Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (497)

Search Parameters:
Keywords = special concrete

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 17158 KiB  
Article
Deep Learning Strategy for UAV-Based Multi-Class Damage Detection on Railway Bridges Using U-Net with Different Loss Functions
by Yong-Hyoun Na and Doo-Kie Kim
Appl. Sci. 2025, 15(15), 8719; https://doi.org/10.3390/app15158719 - 7 Aug 2025
Abstract
Periodic visual inspections are currently conducted to maintain the condition of railway bridges. These inspections rely on direct visual assessments by human inspectors, often requiring specialized equipment such as aerial ladders. However, this method is not only time-consuming and costly but also involves [...] Read more.
Periodic visual inspections are currently conducted to maintain the condition of railway bridges. These inspections rely on direct visual assessments by human inspectors, often requiring specialized equipment such as aerial ladders. However, this method is not only time-consuming and costly but also involves significant safety risks. Therefore, there is a growing need for a more efficient and reliable alternative to traditional visual inspections of railway bridges. In this study, we evaluated and compared the performance of damage detection using U-Net-based deep learning models on images captured by unmanned aerial vehicles (UAVs). The target damage types include cracks, concrete spalling and delamination, water leakage, exposed reinforcement, and paint peeling. To enable multi-class segmentation, the U-Net model was trained using three different loss functions: Cross-Entropy Loss, Focal Loss, and Intersection over Union (IoU) Loss. We compared these methods to determine their ability to distinguish actual structural damage from environmental factors and surface contamination, particularly under real-world site conditions. The results showed that the U-Net model trained with IoU Loss outperformed the others in terms of detection accuracy. When applied to field inspection scenarios, this approach demonstrates strong potential for objective and precise damage detection. Furthermore, the use of UAVs in the inspection process is expected to significantly reduce both time and cost in railway infrastructure maintenance. Future research will focus on extending the detection capabilities to additional damage types such as efflorescence and corrosion, aiming to ultimately replace manual visual inspections of railway bridge surfaces with deep-learning-based methods. Full article
Show Figures

Figure 1

27 pages, 28656 KiB  
Article
Experimental Study and FEM Analysis on the Strengthening of Masonry Brick Walls Using Expanded Steel Plates and Shotcrete with and Without Glass Fiber Reinforcement
by Zeynep Yaman, Alper Cumhur, Elif Ağcakoca, Muhammet Zeki Özyurt, Muhammed Maraşlı, Mohammad Saber Sadid, Abdulsalam Akrami and Azizullah Rasuly
Buildings 2025, 15(15), 2781; https://doi.org/10.3390/buildings15152781 - 6 Aug 2025
Abstract
In this study, an effective strengthening method was investigated to improve the seismic performance of masonry brick walls. The strengthening method comprised the use of shotcrete, which was applied in both glass fiber-reinforced and unreinforced forms for steel plates and tie rods. Thirteen [...] Read more.
In this study, an effective strengthening method was investigated to improve the seismic performance of masonry brick walls. The strengthening method comprised the use of shotcrete, which was applied in both glass fiber-reinforced and unreinforced forms for steel plates and tie rods. Thirteen wall specimens constructed with vertical perforated masonry block bricks were tested under diagonal compression in accordance with ASTM E519 (2010). Reinforcement plates with different thicknesses (1.5 mm, 2 mm, and 3 mm) were anchored using 6 mm diameter tie rods. A specially designed steel frame and an experimental loading program with controlled deformation increments were employed to simulate the effects of reinforced concrete beam frame system on walls under the effect of diagonal loads caused by seismic loads. In addition, numerical simulations were conducted using three-dimensional finite element models in Abaqus Explicit software to validate the experimental results. The findings demonstrated that increasing the number of tie rods enhanced the shear strength and overall behavior of the walls. Steel plates effectively absorbed tensile stresses and limited crack propagation, while the fiber reinforcement in the shotcrete further improved wall strength and ductility. Overall, the proposed strengthening techniques provided significant improvements in the seismic resistance and energy absorption capacity of masonry walls, offering practical and reliable solutions to enhance the safety and durability of existing masonry structures. Full article
(This article belongs to the Special Issue Advanced Research on Concrete Materials in Construction)
Show Figures

Figure 1

18 pages, 1176 KiB  
Article
Service Difficulties, Internal Resolution Mechanisms, and the Needs of Social Services in Hungary—The Baseline of a Development Problem Map
by Zoltán Csizmadia, Krisztina Kóbor, Péter Tóth and Tamara Zsuzsanna Böcz
Soc. Sci. 2025, 14(8), 473; https://doi.org/10.3390/socsci14080473 - 29 Jul 2025
Viewed by 156
Abstract
This study focuses on the current service/care difficulties and challenges that social institutions in Hungary are facing during their daily operations; how they can react to them utilizing their internal resources, mechanisms, and capacities; and what concrete, tangible needs and demands are emerging [...] Read more.
This study focuses on the current service/care difficulties and challenges that social institutions in Hungary are facing during their daily operations; how they can react to them utilizing their internal resources, mechanisms, and capacities; and what concrete, tangible needs and demands are emerging in terms of methodological professional support, potential forms, interventions, and direction for professional development. A total of 24 general and 55 specific service and operational problems were identified and assessed in eight different service areas (family and child welfare services, family and child welfare centers, respite care for children, care for the homeless, addiction intervention, care for people with disabilities, care for psychiatric patients, specialized care for the elderly, and basic services for the elderly). The empirical base of the study uses a database of 201 online questionnaires completed by a professional target group working for social service providers in two counties (Győr-Moson-Sopron and Veszprém), representing 166 social service providers. The questionnaires were completed between November and December of 2022. The findings will be used to develop a professional support and development problem map. Social institutions face complex and serious service/care difficulties and challenges in their daily operations. Three distinctive basic problems clearly stand out in both severity and significance from the complex set of factors assessed. The biggest problem in the social care system is clearly the complex challenge of low wages, followed by the administrative burdens in the ranking of operational difficulties, and the third key factor was the psycho-mental workload of staff. Full article
(This article belongs to the Special Issue Creating Resilient Societies in a Changing World)
Show Figures

Figure 1

21 pages, 4399 KiB  
Article
Integrating Digital Twin and BIM for Special-Length-Based Rebar Layout Optimization in Reinforced Concrete Construction
by Daniel Darma Widjaja, Jeeyoung Lim and Sunkuk Kim
Buildings 2025, 15(15), 2617; https://doi.org/10.3390/buildings15152617 - 23 Jul 2025
Viewed by 341
Abstract
The integration of Building Information Modeling (BIM) and Digital Twin (DT) technologies offers new opportunities for enhancing reinforcement design and on-site constructability. This study addresses a current gap in DT applications by introducing an intelligent framework that simultaneously automates rebar layout generation and [...] Read more.
The integration of Building Information Modeling (BIM) and Digital Twin (DT) technologies offers new opportunities for enhancing reinforcement design and on-site constructability. This study addresses a current gap in DT applications by introducing an intelligent framework that simultaneously automates rebar layout generation and reduces rebar cutting waste (RCW), two challenges often overlooked during the construction execution phase. The system employs heuristic algorithms to generate constructability-aware rebar configurations and leverages Industry Foundation Classes (IFC) schema-based data models for interoperability. The framework is implemented using Autodesk Revit and Dynamo for rebar modeling and layout generation, Microsoft Project for schedule integration, and Autodesk Navisworks for clash detection. Real-time scheduling synchronization is achieved through IFC schema-based BIM models linked to construction timelines, while embedded clash detection and constructability feedback loops allow for iterative refinement and improved installation feasibility. A case study on a high-rise commercial building demonstrates substantial material savings, improved constructability, and reduced layout time, validating the practical advantages of BIM–DT integration for RC construction. Full article
(This article belongs to the Topic Sustainable Building Development and Promotion)
Show Figures

Graphical abstract

24 pages, 1295 KiB  
Article
A Performance-Based Ranking Approach for Optimizing NDT Selection for Post-Tensioned Bridge Assessment
by Carlo Pettorruso, Dalila Rossi and Virginio Quaglini
Infrastructures 2025, 10(8), 194; https://doi.org/10.3390/infrastructures10080194 - 23 Jul 2025
Viewed by 265
Abstract
Post-tensioned (PT) reinforced concrete bridges are particularly vulnerable structures, as the deterioration of internal tendons is often difficult to detect using conventional inspection methods or visual assessments. This paper introduces a practical framework for ranking non-destructive testing (NDT) techniques employed to assess PT [...] Read more.
Post-tensioned (PT) reinforced concrete bridges are particularly vulnerable structures, as the deterioration of internal tendons is often difficult to detect using conventional inspection methods or visual assessments. This paper introduces a practical framework for ranking non-destructive testing (NDT) techniques employed to assess PT systems. The ranking is based on four performance categories: measurement accuracy, ease of use, cost, and impact of disruption to bridge operations on traffic. For each NDT technique, a score is assigned for each evaluation category, and the final ranking is determined using the weighted sum model (WSM). This approach enables the final assessment to reflect the priorities of different decision-making contexts defined by the end-user such as accuracy-oriented, cost-oriented, and impact-oriented scenarios. The proposed method is then applied to an existing bridge in order to practically demonstrate its effectiveness and the flexibility of the proposed criteria. Full article
Show Figures

Figure 1

38 pages, 5791 KiB  
Article
Hybrid Gaussian Process Regression Models for Accurate Prediction of Carbonation-Induced Steel Corrosion in Cementitious Mortars
by Teerapun Saeheaw
Buildings 2025, 15(14), 2464; https://doi.org/10.3390/buildings15142464 - 14 Jul 2025
Viewed by 250
Abstract
Steel corrosion prediction in concrete infrastructure remains a critical challenge for durability assessment and maintenance planning. This study presents a comprehensive framework integrating domain expertise with advanced machine learning for carbonation-induced corrosion prediction. Four Gaussian Process Regression (GPR) variants were systematically developed: Baseline [...] Read more.
Steel corrosion prediction in concrete infrastructure remains a critical challenge for durability assessment and maintenance planning. This study presents a comprehensive framework integrating domain expertise with advanced machine learning for carbonation-induced corrosion prediction. Four Gaussian Process Regression (GPR) variants were systematically developed: Baseline GPR with manual optimization, Expert Knowledge GPR employing domain-driven dual-kernel architecture, GPR with Automatic Relevance Determination (GPR-ARD) for feature selection, and GPR-OptCorrosion featuring specialized multi-component composite kernels. The models were trained and validated using 180 carbonated mortar specimens with 15 systematically categorized variables spanning mixture, material, environmental, and electrochemical parameters. GPR-OptCorrosion achieved superior performance (R2 = 0.9820, RMSE = 1.3311 μA/cm2), representing 44.7% relative improvement in explained variance over baseline methods, while Expert Knowledge GPR and GPR-ARD demonstrated comparable performance (R2 = 0.9636 and 0.9810, respectively). Contrary to conventional approaches emphasizing electrochemical indicators, automatic relevance determination revealed supplementary cementitious materials (silica fume and fly ash) as dominant predictive factors. All advanced models exhibited excellent generalization (gaps < 0.02) and real-time efficiency (<0.006 s), with probabilistic uncertainty quantification enabling risk-informed infrastructure management. This research contributes to advancing machine learning applications in corrosion engineering and provides a foundation for predictive maintenance strategies in concrete infrastructure. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

16 pages, 4224 KiB  
Article
Optimizing Museum Acoustics: How Absorption Magnitude and Surface Location of Finishing Materials Influence Acoustic Performance
by Milena Jonas Bem and Jonas Braasch
Acoustics 2025, 7(3), 43; https://doi.org/10.3390/acoustics7030043 - 11 Jul 2025
Viewed by 348
Abstract
The architecture of contemporary museums often emphasizes visual aesthetics, such as large volumes, open-plan layouts, and highly reflective finishes, resulting in acoustic challenges, such as excessive reverberation, poor speech intelligibility, elevated background noise, and reduced privacy. This study quantified the impact of surface—specific [...] Read more.
The architecture of contemporary museums often emphasizes visual aesthetics, such as large volumes, open-plan layouts, and highly reflective finishes, resulting in acoustic challenges, such as excessive reverberation, poor speech intelligibility, elevated background noise, and reduced privacy. This study quantified the impact of surface—specific absorption treatments on acoustic metrics across eight gallery spaces. Room impulse responses calibrated virtual models, which simulated nine absorption scenarios (low, medium, and high on ceilings, floors, and walls) and evaluated reverberation time (T20), speech transmission index (STI), clarity (C50), distraction distance (rD), Spatial Decay Rate of Speech (D2,S), and Speech Level at 4 m (Lp,A,S,4m). The results indicate that going from concrete to a wooden floor yields the most rapid T20 reductions (up to −1.75 s), ceiling treatments deliver the greatest STI and C50 gains (e.g., STI increases of +0.16), and high-absorption walls maximize privacy metrics (D2,S and Lp,A,S,4m). A linear regression model further predicted the STI from T20, total absorption (Sabins), and room volume, with an 84.9% conditional R2, enabling ±0.03 accuracy without specialized testing. These findings provide empirically derived, surface-specific “first-move” guidelines for architects and acousticians, underscoring the necessity of integrating acoustics early in museum design to balance auditory and visual objectives and enhance the visitor experience. Full article
Show Figures

Figure 1

22 pages, 2047 KiB  
Article
Structure Formation and Curing Stage of Arbolite–Concrete Composites Based on Iron-Sulfur Binders
by Baizak Isakulov, Abilkhair Issakulov and Agnieszka Dąbska
Infrastructures 2025, 10(7), 179; https://doi.org/10.3390/infrastructures10070179 - 10 Jul 2025
Viewed by 326
Abstract
The paper deals with the issue of obtaining iron-sulfur-containing binders through their mechanochemical treatment using mutual neutralization and detoxification structure formation, and the curing stage of arbolite concrete composites based on industrial waste under long-term loading were also studied. Due to abrasion and [...] Read more.
The paper deals with the issue of obtaining iron-sulfur-containing binders through their mechanochemical treatment using mutual neutralization and detoxification structure formation, and the curing stage of arbolite concrete composites based on industrial waste under long-term loading were also studied. Due to abrasion and impact, the mutual neutralization and detoxification methods of industrial waste toxic components through their mechanochemical treatment on the structures of ball mill LShM-750, were used to obtain iron-sulfur-containing binders. Pyrite cinders acted as oxidizing agents, and elementary technical sulfur had reduced properties. To determine the rate of creep strain growth, the load on prism samples was applied in the form of specially made spring units at stress levels of 0.15 Rbn, 0.44 Rbn, and 0.74 Rbn, where Rbn is the prism strength of iron-sulfur-containing arbolite concrete in compression. The strength and fracture formations of lightweight iron-sulfur concrete were studied using strain gauge apparatus and depth strain gauges glued on shredded reed fibers using adhesive, installed before concreting. It was revealed that the introduction of a sulfur additive within the range from 10 to 13% increases the compressive strength of iron-sulfur-containing concrete composites prepared with that of mortars at a water/solid ratio equal to 0.385 in wet and dry states. It is found that the deformations occurring under applied load growth proportionally to it, and deviation from this regularity was observed for lightweight iron-sulfur-containing concrete only at high compressive stresses. It was also proved that the destruction of iron-sulfur-containing arbolite occurs sequentially. First, the destruction of the mortar component is observed, and then the organic aggregate in the form of crushed reed fiber is destroyed. It was confirmed that arbolite concrete composite can be used as an effective wall material for civil engineering structure, especially in seismic regions of Kazakhstan. Full article
Show Figures

Figure 1

16 pages, 281 KiB  
Article
The Love That Kills: Phaedra’s Challenges to a Philosophy of Eros
by Joseph S. O’Leary
Philosophies 2025, 10(4), 81; https://doi.org/10.3390/philosophies10040081 - 9 Jul 2025
Viewed by 509
Abstract
Focusing on the legend of Phaedra and Hippolytus as developed in Euripides and Seneca and especially in Racine’s Phèdre and taking into account as well its further development in works by Camillo Boito, Luchino Visconti, and Yukio Mishima, I make the following arguments: [...] Read more.
Focusing on the legend of Phaedra and Hippolytus as developed in Euripides and Seneca and especially in Racine’s Phèdre and taking into account as well its further development in works by Camillo Boito, Luchino Visconti, and Yukio Mishima, I make the following arguments: (1) Contrary to many theologians and philosophers of love, a pathological form of love that issues in murder and suicide should not be regarded as unworthy of serious attention. Racine’s tragedy provides a catharsis for universal experiences of unrequited love and jealousy, a major human phenomenon. (2) Contrary to Paul Valéry, Phèdre’s love cannot be called merely animal, since the analytical insight she develops into her morbid passion carries tremendous moral force and lies at the origin of the European psychological novel, as launched by Madame de La Fayette a year later. (3) Contrary to François Mauriac, even if she is a heroine of desire or concupiscence rather than of “true love” (in contrast to the relatively innocent affections of Hippolyte and Aricie), the incredible beauty of her language resists such an easy categorization. (4) Study of concrete presentations of “love” in literature confirms that the meaning and use of this word is marked by an irreducible pluralism. Philosophical and theological analysis of love has to come to terms with this. (5) The role of a work of art, in crystallizing archetypical emotions and situations in a way that carries authority, is to provide the middle ground between the abstractions of philosophy on the one hand and the uncontrollable diversity of the empirical on the other. Even psychologies or sociologies of love, which claim to be close to the concrete data, need to be anchored in and corrected by the special concrete vision that only great literature can bring. Full article
(This article belongs to the Special Issue Philosophies of Love)
32 pages, 1881 KiB  
Article
LLM and Pattern Language Synthesis: A Hybrid Tool for Human-Centered Architectural Design
by Bruno Postle and Nikos A. Salingaros
Buildings 2025, 15(14), 2400; https://doi.org/10.3390/buildings15142400 - 9 Jul 2025
Viewed by 481
Abstract
This paper combines Christopher Alexander’s pattern language with generative AI into a hybrid design framework. The result is a narrative synthesis that can be useful for informed project design. Advanced large language models (LLMs) enable the real-time synthesis of design patterns, making complex [...] Read more.
This paper combines Christopher Alexander’s pattern language with generative AI into a hybrid design framework. The result is a narrative synthesis that can be useful for informed project design. Advanced large language models (LLMs) enable the real-time synthesis of design patterns, making complex architectural choices accessible and comprehensible to stakeholders without specialized architectural knowledge. A lightweight, web-based tool lets project teams rapidly assemble context-specific subsets of Alexander’s 253 patterns, reducing a traditionally unwieldy 1166-page corpus to a concise, shareable list. Demonstrated through a case study of a university department building, this method results in environments that are psychologically welcoming, fostering health, productivity, and emotional well-being. LLMs translate these curated patterns into vivid experiential narratives—complete with neuroscientifically informed ornamentation. LLMs produce representative images from the verbal narrative, revealing a surprisingly traditional design that was never input as a prompt. Two separate LLMs (for cross-checking) then predict the pattern-generated design to catalyze improved productivity as compared to a standard campus building. By bridging abstract design principles and concrete human experience, this approach democratizes architectural planning grounded on Alexander’s human-centered, participatory ethos. Full article
(This article belongs to the Section Architectural Design, Urban Science, and Real Estate)
Show Figures

Figure 1

24 pages, 4556 KiB  
Article
Simulation of Rock Failure Cone Development Using a Modified Load-Transferring Anchor Design
by Kamil Jonak, Robert Karpiński, Andrzej Wójcik and Józef Jonak
Appl. Sci. 2025, 15(14), 7653; https://doi.org/10.3390/app15147653 - 8 Jul 2025
Viewed by 382
Abstract
This study investigates a novel anchor-based method for controlled rock fragmentation, designed as an alternative to conventional excavation or explosive techniques. The proposed solution utilizes a specially modified undercut anchor that induces localized failure within the rock mass through radial expansion rather than [...] Read more.
This study investigates a novel anchor-based method for controlled rock fragmentation, designed as an alternative to conventional excavation or explosive techniques. The proposed solution utilizes a specially modified undercut anchor that induces localized failure within the rock mass through radial expansion rather than traditional pull-out forces. Finite Element Method simulations, performed in ABAQUS with an extended fracture mechanics approach, were used to model the initiation and propagation of failure zones in sandstone. The results revealed a two-phase cracking process starting beneath the anchor’s driving element and progressing toward the rock’s free surface, forming a breakout cone. This behavior significantly deviates from conventional prediction models, such as the 45° cone or Concrete Capacity Design methods (cone 35°). The simulations were supported by field tests, confirming both the feasibility and practical advantages of the proposed anchor system, especially in confined or safety-critical environments. The findings offer valuable insights for the development of compact and efficient rock fragmentation technologies suitable for mining, rescue operations, and civil engineering applications. Full article
(This article belongs to the Special Issue Advances and Techniques in Rock Fracture Mechanics)
Show Figures

Figure 1

20 pages, 16120 KiB  
Article
Lateral Performance of Steel–Concrete Anchors Embedded in RC Columns Subjected to Fire Scenario
by Amer Alkloub, Mahmoud Dwaikat, Ahmed Ashteyat, Farouq Sammour and Asala Jaradat
Infrastructures 2025, 10(7), 173; https://doi.org/10.3390/infrastructures10070173 - 5 Jul 2025
Viewed by 330
Abstract
The use of both structural steel and reinforced concrete is common in civil and military infrastructure projects. Anchorage plays a crucial role in these systems, serving as the key element that connects structural components and secures attachments within complex composite structures. This research [...] Read more.
The use of both structural steel and reinforced concrete is common in civil and military infrastructure projects. Anchorage plays a crucial role in these systems, serving as the key element that connects structural components and secures attachments within complex composite structures. This research focuses on evaluating the performance of steel–concrete column connections under the combined effects of lateral loading and fire exposure. Additionally, the study investigates the use of carbon fiber-reinforced polymers (CFRP) for strengthening and repairing these connections. The research methodology combines experimental testing and finite-element modeling to achieve its objectives. First, experimental investigation was carried out to test two groups of steel-reinforced concrete column specimens, each group made of three specimens. The first group specimens were designed based on special moment frame (SMF) detailing, and the other group specimens were designed based on intermediate moment frame (IMF) detailing. These two types of design were selected based on seismic demands, with SMFs offering high ductility and resilience for severe earthquakes and IMFs providing a cost-effective solution for moderate seismic zones, both benefiting from ongoing innovations in connection detailing and design approaches. Then, finite-element analysis was conducted to model the test specimens. High-fidelity finite-element modeling was conducted using ANSYS program, which included three-dimensional coupled thermal-stress analyses for the six tested specimens and incorporated nonlinear temperature-dependent materials characteristics of each component and the interfaces. Both the experimental and numerical results of this study show that fire has a more noticeable effect on displacement compared to the peak capacities of both types of specimens. Fire exposure results in a larger reduction in the initial residual lateral stiffness of the SMF specimens when compared to IMF specimens. While the effect of CFRP wraps on initial residual lateral stiffness was consistent for all specimens, it caused more improvement for the IMF specimen in terms of post-fire ductility when compared to SMF specimens. This exploratory study confirms the need for further research on the effect of fire on the concrete–steel anchorage zones. Full article
Show Figures

Figure 1

15 pages, 5543 KiB  
Article
Vibration Table Test of Prefabricated L-Shaped Column Concrete Structure
by Xueyan Wang and Che Chen
Buildings 2025, 15(13), 2329; https://doi.org/10.3390/buildings15132329 - 2 Jul 2025
Viewed by 290
Abstract
This paper conducts a full-scale shaking table test on a prototype prefabricated L-shaped column concrete house structure to experimentally verify its seismic performance in high-intensity seismic areas. We analyze the frequency of the structure, story drift angle, amplification factor of peak acceleration of [...] Read more.
This paper conducts a full-scale shaking table test on a prototype prefabricated L-shaped column concrete house structure to experimentally verify its seismic performance in high-intensity seismic areas. We analyze the frequency of the structure, story drift angle, amplification factor of peak acceleration of ground motion, and damage distribution. The corresponding finite element model is established using ABAQUS to verify the experimental results and further study the damage forms and weak areas of the structure under a strong earthquake. The results show that the structure can maintain an elastic state under the rare intensity of a level 7 earthquake, but begins to bend and deform in the direction of the two main axes under the rare intensity of a level 8 earthquake. At a rare intensity of a level 9 earthquake, the structure is completely destroyed. This result shows that the unitary precast special-shaped column concrete structure meets the requirements of the current code. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

38 pages, 1394 KiB  
Article
A Ladder of Urban Resilience: An Evolutionary Framework for Transformative Governance of Communities Facing Chronic Crises
by Dario Esposito
Sustainability 2025, 17(13), 6010; https://doi.org/10.3390/su17136010 - 30 Jun 2025
Viewed by 622
Abstract
This paper explores the concept of evolutionary urban resilience by framing cities as complex, open, and adaptive Social-Ecological-Technological Systems (SETS), shaped by multi-scalar dynamics, systemic uncertainty, and interdependent crises. It challenges the reductionist view of resilience as a fixed capacity or linear sequence [...] Read more.
This paper explores the concept of evolutionary urban resilience by framing cities as complex, open, and adaptive Social-Ecological-Technological Systems (SETS), shaped by multi-scalar dynamics, systemic uncertainty, and interdependent crises. It challenges the reductionist view of resilience as a fixed capacity or linear sequence of risk management phases, and instead proposes a process-based paradigm rooted in learning, creativity, and the ability to navigate disequilibrium. The framework defines urban resilience as a continuous and iterative transformation process, supported by: (i) a combination of tangible and intangible qualities activated according to problem typology; (ii) cross-domain processes involving infrastructures, flows, governance, networks, and community dynamics; and (iii) the engagement of diverse agents in shared decision-making and coordinated action. These dimensions unfold across three incremental and interdependent scenarios—baseline, critical, and chronic crisis—forming a ladder of resilience that guides communities through escalating challenges. Special emphasis is placed on the role of Information and Communication Technologies (ICTs) as relational and adaptive tools enabling distributed intelligence and inclusive governance. The framework also outlines concrete operational and policy implications for cities aiming to build anticipatory and transformative resilience capacities. Applied to the case of Taranto, the approach offers insights into how structurally fragile communities facing conflicting adaptive trajectories can unlock transformative potential. Ultimately, the paper calls for a shift from government to governance, from control to co-creation, and from reactive adaptation to chaos generativity, recasting urban resilience as an evolving project of collective agency, systemic reconfiguration, and co-production of emergent urban futures. Full article
Show Figures

Figure 1

23 pages, 2177 KiB  
Review
A Comprehensive Review of Rheological Dynamics and Process Parameters in 3D Concrete Printing
by Wen Si, Mehran Khan and Ciaran McNally
J. Compos. Sci. 2025, 9(6), 299; https://doi.org/10.3390/jcs9060299 - 11 Jun 2025
Viewed by 997
Abstract
Three-dimensional concrete printing (3DCP) represents a paradigm shift in construction technology, enabling the automated, formwork-free fabrication of intricate geometries. Despite its rapid growth, successful implementation remains dependent on the precise control of material rheology and printing parameters. This review critically analyzes the foundational [...] Read more.
Three-dimensional concrete printing (3DCP) represents a paradigm shift in construction technology, enabling the automated, formwork-free fabrication of intricate geometries. Despite its rapid growth, successful implementation remains dependent on the precise control of material rheology and printing parameters. This review critically analyzes the foundational rheological properties of static yield stress, dynamic yield stress, plastic viscosity, and thixotropy and their influence on three core printability attributes, i.e., pumpability, extrudability, and buildability. Furthermore, it explores the role of critical process parameters, such as print speed, nozzle dimensions, layer deposition intervals, and standoff distance, in shaping interlayer bonding and structural integrity. Special emphasis is given to modeling frameworks by Suiker, Roussel, and Kruger, which provide robust tools for evaluating structural stability under plastic yield and elastic buckling conditions. The integration of these rheological and process-based insights offers a comprehensive roadmap for optimizing the performance, quality, and scalability of 3DCP. Full article
(This article belongs to the Special Issue Application of Composite Materials in Additive Manufacturing)
Show Figures

Figure 1

Back to TopTop