plantation) in subtropical regions, analyze the specific driving patterns of soil nutrients and other environmental factors on the formation of forest diversity in different forest types, and clarify the differences in response to environmental heterogeneity between natural forests and plantation forests. Based on 48 fixed monitoring plots of 50 m × 50 m in Shouchang Forest Farm, Jiande City, Zhejiang Province, woody plants with a diameter at breast height ≥5 cm were investigated. Species diversity indices (Margalef index, Shannon–Wiener index, Simpson index, and Pielou index), phylogenetic structure index (PD), and environmental factors were used to analyze the relationship between diversity characteristics and environmental factors through variance analysis, correlation analysis, and generalized linear models. Phylogenetic structural indices (NRI and NTI) were used, combined with a random zero model, to explore the mechanisms of community construction in different forest types. Research has found that (1) the deciduous broad-leaved forest had the highest species diversity (Margalef index of 4.121 ± 1.425) and phylogenetic diversity (PD index of 21.265 ± 7.796), significantly higher than the mixed coniferous and broad-leaved forest and the Chinese fir plantation (p < 0.05); (2) there is a significant positive correlation between species richness and phylogenetic diversity, with the best fit being AIC = 70.5636 and R2 = 0.9419 in broad-leaved forests; however, the contribution of evenness is limited; (3) the specific effects of soil factors on different forest types: available phosphorus (AP) is negatively correlated with the diversity of deciduous broad-leaved forests (p < 0.05), total phosphorus (TP) promotes the diversity of coniferous and broad-leaved mixed forests, while the diversity of Chinese fir plantations is significantly negatively correlated with total nitrogen (TN); (4) the phylogenetic structure of three different forest types shows a divergent pattern in deciduous broad-leaved forests, indicating that competition and exclusion dominate the construction of deciduous broad-leaved forests; the aggregation mode of Chinese fir plantation indicates that environmental filtering dominates the construction of Chinese fir plantation; the mixed coniferous and broad-leaved forest is a transitional model, indicating that the mixed coniferous and broad-leaved forest is influenced by both stochastic processes and ecological niche processes. In different forest types in subtropical regions, the species and phylogenetic diversity of broad-leaved forests is significantly higher than in other forest types. The impact of soil nutrients on the diversity of different forest types varies, and the characteristics of community construction in different forest types are also different. This indicates the importance of protecting the original vegetation and provides a scientific basis for improving the ecological function of artificial forest ecosystems through structural adjustment. The research results have important practical guidance value for sustainable forest management and biodiversity conservation in the region. Full article
25 pages, 6358 KiB  
Article
First Assessment of the Biodiversity of True Slime Molds in Swamp Forest Stands of the Knyszyn Forest (Northeast Poland) Using the Moist Chambers Detection Method
by Tomasz Pawłowicz, Igor Żebrowski, Gabriel Michał Micewicz, Monika Puchlik, Konrad Wilamowski, Krzysztof Sztabkowski and Tomasz Oszako
Forests 2025, 16(8), 1259; https://doi.org/10.3390/f16081259 (registering DOI) - 1 Aug 2025
Abstract
True slime molds (Eumycetozoa) remain under-explored globally, particularly in water-logged forest habitats. Despite evidence suggesting a high biodiversity potential in the Knyszyn Forest of north-eastern Poland, no systematic effort had previously been undertaken there. In the present survey, plant substrates from [...] Read more.
True slime molds (Eumycetozoa) remain under-explored globally, particularly in water-logged forest habitats. Despite evidence suggesting a high biodiversity potential in the Knyszyn Forest of north-eastern Poland, no systematic effort had previously been undertaken there. In the present survey, plant substrates from eight swampy sub-compartments were incubated for over four months, resulting in the detection of fifteen slime mold species. Four of these taxa are newly reported for northern and north-eastern Poland, while several have been recorded only a handful of times in the global literature. These findings underscore how damp, nutrient-rich conditions foster Eumycetozoa and demonstrate the effectiveness of moist-chamber culturing in revealing rare or overlooked taxa. Current evidence shows that, although slime molds may occasionally colonize living plant or fungal tissues, their influence on crop productivity and tree vitality is negligible; they are therefore better regarded as biodiversity indicators than as pathogens or pests. By establishing a replicable framework for studying water-logged environments worldwide, this work highlights the ecological importance of swamp forests in sustaining microbial and slime mold diversity. Full article
Show Figures

Figure 1

20 pages, 3604 KiB  
Article
Analysis of the Differences in Rhizosphere Microbial Communities and Pathogen Adaptability in Chili Root Rot Disease Between Continuous Cropping and Rotation Cropping Systems
by Qiuyue Zhao, Xiaolei Cao, Lu Zhang, Xin Hu, Xiaojian Zeng, Yingming Wei, Dongbin Zhang, Xin Xiao, Hui Xi and Sifeng Zhao
Microorganisms 2025, 13(8), 1806; https://doi.org/10.3390/microorganisms13081806 (registering DOI) - 1 Aug 2025
Abstract
In chili cultivation, obstacles to continuous cropping significantly compromise crop yield and soil health, whereas crop rotation can enhance the microbial environment of the soil and reduce disease incidence. However, its effects on the diversity of rhizosphere soil microbial communities are not clear. [...] Read more.
In chili cultivation, obstacles to continuous cropping significantly compromise crop yield and soil health, whereas crop rotation can enhance the microbial environment of the soil and reduce disease incidence. However, its effects on the diversity of rhizosphere soil microbial communities are not clear. In this study, we analyzed the composition and characteristics of rhizosphere soil microbial communities under chili continuous cropping (CC) and chili–cotton crop rotation (CR) using high-throughput sequencing technology. CR treatment reduced the alpha diversity indices (including Chao1, Observed_species, and Shannon index) of bacterial communities and had less of an effect on fungal community diversity. Principal component analysis (PCA) revealed distinct compositional differences in bacterial and fungal communities between the treatments. Compared with CC, CR treatment has altered the structure of the soil microbial community. In terms of bacterial communities, the relative abundance of Firmicutes increased from 12.89% to 17.97%, while the Proteobacteria increased by 6.8%. At the genus level, CR treatment significantly enriched beneficial genera such as RB41 (8.19%), Lactobacillus (4.56%), and Bacillus (1.50%) (p < 0.05). In contrast, the relative abundances of Alternaria and Fusarium in the fungal community decreased by 6.62% and 5.34%, respectively (p < 0.05). Venn diagrams and linear discriminant effect size analysis (LEfSe) further indicated that CR facilitated the enrichment of beneficial bacteria, such as Bacillus, whereas CC favored enrichment of pathogens, such as Firmicutes. Fusarium solani MG6 and F. oxysporum LG2 are the primary chili root-rot pathogens. Optimal growth occurs at 25 °C, pH 6: after 5 days, MG6 colonies reach 6.42 ± 0.04 cm, and LG2 5.33 ± 0.02 cm, peaking in sporulation (p < 0.05). In addition, there are significant differences in the utilization spectra of carbon and nitrogen sources between the two strains of fungi, suggesting their different ecological adaptability. Integrated analyses revealed that CR enhanced soil health and reduced the root rot incidence by optimizing the structure of soil microbial communities, increasing the proportion of beneficial bacteria, and suppressing pathogens, providing a scientific basis for microbial-based soil management strategies in chili cultivation. Full article
(This article belongs to the Section Microbiomes)
Show Figures

Figure 1

22 pages, 3780 KiB  
Article
Taxonomic Diversity: Importance, Threats, and Status of Diatoms from Lowland Urban Springs (Northeast Poland)
by Wanessa Lewandowicz, Magdalena Grabowska, Agata Z. Wojtal, Katarzyna Puczko and Adam Więcko
Water 2025, 17(15), 2293; https://doi.org/10.3390/w17152293 (registering DOI) - 1 Aug 2025
Abstract
Springs are unique ecosystems found in lowland areas. In urban environments, these springs often have niches that are heavily transformed by human activity. In this study, we identified and compared the taxonomic diversity of diatom communities across various microhabitats—epilithon, epipelon, epipsammon, epibryon, and [...] Read more.
Springs are unique ecosystems found in lowland areas. In urban environments, these springs often have niches that are heavily transformed by human activity. In this study, we identified and compared the taxonomic diversity of diatom communities across various microhabitats—epilithon, epipelon, epipsammon, epibryon, and epixylon—within altered lowland urban springs. Our results revealed differences in diatom communities among the microhabitats, with the highest species richness observed in the epibryon. Notably, the presence of extremely rare species such as Amphora eximia, Caloneis aerophila, and Stauroneis muriella suggest that, even under urban conditions, springs continue to serve a refugial function for diatom diversity. These findings underscore the important role of urban springs in maintaining diatom diversity despite high anthropogenic pressure. We also assessed the ecological status of the springs using the Polish Multimetric Diatom Index (IO), which incorporates indicators of trophy, saprobity, and the abundance of reference species. All studied springs were classified as having very good ecological status. Full article
(This article belongs to the Special Issue Protection and Restoration of Freshwater Ecosystems)
Show Figures

Figure 1

29 pages, 1477 KiB  
Review
Bioinformation and Monitoring Technology for Environmental DNA Analysis: A Review
by Hyo Jik Yoon, Joo Hyeong Seo, Seung Hoon Shin, Mohamed A. A. Abedlhamid and Seung Pil Pack
Biosensors 2025, 15(8), 494; https://doi.org/10.3390/bios15080494 (registering DOI) - 1 Aug 2025
Viewed by 41
Abstract
Environmental DNA (eDNA) analysis has emerged as a transformative tool in environmental monitoring, enabling non-invasive detection of species and microbial communities across diverse ecosystems. This study systematically reviews the role of bioinformation technology in eDNA analysis, focusing on methodologies and applications across air, [...] Read more.
Environmental DNA (eDNA) analysis has emerged as a transformative tool in environmental monitoring, enabling non-invasive detection of species and microbial communities across diverse ecosystems. This study systematically reviews the role of bioinformation technology in eDNA analysis, focusing on methodologies and applications across air, soil, groundwater, sediment, and aquatic environments. Advances in molecular biology, high-throughput sequencing, bioinformatics tools, and field-deployable detection systems have significantly improved eDNA detection sensitivity, allowing for early identification of invasive species, monitoring ecosystem health, and tracking pollutant degradation processes. Airborne eDNA monitoring has demonstrated potential for assessing microbial shifts due to air pollution and tracking pathogen transmission. In terrestrial environments, eDNA facilitates soil and groundwater pollution assessments and enhances understanding of biodegradation processes. In aquatic ecosystems, eDNA serves as a powerful tool for biodiversity assessment, invasive species monitoring, and wastewater-based epidemiology. Despite its growing applicability, challenges remain, including DNA degradation, contamination risks, and standardization of sampling protocols. Future research should focus on integrating eDNA data with remote sensing, machine learning, and ecological modeling to enhance predictive environmental monitoring frameworks. As technological advancements continue, eDNA-based approaches are poised to revolutionize environmental assessment, conservation strategies, and public health surveillance. Full article
(This article belongs to the Section Environmental Biosensors and Biosensing)
Show Figures

Figure 1

15 pages, 6769 KiB  
Article
Pine Cones in Plantations as Refuge and Substrate of Lichens and Bryophytes in the Tropical Andes
by Ángel Benítez
Diversity 2025, 17(8), 548; https://doi.org/10.3390/d17080548 (registering DOI) - 1 Aug 2025
Viewed by 125
Abstract
Deforestation driven by plantations, such as Pinus patula Schiede ex Schltdl. et Cham., is a major cause of biodiversity and functional loss in tropical ecosystems. We assessed the diversity and composition of lichens and bryophytes in four size categories of pine cones, small [...] Read more.
Deforestation driven by plantations, such as Pinus patula Schiede ex Schltdl. et Cham., is a major cause of biodiversity and functional loss in tropical ecosystems. We assessed the diversity and composition of lichens and bryophytes in four size categories of pine cones, small (3–5 cm), medium (5.1–8 cm), large (8.1–10 cm), and very large (10.1–13 cm), with a total of 150 pine cones examined, where the occurrence and cover of lichen and bryophyte species were recorded. Identification keys based on morpho-anatomical features were used to identify lichens and bryophytes. In addition, for lichens, secondary metabolites were tested using spot reactions with potassium hydroxide, commercial bleach, and Lugol’s solution, and by examining the specimens under ultraviolet light. To evaluate the effect of pine cone size on species richness, the Kruskal–Wallis test was conducted, and species composition among cones sizes was compared using multivariate analysis. A total of 48 taxa were recorded on cones, including 41 lichens and 7 bryophytes. A total of 39 species were found on very large cones, 37 species on large cones, 35 species on medium cones, and 24 species on small cones. This is comparable to the diversity found in epiphytic communities of pine plantations. Species composition was influenced by pine cone size, differing from small in comparison with very large ones. The PERMANOVA analyses revealed that lichen and bryophyte composition varied significantly among the pine cone categories, explaining 21% of the variance. Very large cones with specific characteristics harbored different communities than those on small pine cones. The presence of lichen and bryophyte species on the pine cones from managed Ecuadorian P. patula plantations may serve as refugia for the conservation of biodiversity. Pine cones and their scales (which range from 102 to 210 per cone) may facilitate colonization of new areas by dispersal agents such as birds and rodents. The scales often harbor lichen and bryophyte propagules as well as intact thalli, which can be effectively dispersed, when the cones are moved. The prolonged presence of pine cones in the environment further enhances their role as possible dispersal substrates over extended periods. To our knowledge, this is the first study worldwide to examine pine cones as substrates for lichens and bryophytes, providing novel insights into their potential role as microhabitats within P. patula plantations and forest landscapes across both temperate and tropical zones. Full article
(This article belongs to the Section Microbial Diversity and Culture Collections)
Show Figures

Figure 1

17 pages, 6461 KiB  
Article
Southernmost Eurasian Record of Reindeer (Rangifer) in MIS 8 at Galería (Atapuerca, Spain): Evidence of Progressive Southern Expansion of Glacial Fauna Across Climatic Cycles
by Jan van der Made, Ignacio A. Lazagabaster, Paula García-Medrano and Isabel Cáceres
Quaternary 2025, 8(3), 43; https://doi.org/10.3390/quat8030043 (registering DOI) - 1 Aug 2025
Viewed by 41
Abstract
During the Pleistocene, the successive ice ages prompted the southward expansion of the “Mammoth Steppe” ecosystem, a prevalent habitat that supported species adapted to cold environments such as the mammoth, woolly rhinoceros, and reindeer. Previously, the earliest evidence for such cold-adapted species in [...] Read more.
During the Pleistocene, the successive ice ages prompted the southward expansion of the “Mammoth Steppe” ecosystem, a prevalent habitat that supported species adapted to cold environments such as the mammoth, woolly rhinoceros, and reindeer. Previously, the earliest evidence for such cold-adapted species in the Iberian Peninsula dated back to Marine Isotope Stage 6 (MIS 6, ~191–123 ka). This paper reports the discovery of a reindeer (Rangifer) tooth from Unit GIII of the Galería site at the Atapuerca-Trinchera site complex, dated to MIS 8 (~300–243 ka). This find is significant as it represents not only the oldest evidence of glacial fauna in the Iberian Peninsula but also the southernmost occurrence of reindeer in Europe of this age. The presence of Rangifer at this latitude (42°21′ N) during MIS 8 suggests that the glacial conditions affected the Iberian fauna earlier and with greater intensity than previously understood. Over the subsequent climatic cycles, cold-adapted species spread further south, reaching Madrid (40°20′) during the penultimate glacial period and the province of Granada (37°01′) during the last glacial maximum. The coexistence of human fossils and lithic artefacts within Units GII and GIII at Galería indicates that early humans also inhabited these glacial environments at Atapuerca. This study elaborates on the morphological and archaeological significance of the reindeer fossil, emphasizing its role in understanding the biogeographical patterns of glacial fauna and the adaptability of Middle Pleistocene human populations. Full article
Show Figures

Figure 1

23 pages, 3297 KiB  
Article
Phenotypic Changes and Oxidative Stress in THP-1 Macrophages in Response to Vanilloids Following Stimulation with Allergen Act d 1 and LPS
by Milena Zlatanova, Jovana Grubač, Jovana Trbojević-Ivić and Marija Gavrović-Jankulović
Antioxidants 2025, 14(8), 949; https://doi.org/10.3390/antiox14080949 (registering DOI) - 1 Aug 2025
Viewed by 46
Abstract
Activation of macrophages plays a key role in both inflammation and oxidative stress, key features of many chronic diseases. Pro-inflammatory M1-like macrophages, in particular, contribute to pro-oxidative environments and are a frequent focus of immunological research. This research examined the effects of kiwifruit [...] Read more.
Activation of macrophages plays a key role in both inflammation and oxidative stress, key features of many chronic diseases. Pro-inflammatory M1-like macrophages, in particular, contribute to pro-oxidative environments and are a frequent focus of immunological research. This research examined the effects of kiwifruit allergen Act d 1, in comparison to LPS, on THP-1 macrophages in vitro differentiated under optimized conditions, both in the presence and in the absence of selected vanilloids. THP-1 monocyte differentiation was optimized by varying PMA exposure and resting time. Act d 1 induced M1-like phenotypic changes comparable to LPS, including upregulation of CD80, IL-1β and IL-6 secretion, gene expression of iNOS and NF-κB activation, in addition to increased reactive oxygen species (ROS) and catalase activity. Treatment with specific vanilloids mitigated these responses, primarily through reduced oxidative stress and NF-κB activation. Notably, vanillin (VN) was the most effective, also reducing CD80 expression and IL-1β levels. These results suggest that vanilloids can affect pro-inflammatory signaling and oxidative stress in THP-1 macrophages and highlight their potential to alter inflammatory conditions characterized by similar immune responses. Full article
(This article belongs to the Section Natural and Synthetic Antioxidants)
Show Figures

Figure 1

11 pages, 2025 KiB  
Article
Remarkable Stability of Uropodina (Acari: Mesostigmata) Communities in Artificial Microhabitats: A Case Study of Bird Nest Boxes in Bory Tucholskie National Park
by Marta Kulczak, Jacek Wendzonka, Karolina Lubińska, Agnieszka Napierała and Jerzy Błoszyk
Diversity 2025, 17(8), 544; https://doi.org/10.3390/d17080544 (registering DOI) - 1 Aug 2025
Viewed by 109
Abstract
The presence of nest boxes not only increases the reproductive success of many passerine birds in transformed forest habitats, but they also constitute important artificial microhabitats for many groups of invertebrates. One of such groups which have been often found in this microhabitat [...] Read more.
The presence of nest boxes not only increases the reproductive success of many passerine birds in transformed forest habitats, but they also constitute important artificial microhabitats for many groups of invertebrates. One of such groups which have been often found in this microhabitat is saprophagous mites from the suborder Uropodina (Acari: Mesostigmata). The current study was conducted in October 2023 and 2024 in Bory Tucholskie National Park (BTNP) (northern Poland), where material from 137 tit (Paridae) and nuthatch (Sitta europaea) nest boxes was collected. The aim of this study was to analyse the stability of the communities of Uropodina in nest boxes in the park in two seasons and to determine whether the mite community structure within these nest boxes is similar in each year. The second aim was to analyse the abundance of Uropodina in relation to the composition of the nest box bedding material. This study revealed that the community in the scrutinised nest boxes was formed in both seasons by two species of nidicolous Uropodina species, i.e., Leiodinychus orbicularis (C.L. Koch, 1839) and Chiropturopoda nidiphila (Wiśniewski and Hirschmann, 1993), and that the species composition and the community structure were also very similar in both years. This study revealed that Ch. nidiphila dominated in the nest boxes with moss and grass, whereas L. orbicularis was most abundant in the boxes where the bedding was a mixture of mammalian hair and grass. However, no statistically significant differences in the abundance of these two mite species in both cases were revealed. Full article
(This article belongs to the Special Issue Diversity, Ecology, and Conservation of Mites)
Show Figures

Figure 1

20 pages, 1266 KiB  
Systematic Review
A Systematic Review on Contamination of Marine Species by Chromium and Zinc: Effects on Animal Health and Risk to Consumer Health
by Alexandre Mendes Ramos-Filho, Paloma de Almeida Rodrigues, Adriano Teixeira de Oliveira and Carlos Adam Conte-Junior
J. Xenobiot. 2025, 15(4), 121; https://doi.org/10.3390/jox15040121 - 1 Aug 2025
Viewed by 92
Abstract
Potentially toxic elements, such as chromium (Cr) and zinc (Zn), play essential roles in humans and animals. However, the harmful effects of excessive exposure to these elements through food remain unknown. In this sense, this study aimed to evaluate the anthropogenic contamination of [...] Read more.
Potentially toxic elements, such as chromium (Cr) and zinc (Zn), play essential roles in humans and animals. However, the harmful effects of excessive exposure to these elements through food remain unknown. In this sense, this study aimed to evaluate the anthropogenic contamination of chromium and zinc in aquatic biota and seafood consumers. Based on the PRISMA protocol, 67 articles were selected for this systematic review. The main results point to a wide distribution of these elements, which have familiar emission sources in the aquatic environment, especially in highly industrialized regions. Significant concentrations of both have been reported in different fish species, which sometimes represent a non-carcinogenic risk to consumer health and a carcinogenic risk related to Cr exposure. New studies should be encouraged to fill gaps, such as the characterization of the toxicity of these essential elements through fish consumption, determination of limit concentrations updated by international regulatory institutions, especially for zinc, studies on the influence of abiotic factors on the toxicity and bioavailability of elements in the environment, and those that evaluate the bioaccessibility of these elements in a simulated digestion system when in high concentrations. Full article
Show Figures

Figure 1

26 pages, 1790 KiB  
Article
A Hybrid Deep Learning Model for Aromatic and Medicinal Plant Species Classification Using a Curated Leaf Image Dataset
by Shareena E. M., D. Abraham Chandy, Shemi P. M. and Alwin Poulose
AgriEngineering 2025, 7(8), 243; https://doi.org/10.3390/agriengineering7080243 - 1 Aug 2025
Viewed by 84
Abstract
In the era of smart agriculture, accurate identification of plant species is critical for effective crop management, biodiversity monitoring, and the sustainable use of medicinal resources. However, existing deep learning approaches often underperform when applied to fine-grained plant classification tasks due to the [...] Read more.
In the era of smart agriculture, accurate identification of plant species is critical for effective crop management, biodiversity monitoring, and the sustainable use of medicinal resources. However, existing deep learning approaches often underperform when applied to fine-grained plant classification tasks due to the lack of domain-specific, high-quality datasets and the limited representational capacity of traditional architectures. This study addresses these challenges by introducing a novel, well-curated leaf image dataset consisting of 39 classes of medicinal and aromatic plants collected from the Aromatic and Medicinal Plant Research Station in Odakkali, Kerala, India. To overcome performance bottlenecks observed with a baseline Convolutional Neural Network (CNN) that achieved only 44.94% accuracy, we progressively enhanced model performance through a series of architectural innovations. These included the use of a pre-trained VGG16 network, data augmentation techniques, and fine-tuning of deeper convolutional layers, followed by the integration of Squeeze-and-Excitation (SE) attention blocks. Ultimately, we propose a hybrid deep learning architecture that combines VGG16 with Batch Normalization, Gated Recurrent Units (GRUs), Transformer modules, and Dilated Convolutions. This final model achieved a peak validation accuracy of 95.24%, significantly outperforming several baseline models, such as custom CNN (44.94%), VGG-19 (59.49%), VGG-16 before augmentation (71.52%), Xception (85.44%), Inception v3 (87.97%), VGG-16 after data augumentation (89.24%), VGG-16 after fine-tuning (90.51%), MobileNetV2 (93.67), and VGG16 with SE block (94.94%). These results demonstrate superior capability in capturing both local textures and global morphological features. The proposed solution not only advances the state of the art in plant classification but also contributes a valuable dataset to the research community. Its real-world applicability spans field-based plant identification, biodiversity conservation, and precision agriculture, offering a scalable tool for automated plant recognition in complex ecological and agricultural environments. Full article
(This article belongs to the Special Issue Implementation of Artificial Intelligence in Agriculture)
Show Figures

Figure 1

16 pages, 2207 KiB  
Article
Mitogenomic Insights into Adaptive Evolution of African Ground Squirrels in Arid Environments
by Yamin Xing, Xibao Wang, Yao Chen, Yongquan Shang, Haotian Cai, Liangkai Wang and Xiaoyang Wu
Diversity 2025, 17(8), 538; https://doi.org/10.3390/d17080538 (registering DOI) - 31 Jul 2025
Viewed by 163
Abstract
African ground squirrels (Xerus spp.), the inhabitants of African arid zones, face extreme heat and water scarcity driving selection for metabolic optimization. We assembled and annotated the first mitogenomes of Xerus inauris and Xerus rutilus (16,525–16,517 bp), revealing conserved vertebrate architecture with [...] Read more.
African ground squirrels (Xerus spp.), the inhabitants of African arid zones, face extreme heat and water scarcity driving selection for metabolic optimization. We assembled and annotated the first mitogenomes of Xerus inauris and Xerus rutilus (16,525–16,517 bp), revealing conserved vertebrate architecture with genus-specific traits. Key features include Xerus rutilus’s elongated ATP6 (680 vs. 605 bp), truncated ATP8ATP6 spacers (4 vs. 43 bp), and tRNA-Pro control regions with 78.1–78.3% AT content. Their nucleotide composition diverged from that of related sciurids, marked by reduced T (25.78–26.9%) and extreme GC skew (−0.361 to −0.376). Codon usage showed strong Arg-CGA bias (RSCU = 3.78–3.88) and species-specific elevations in Xerus rutilus’s UGC-Cys (RSCU = 1.83 vs. 1.17). Phylogenetics positioned Xerus as sister to Ratufa bicolor (Bayesian PP = 0.928; ML = 1.0), aligning with African biogeographic isolation. Critically, we identified significant signatures of positive selection in key mitochondrial genes linked to arid adaptation. Positive selection signals in ND4 (ω = 1.8 × background), ND1, and ATP6 (p < 0.0033) correspond to enhanced proton gradient efficiency and ATP synthesis–molecular adaptations likely crucial for optimizing energy metabolism under chronic water scarcity and thermoregulatory stress in desert environments. Distinct evolutionary rates were observed across mitochondrial genes and complexes: Genes encoding Complex I subunits (ND2, ND6) and Complex III (Cytb) exhibited accelerated evolution in arid-adapted lineages, while genes encoding Complex IV subunits (COXI) and Complex V (ATP8) remained highly conserved. These findings resolve the Xerus mitogenomic diversity, demonstrating adaptive plasticity balancing arid-energy optimization and historical diversification while filling critical genomic gaps for this xeric-adapted lineage. Full article
(This article belongs to the Section Animal Diversity)
Show Figures

Figure 1

11 pages, 415 KiB  
Article
A Nosocomial Outbreak of Burkholderia cepacia complex Linked to Contaminated Intravenous Medications in a Tertiary Care Hospital
by Hanife Nur Karakoc Parlayan, Firdevs Aksoy, Masite Nur Ozdemir, Esra Ozkaya and Gurdal Yilmaz
Antibiotics 2025, 14(8), 774; https://doi.org/10.3390/antibiotics14080774 (registering DOI) - 31 Jul 2025
Viewed by 166
Abstract
Objectives: Burkholderia cepacia complex (Bcc), a Gram-negative organism, is a well-recognized cause of hospital outbreaks, often linked to a contaminated shared source, such as multidose medications. In this study, we report an outbreak of Bcc infections in a tertiary care hospital, associated with [...] Read more.
Objectives: Burkholderia cepacia complex (Bcc), a Gram-negative organism, is a well-recognized cause of hospital outbreaks, often linked to a contaminated shared source, such as multidose medications. In this study, we report an outbreak of Bcc infections in a tertiary care hospital, associated with the intrinsic contamination of a prepared solution used in interventional radiology (IR) procedures. Additionally, we provide a detailed explanation of the interventions implemented to control and interrupt the outbreak. Methods: Records from the infection control committee from 1 January 2023 to 31 October 2024 were screened to identify cases with Bcc growth in cultured blood, urine, or respiratory samples. Clinical and laboratory data were collected in March 2025. Bacterial identification was performed using conventional methods and MALDI-TOF (Bruker Daltonics, Bremen, Germany). Controls were matched to cases by ward, date of initial growth, and duration of hospitalization. Demographic and clinical data of these patients were systematically collected and analyzed. Microbiological cultures were obtained from environmental objects of concern and certain medications. Results: A total of 82 Burkholderia species were identified. We enrolled 77 cases and 77 matched controls. The source of contamination was identified in ready-to-use intravenous medications (remifentanil and magnesium preparations) in the IR department. These preparations were compounded in advance by the team and were used repeatedly. Although the outbreak originated from contaminated IV medications used in IR, secondary transmission likely affected 28 non-IR patients via fomites, shared environments, and possible lapses in isolation precautions. The mortality rate among the cases was 16.9%. Infection with Bcc was associated with prolonged intensive care unit stays (p = 0.018) and an extended overall hospitalization duration (p < 0.001); however, it was not associated with increased mortality. The enforcement of contact precautions and comprehensive environmental decontamination successfully reduced the incidence of the Bcc outbreak. No pathogens were detected in cultures obtained after the disinfection. Conclusions: The hospital transmission of Bcc is likely driven by cross-contamination, invasive medical procedures, and the administration of contaminated medications. Implementing stringent infection control measures such as staff retraining, updated policies on medication use, enhanced environmental decontamination, and strict adherence to isolation precautions has proven effective in curbing the spread of virulent and transmissible Bcc. Full article
(This article belongs to the Section Antibiotics Use and Antimicrobial Stewardship)
Show Figures

Figure 1

19 pages, 4196 KiB  
Article
Corridors of Suitable Distribution of Betula platyphylla Sukaczev Forest in China Under Climate Warming
by Bingying Xie, Huayong Zhang, Xiande Ji, Bingjian Zhao, Yanan Wei, Yijie Peng and Zhao Liu
Sustainability 2025, 17(15), 6937; https://doi.org/10.3390/su17156937 (registering DOI) - 30 Jul 2025
Viewed by 143
Abstract
Betula. platyphylla Sukaczev (B. platyphylla) forest is an important montane forest type. Global warming has impacted its distribution. However, how it affects suitable distribution across ecoregions and corresponding biodiversity protection measures remains unclear. This study used the Maxent model to analyze [...] Read more.
Betula. platyphylla Sukaczev (B. platyphylla) forest is an important montane forest type. Global warming has impacted its distribution. However, how it affects suitable distribution across ecoregions and corresponding biodiversity protection measures remains unclear. This study used the Maxent model to analyze the suitable distribution and driving variables of B. platyphylla forest in China and its four ecoregions. The minimum cumulative resistance (MCR) model was applied to construct corridors nationwide. Results show that B. platyphylla forest in China is currently mainly distributed in the four ecoregions; specifically, in Gansu and Shaanxi Province in Northwest China, Heilongjiang Province in Northeast China, Sichuan Province in Southwest China, and Hebei Province and Inner Mongolia Autonomous Region in North China. Precipitation and temperature are the main factors affecting suitable distribution. With global warming, the suitable areas in China including the North, Northwest China ecoregions are projected to expand, while Northeast and Southwest China ecoregions will decline. Based on the suitable areas, we considered 45 corridors in China, spanning the four ecoregions. Our results help understand dynamic changes in the distribution of B. platyphylla forest in China under global warming, providing scientific guidance for montane forests’ sustainable development. Full article
(This article belongs to the Section Sustainable Forestry)
Show Figures

Figure 1

14 pages, 2284 KiB  
Article
Rhizobacteria’s Effects on the Growth and Competitiveness of Solidago canadensis Under Nutrient Limitation
by Zhi-Yun Huang, Ying Li, Hu-Anhe Xiong, Misbah Naz, Meng-Ting Yan, Rui-Ke Zhang, Jun-Zhen Liu, Xi-Tong Ren, Guang-Qian Ren, Zhi-Cong Dai and Dao-Lin Du
Agriculture 2025, 15(15), 1646; https://doi.org/10.3390/agriculture15151646 - 30 Jul 2025
Viewed by 133
Abstract
The role of rhizosphere bacteria in facilitating plant invasion is increasingly acknowledged, yet the influence of specific microbial functional traits remains insufficiently understood. This study addresses this gap by isolating two bacterial strains, Bacillus sp. ScRB44 and Pseudomonas sp. ScRB22, from the rhizosphere [...] Read more.
The role of rhizosphere bacteria in facilitating plant invasion is increasingly acknowledged, yet the influence of specific microbial functional traits remains insufficiently understood. This study addresses this gap by isolating two bacterial strains, Bacillus sp. ScRB44 and Pseudomonas sp. ScRB22, from the rhizosphere of the invasive weed Solidago canadensis. We assessed their nitrogen utilization capacity and indoleacetic acid (IAA) production capabilities to evaluate their ecological functions. Our three-stage experimental design encompassed strain promotion, nutrient stress, and competition phases. Bacillus sp. ScRB44 demonstrated robust IAA production and significantly improved the nitrogen utilization efficiency, significantly enhancing S. canadensis growth, especially under nutrient-poor conditions, and promoting a shift in biomass allocation toward the roots, thereby conferring a competitive advantage over native species. Conversely, Pseudomonas sp. ScRB22 exhibited limited functional activity and a negligible impact on plant performance. These findings underscore that the ecological impact of rhizosphere bacteria on invasive weeds is closely linked to their specific growth-promoting functions. By enhancing stress adaptation and optimizing resource allocation, certain microorganisms may facilitate the establishment of invasive weeds in adverse environments. This study highlights the significance of microbial functional traits in invasion ecology and suggests novel approaches for microbiome-based invasive weed management, with potential applications in agricultural soil health improvement and ecological restoration. Full article
(This article belongs to the Topic Microbe-Induced Abiotic Stress Alleviation in Plants)
Show Figures

Figure 1

Back to TopTop