A Comprehensive Review of Rheological Dynamics and Process Parameters in 3D Concrete Printing
Abstract
:1. Introduction
2. Rheological Behavior in 3DCP
3. Printability
3.1. Pumpability
3.2. Extrudability
3.2.1. Benbow–Bridgwater Model: Ram Extrusion in Two Zones
3.2.2. Perrot Model: Incorporating Frictional and Filtration Effects
- If V ≫ q, the process can be considered undrained, and the material remains homogeneous, validating the use of the extrusion force model.
- Otherwise, phase separation may occur due to fluid drainage, leading to alterations in the yield stress (Kc) and wall friction coefficient (Kw).
3.2.3. Basterfield Model: Rheological Theory and Die Entry Flow
3.3. Buildability
3.3.1. Suiker’s Model: Coupled Plastic Collapse and Elastic Buckling
- The dimensionless stiffness gain rate , derived by fitting the evolution curve of elastic modulus E(t);
- Wall geometry, particularly the wall width to thickness ratio =/h;
3.3.2. Roussel’s Mixed Criterion: Rheological Yield and Stability
- Strength-based failure, governed by the material’s yield stress;
- Stability-based failure, governed by the material’s elastic modulus and its ability to resist buckling.
3.3.3. Kruger’s Lower Bound Analytical Model: Plastic Yield Failure
3.4. Synthesis of Rheological Effects on Printability
4. Discussion on the Influence of Printing Parameters
5. Conclusions and Future Outlook
- Dynamic and static yield stress, plastic viscosity, and thixotropy collectively control all phases of printing from flow through the pump to deposition and interlayer stability.
- Pumpability is primarily governed by dynamic yield stress and plastic viscosity. Identifying plug, shear, and laminar flow conditions is crucial for minimizing pressure loss and avoiding blockages. Models by Kaplan, Feys, and Kwon provide differentiated approaches to quantify flow based on lubrication layer and pipe–wall interactions.
- Extrudability depends on dynamic yield stress, wall friction, and filtration effects. Models by Benbow Bridgwater and Perrot highlight the importance of balancing these parameters to achieve consistent filament formation. Ram extrusion tests remain a reliable laboratory-scale method for evaluating extrudability, while advanced models, such as those by Perrot and Basterfield, integrate friction and filtration effects to enhance predictability under realistic printing conditions.
- Buildability is controlled by static yield stress and thixotropy, as highlighted by models from Suiker, Roussel, and Kruger, demonstrating how these parameters determine layer stability and resistance to collapse during deposition.
- Print speed, nozzle size, layer interval, and standoff distance significantly influence the buildability of the structure and the quality of interlayer bonding. The novel nozzle designs and optimized deposition timing have been shown to enhance structural integrity and reduce interfacial weaknesses.
Author Contributions
Funding
Conflicts of Interest
Nomenclature
Shear stress (Pa) | Ad | Cross-sectional area of the die outlet (m2) | |
Dynamic yield stress (Pa) | Kw | Wall friction coefficient | |
Plastic viscosity (Pa·s) | Pw | Normal stress on the wall (Pa) | |
Shear rate (1/s) | L0 | The length of the barrel (mm) | |
c | Shear rate related parameter | q | Liquid phase filtration velocity |
K | Consistency coefficient | Conical die entry angle (degrees (°)) | |
n | Flow index | c(t) | Time-dependent cohesion (Pa) |
τs,0 | Initial static yield stress (Pa) | ϕ(t) | Internal friction angle (degrees (°)) |
Athix | Structural build-up rate (Pa/s) | ψ(t) | Dilatancy angle (degrees (°)) |
t | Time (s) | E(t) | Time-dependent elastic modulus (Pa) |
tc | Characteristic time (s) | Dfr(t) | Flexural rigidity (N·m) |
P | Pumping pressure (Pa) | h | Wall thickness (m) |
L | Pipe length (m) | ν | Poisson’s ratio |
R | Pipe radius (m) | Dimensionless critical buckling length | |
Q | Volumetric flow rate | Dimensionless stiffness gain rate | |
Total pressure loss (Pa) | Wall width (m) | ||
Yield stress of the lubrication layer (Pa) | Wall width-to-thickness ratio | ||
Viscosity coefficient of the lubrication layer (Pa·s/m) | Dimensionless plastic collapse length | ||
Plastic viscosity of the lubrication layer (Pa·s) | Dimensionless strength development rate | ||
TLL | Thickness of the lubrication layer (m) | Compressive or shear strength growth (Pa) | |
Interfacial shear stress (Pa) | Plastic strength index | ||
Pressure loss per unit pipe length (Pa/m) | Initial flexural rigidity (N·m) | ||
Rc | Distance from the center of the pipe to the lubrication layer (m) | Initial compressive or shear strength (Pa) | |
Rp | Concrete plug radius (m) | Material density (kg/m3) | |
Pi | Net pressure at the inlet of the pipeline (Pa) | g | Gravitational acceleration (m/s2) |
Pg | Hydrostatic pressure (Pa) | H | Printed structure’s height (m) |
Pe | Total extrusion pressure (kPa) | Hm | Critical yielding height (m) |
Extrusion yield stress (kPa) | Hc | Critical buckling height (m) | |
The factor to characterize velocity effect in barrel (kPa·s/mm) | E | Elastic modulus (Pa) | |
Factor to characterize velocity effect in die land (kPa·s/mm) | Ec | Minimum elastic modulus against buckling (Pa) | |
V | Extrudate velocity (mm/s) | HT | Critical transition height (m) |
D0 | Diameter of the barrel (mm) | Critical shear strain | |
D | Diameter of the die land (mm) | Tmax | Maximum interlayer time (s) |
M | Perimeter of the die (mm) | h0 | Layer thickness (m) |
Le | Length of the die (mm) | Vn | Nozzle speed (m/s) |
a | Fitting parameter | NL | Maximum number of printable layers |
b | Fitting parameter | Rthix | Re-flocculation rate (Pa/s) |
Ffr | Plastic shaping force (N) | l | Printing path length (mm) |
Fpl | Wall friction force (N) | Printing speed (mm/s) | |
Fe | Total extrusion force (N) | FAR | Aspect ratio correction factor |
Kc | Equivalent yield stress (Pa) | Structure building stress (Pa) | |
BN | Bingham number | mMat | The material strengthening rate (Pa/s) |
References
- Buswell, R.A.; Leal de Silva, W.R.; Jones, S.Z.; Dirrenberger, J. 3D printing using concrete extrusion: A roadmap for research. Cem. Concr. Res. 2018, 112, 37–49. [Google Scholar] [CrossRef]
- Mechtcherine, V.; Bos, F.P.; Perrot, A.; da Silva, W.R.L.; Nerella, V.N.; Fataei, S.; Wolfs, R.J.M.; Sonebi, M.; Roussel, N. Extrusion-based additive manufacturing with cement-based materials—Production steps, processes, and their underlying physics: A review. Cem. Concr. Res. 2020, 132, 106037. [Google Scholar] [CrossRef]
- Altıparmak, S.C.; Yardley, V.A.; Shi, Z.; Lin, J. Extrusion-based additive manufacturing technologies: State of the art and future perspectives. J. Manuf. Process. 2022, 83, 607–636. [Google Scholar] [CrossRef]
- Roussel, N. Rheological requirements for printable concretes. Cem. Concr. Res. 2018, 112, 76–85. [Google Scholar] [CrossRef]
- Chang, Z.; Liang, M.; Chen, Y.; Schlangen, E.; Šavija, B. Does early age creep influence buildability of 3D printed concrete? Insights from numerical simulations. Addit. Manuf. 2023, 77, 103788. [Google Scholar] [CrossRef]
- Zhao, Z.; Chen, M.; Jin, Y.; Lu, L.; Li, L. Rheology control towards 3D printed magnesium potassium phosphate cement composites. Compos. Part B Eng. 2022, 239, 109963. [Google Scholar] [CrossRef]
- Ranjbar, N.; Mehrali, M.; Kuenzel, C.; Gundlach, C.; Pedersen, D.B.; Dolatshahi-Pirouz, A.; Spangenberg, J. Rheological characterization of 3D printable geopolymers. Cem. Concr. Res. 2021, 147, 106498. [Google Scholar] [CrossRef]
- Zhang, N.; Sanjayan, J. Extrusion nozzle design and print parameter selections for 3D concrete printing. Cem. Concr. Compos. 2023, 137, 104939. [Google Scholar] [CrossRef]
- Zhou, W.; Zhang, Y.; Ma, L.; Li, V.C. Influence of printing parameters on 3D printing engineered cementitious composites (3DP-ECC). Cem. Concr. Compos. 2022, 130, 104562. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, J.; Liu, Y.; Zhang, X.; Zhao, Z. Effect of processing parameters on the printing quality of 3D printed composite cement-based materials. Mater. Lett. 2022, 308, 131271. [Google Scholar] [CrossRef]
- Wolfs, R.J.M.; Salet, T.A.M.; Roussel, N. Filament geometry control in extrusion-based additive manufacturing of concrete: The good, the bad and the ugly. Cem. Concr. Res. 2021, 150, 106615. [Google Scholar] [CrossRef]
- Xu, Z.; Zhang, D.; Li, H.; Sun, X.; Zhao, K.; Wang, Y. Effect of FA and GGBFS on compressive strength, rheology, and printing properties of cement-based 3D printing material. Constr. Build. Mater. 2022, 339, 127685. [Google Scholar] [CrossRef]
- Tay, Y.W.D.; Qian, Y.; Tan, M.J. Printability region for 3D concrete printing using slump and slump flow test. Compos. Part B Eng. 2019, 174, 106968. [Google Scholar] [CrossRef]
- Yao, H.; Xie, Z.; Li, Z.; Huang, C.; Yuan, Q.; Zheng, X. The relationship between the rheological behavior and interlayer bonding properties of 3D printing cementitious materials with the addition of attapulgite. Constr. Build. Mater. 2022, 316, 125809. [Google Scholar] [CrossRef]
- Zhang, C.; Nerella, V.N.; Krishna, A.; Wang, S.; Zhang, Y.; Mechtcherine, V.; Banthia, N. Mix design concepts for 3D printable concrete: A review. Cem. Concr. Compos. 2021, 122, 104155. [Google Scholar] [CrossRef]
- Jiao, D.; Shi, C.; Yuan, Q.; An, X.; Liu, Y.; Li, H. Effect of constituents on rheological properties of fresh concrete-A review. Cem. Concr. Compos. 2017, 83, 146–159. [Google Scholar] [CrossRef]
- Arunothayan, A.R.; Nematollahi, B.; Khayat, K.H.; Ramesh, A.; Sanjayan, J.G. Rheological characterization of ultra-high performance concrete for 3D printing. Cem. Concr. Compos. 2023, 136, 104854. [Google Scholar] [CrossRef]
- Mohan, M.K.; Rahul, A.V.; Van Tittelboom, K.; De Schutter, G. Rheological and pumping behaviour of 3D printable cementitious materials with varying aggregate content. Cem. Concr. Res. 2021, 139, 106258. [Google Scholar] [CrossRef]
- Peng, Y.; Unluer, C. Advances in rheological measurement and characterization of fresh cement pastes. Powder Technol. 2023, 429, 118903. [Google Scholar] [CrossRef]
- Wallevik, O.H.; Feys, D.; Wallevik, J.E.; Khayat, K.H. Avoiding inaccurate interpretations of rheological measurements for cement-based materials. Cem. Concr. Res. 2015, 78, 100–109. [Google Scholar] [CrossRef]
- Mandal, R.; Panda, S.K.; Nayak, S. Rheology of Concrete: Critical Review, recent Advancements, and future prospectives. Constr. Build. Mater. 2023, 392, 132007. [Google Scholar] [CrossRef]
- Zhang, Z.; Jia, Z.; Shi, J.; Jiang, Y.; Banthia, N.; Zhang, Y. Clarifying and quantifying the driving force for the evolution of static yield stress of cement pastes. Cem. Concr. Res. 2023, 167, 107129. [Google Scholar] [CrossRef]
- Roussel, N.; Ovarlez, G.; Garrault, S.; Brumaud, C. The origins of thixotropy of fresh cement pastes. Cem. Concr. Res. 2012, 42, 148–157. [Google Scholar] [CrossRef]
- Roussel, N. A thixotropy model for fresh fluid concretes: Theory, validation and applications. Cem. Concr. Res. 2006, 36, 1797–1806. [Google Scholar] [CrossRef]
- Perrot, A.; Pierre, A.; Vitaloni, S.; Picandet, V. Prediction of lateral form pressure exerted by concrete at low casting rates. Mater. Struct. 2015, 48, 2315–2322. [Google Scholar] [CrossRef]
- ASTM C1749-17; Standard Guide for Measurement of the Rheological Properties of Hydraulic Cementious Paste Using a Rotational Rheometer. ASTM: West Conshohocken, PA, USA, 2017.
- Feys, D.; Sonebi, M.; Amziane, S.; Djelal, C.; El-Cheikh, K.; Fataei, S.; Greim, M.; Ivanova, I.; Keller, H.; Khayat, K.; et al. RILEM TC 266-MRP: Round-robin rheological tests on high performance mortar and concrete with adapted rheology—Rheometers, mixtures and procedures. Mater. Struct. 2023, 56, 90. [Google Scholar] [CrossRef]
- ACI Committee. Report on Measurements of Workability and Rheology of Fresh Concrete; American Concrete Institute: Farmington Hills, MI, USA, 2008. [Google Scholar]
- Hu, J.; Wang, K. Effect of coarse aggregate characteristics on concrete rheology. Constr. Build. Mater. 2011, 25, 1196–1204. [Google Scholar] [CrossRef]
- Li, L.; Wei, Y.-j.; Li, Z.; Farooqi, M.U. Rheological and viscoelastic characterizations of fly ash/slag/silica fume-based geopolymer. J. Clean. Prod. 2022, 354, 131629. [Google Scholar] [CrossRef]
- Liu, Y.; Lu, C.; Hu, X.; Shi, C. Effect of silica fume on rheology of slag-fly ash-silica fume-based geopolymer pastes with different activators. Cem. Concr. Res. 2023, 174, 107336. [Google Scholar] [CrossRef]
- Ducoulombier, N.; Mesnil, R.; Carneau, P.; Demont, L.; Bessaies-Bey, H.; Caron, J.-F.; Roussel, N. The “Slugs-test” for extrusion-based additive manufacturing: Protocol, analysis and practical limits. Cem. Concr. Compos. 2021, 121, 104074. [Google Scholar] [CrossRef]
- Secrieru, E.; Mohamed, W.; Fataei, S.; Mechtcherine, V. Assessment and prediction of concrete flow and pumping pressure in pipeline. Cem. Concr. Compos. 2020, 107, 103495. [Google Scholar] [CrossRef]
- Yuan, S.; Xu, Z.; Liu, J. Insights and challenges of predicting concrete pumpability: A state-of-art review. J. Build. Eng. 2024, 95, 110265. [Google Scholar] [CrossRef]
- Feys, D.; De Schutter, G.; Fataei, S.; Martys, N.S.; Mechtcherine, V. Pumping of concrete: Understanding a common placement method with lots of challenges. Cem. Concr. Res. 2022, 154, 106720. [Google Scholar] [CrossRef]
- Feys, D.; Khayat, K.H.; Perez-Schell, A.; Khatib, R. Development of a tribometer to characterize lubrication layer properties of self-consolidating concrete. Cem. Concr. Compos. 2014, 54, 40–52. [Google Scholar] [CrossRef]
- Buckingham, E. On plastic flow through capillary tubes. Proc. Am. Soc. Test. Mater. 1921, 29, 1154–1156. [Google Scholar]
- Feys, D.; Khayat, K.H.; Khatib, R. How do concrete rheology, tribology, flow rate and pipe radius influence pumping pressure? Cem. Concr. Compos. 2016, 66, 38–46. [Google Scholar] [CrossRef]
- Feys, D. How much is bulk concrete sheared during pumping? Constr. Build. Mater. 2019, 223, 341–351. [Google Scholar] [CrossRef]
- Feys, D.; De Schutter, G.; Verhoeven, R. Parameters influencing pressure during pumping of self-compacting concrete. Mater. Struct. 2013, 46, 533–555. [Google Scholar] [CrossRef]
- Kwon, S.H.; Park, C.K.; Jeong, J.H.; Jo, S.D.; Lee, S.H. Prediction of Concrete Pumping: Part II-Analytical Prediction and Experimental Verification. ACI Mater. J. 2013, 110, 657–667. [Google Scholar]
- Liu, D.; Zhan, Y. Concrete Pumpability Assessment with Rheology-based Analytical Model. KSCE J. Civ. Eng. 2024, 28, 3891–3901. [Google Scholar] [CrossRef]
- Benbow, J.J.; Oxley, E.W.; Bridgwater, J. The extrusion mechanics of pastes—The influence of paste formulation on extrusion parameters. Chem. Eng. Sci. 1987, 42, 2151–2162. [Google Scholar] [CrossRef]
- Nair, S.A.O.; Alghamdi, H.; Arora, A.; Mehdipour, I.; Sant, G.; Neithalath, N. Linking fresh paste microstructure, rheology and extrusion characteristics of cementitious binders for 3D printing. J. Am. Ceram. Soc. 2019, 102, 3951–3964. [Google Scholar] [CrossRef]
- Alghamdi, H.; Nair, S.A.O.; Neithalath, N. Insights into material design, extrusion rheology, and properties of 3D-printable alkali-activated fly ash-based binders. Mater. Des. 2019, 167, 107634. [Google Scholar] [CrossRef]
- Perrot, A.; Rangeard, D.; Mélinge, Y. Prediction of the Ram Extrusion Force of Cement-Based Materials. Appl. Rheol. 2014, 24, 34–40. [Google Scholar]
- Perrot, A.; Rangeard, D.; Mélinge, Y.; Estellé, P.; Lanos, C. Extrusion Criterion for Firm Cement-based Materials. Appl. Rheol. 2009, 19, 53042-1–53042-7. [Google Scholar]
- Perrot, A.; Lanos, C.; Estellé, P.; Melinge, Y. Ram extrusion force for a frictional plastic material: Model prediction and application to cement paste. Rheol. Acta 2006, 45, 457–467. [Google Scholar] [CrossRef]
- Perrot, A.; Rangeard, D.; Nerella, V.N.; Mechtcherine, V. Extrusion of cement-based materials—An overview. RILEM Tech. Lett. 2019, 3, 91–97. [Google Scholar] [CrossRef]
- Sanjayan, J.G.; Jayathilakage, R.; Rajeev, P. Vibration induced active rheology control for 3D concrete printing. Cem. Concr. Res. 2021, 140, 106293. [Google Scholar] [CrossRef]
- Basterfield, R.A.; Lawrence, C.J.; Adams, M.J. On the interpretation of orifice extrusion data for viscoplastic materials. Chem. Eng. Sci. 2005, 60, 2599–2607. [Google Scholar] [CrossRef]
- Zhou, X.; Li, Z.; Fan, M.; Chen, H. Rheology of semi-solid fresh cement pastes and mortars in orifice extrusion. Cem. Concr. Compos. 2013, 37, 304–311. [Google Scholar] [CrossRef]
- Suiker, A.S.J.; Wolfs, R.J.M.; Lucas, S.M.; Salet, T.A.M. Elastic buckling and plastic collapse during 3D concrete printing. Cem. Concr. Res. 2020, 135, 106016. [Google Scholar] [CrossRef]
- Suiker, A.S.J. Mechanical performance of wall structures in 3D printing processes: Theory, design tools and experiments. Int. J. Mech. Sci. 2018, 137, 145–170. [Google Scholar] [CrossRef]
- Wolfs, R.J.M.; Suiker, A.S.J. Structural failure during extrusion-based 3D printing processes. Int. J. Adv. Manuf. Technol. 2019, 104, 565–584. [Google Scholar] [CrossRef]
- Wolfs, R.J.M.; Bos, F.P.; Salet, T.A.M. Triaxial compression testing on early age concrete for numerical analysis of 3D concrete printing. Cem. Concr. Compos. 2019, 104, 103344. [Google Scholar] [CrossRef]
- Kruger, J.; Zeranka, S.; van Zijl, G. 3D concrete printing: A lower bound analytical model for buildability performance quantification. Autom. Constr. 2019, 106, 102904. [Google Scholar] [CrossRef]
- Zhang, Y.; Ren, Q.; Dai, X.; Tao, Y.; Zhang, Y.; Jiang, Z.; Van Tittelboom, K.; De Schutter, G. A potential active rheology control approach for 3D printable cement-based materials: Coupling of temperature and viscosity modifiers. Cem. Concr. Compos. 2024, 149, 105496. [Google Scholar] [CrossRef]
- Yin, Y.; Huang, J.; Wang, T.; Yang, R.; Hu, H.; Manuka, M.; Zhou, F.; Min, J.; Wan, H.; Yuan, D.; et al. Effect of Hydroxypropyl methyl cellulose (HPMC) on rheology and printability of the first printed layer of cement activated slag-based 3D printing concrete. Constr. Build. Mater. 2023, 405, 133347. [Google Scholar] [CrossRef]
- Chen, M.; Yang, L.; Zheng, Y.; Huang, Y.; Li, L.; Zhao, P.; Wang, S.; Lu, L.; Cheng, X. Yield stress and thixotropy control of 3D-printed calcium sulfoaluminate cement composites with metakaolin related to structural build-up. Constr. Build. Mater. 2020, 252, 119090. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, Y.; She, W.; Yang, L.; Liu, G.; Yang, Y. Rheological and harden properties of the high-thixotropy 3D printing concrete. Constr. Build. Mater. 2019, 201, 278–285. [Google Scholar] [CrossRef]
- Gu, Y.-c.; Khayat, K.H. Extrudability window and offline test methods to predict buildability of 3D printing concrete. Cem. Concr. Res. 2024, 182, 107552. [Google Scholar] [CrossRef]
- Lee, K.-W.; Lee, H.-J.; Choi, M.-S. Correlation between thixotropic behavior and buildability for 3D concrete printing. Constr. Build. Mater. 2022, 347, 128498. [Google Scholar] [CrossRef]
- Sakka, F.E.; Assaad, J.J.; Hamzeh, F.R.; Nakhoul, C. Thixotropy and interfacial bond strengths of polymer-modified printed mortars. Mater. Struct. 2019, 52, 79. [Google Scholar] [CrossRef]
- Ding, T.; Xiao, J.; Mechtcherine, V. Microstructure and mechanical properties of interlayer regions in extrusion-based 3D printed concrete: A critical review. Cem. Concr. Compos. 2023, 141, 105154. [Google Scholar] [CrossRef]
- Nerella, V.N.; Hempel, S.; Mechtcherine, V. Effects of layer-interface properties on mechanical performance of concrete elements produced by extrusion-based 3D-printing. Constr. Build. Mater. 2019, 205, 586–601. [Google Scholar] [CrossRef]
- Sanjayan, J.G.; Nematollahi, B.; Xia, M.; Marchment, T. Effect of surface moisture on inter-layer strength of 3D printed concrete. Constr. Build. Mater. 2018, 172, 468–475. [Google Scholar] [CrossRef]
- Panda, B.; Noor Mohamed, N.A.; Paul, S.C.; Bhagath Singh, G.; Tan, M.J.; Šavija, B. The Effect of Material Fresh Properties and Process Parameters on Buildability and Interlayer Adhesion of 3D Printed Concrete. Materials 2019, 12, 2149. [Google Scholar] [CrossRef]
- Shahzad, Q.; Abbas, N.; Akbar, M.; Sabi, E.; Thomas, B.S.; Arshid, M.U. Influence of print speed and nozzle diameter on the fiber alignment in 3D printed ultra-high-performance concrete. Front. Mater. 2024, 11, 1355647. [Google Scholar] [CrossRef]
- Pan, T.; Guo, R.; Jiang, Y.; Ji, X. How do the contact surface forces affect the interlayer bond strength of 3D printed mortar? Cem. Concr. Compos. 2022, 133, 104675. [Google Scholar] [CrossRef]
- Khan, S.A.; Ilcan, H.; Imran, R.; Aminipour, E.; Şahin, O.; Al Rashid, A.; Şahmaran, M.; Koç, M. The impact of nozzle diameter and printing speed on geopolymer-based 3D-Printed concrete structures: Numerical modeling and experimental validation. Results Eng. 2024, 21, 101864. [Google Scholar] [CrossRef]
- Wolfs, R.J.M.; Bos, F.P.; Salet, T.A.M. Hardened properties of 3D printed concrete: The influence of process parameters on interlayer adhesion. Cem. Concr. Res. 2019, 119, 132–140. [Google Scholar] [CrossRef]
- He, L.; Tan, J.Z.M.; Chow, W.T.; Li, H.; Pan, J. Design of novel nozzles for higher interlayer strength of 3D printed cement paste. Addit. Manuf. 2021, 48, 102452. [Google Scholar] [CrossRef]
Category | Model | Key Parameters | Measurement | Associated Rheological Parameters | Validity and Applicability | Limitations and Assumptions |
---|---|---|---|---|---|---|
Pumpability | Buckingham–Reiner Model | Dynamic yield stress, plastic viscosity | Rotational viscometer, pressure drop measurements | Dynamic yield stress, plastic viscosity | Basic theoretical model for Bingham fluids in laminar flow, neglects wall slip and complex shear profiles | Ideal Bingham flow assumption, may not reflect thixotropy and real inhomogeneities |
Kaplan Model | Yield stress and viscosity of lubrication layer, lubrication layer thickness | Sliding pipe rheometer (SLIPER), rotational tests | Lubrication layer yield stress, viscosity, thickness | Improves accuracy by accounting for lubrication layer effects, applicable to plug and shear flow | No explicit flow regime separation criterion, limited to certain flow conditions | |
Feys’ Regime Discrimination | Interfacial shear stress, concrete yield stress, lubrication layer thickness | Differential pressure measurement, ultrasonic techniques for layer thickness | Interfacial shear stress, lubrication layer properties | Provides flow regime classification, useful for transition flow analysis | Assumes direct relationship between interfacial shear and bulk yield stress, requires calibration | |
Kwon Model | Plastic viscosity of lubrication layer, plug radius, inlet and hydrostatic pressure | Ultrasonic measurement, cross-sectional analysis | Lubrication layer viscosity, plug geometry | Suitable for high-pressure, long-distance pumping; considers geometry effects | Requires precise measurement of lubrication layer thickness and pressure data, limited to high-pressure cases | |
Extrudability | Benbow-Bridgwater Model | Elongational yield stress, empirical velocity-dependent coefficients (a, b), extrudate velocity, die geometry (barrel and die land diameters, perimeter, length) | Ram extrusion tests, uniaxial compression tests, empirical fitting from velocity–pressure data | Dynamic yield stress, plastic viscosity, elongational yield stress | Widely used due to simplicity; suitable for laboratory tests; limited generalization due to empirical nature and geometry-specific parameters | Semi-empirical; requires extensive calibration; limited across different geometries or materials |
Perrot Model | Yield stress, Bingham number (BN), wall friction coefficient (Kw), filtration velocity, normal wall stress (Pw), ram geometry (barrel length, die cross-sectional area) | Ram extrusion tests, shear box tests or Casagrande-type apparatus, filtration tests, hydrostatic pressure estimation | Static and dynamic yield stress, wall friction, filtration properties, viscosity | Realistic for cementitious materials exhibiting frictional and filtration effects; suitable for fiber-reinforced and thixotropic materials; applicable in realistic extrusion conditions | Complex calibration due to friction and filtration parameters; significant deviations possible if filtration velocity underestimated | |
Basterfield Model | Herschel–Bulkley parameters (yield stress, consistency coefficient K, flow index n), conical die entry angle | Rheometer, precise geometric measurement of conical dies | Static yield stress, plastic viscosity, consistency index K, flow index n | More transferable and precise, relies solely on intrinsic rheological parameters and die geometry; useful across different extrusion setups | Complex, computationally demanding; requires precise rheological characterization; sensitive to accurate geometry measurements | |
Buildability | Suiker’s Model | Static yield stress, elastic modulus, cohesion, internal friction angle, dilatancy angle | Direct shear testing (DST), triaxial compression testing (TCT), ultrasonic wave transmission, oscillatory rheometer | Static yield stress, elastic modulus | Comprehensive evaluation of plastic yield and elastic buckling; widely validated through finite element analysis and experimental tests; suitable for tall, slender structures | Requires homogeneous material assumption and accurate parameter measurements; complex to calibrate for heterogeneous or fiber-reinforced mixes |
Roussel’s Mixed Criterion | Static yield stress, elastic modulus, critical shear strain, structural build-up rate | Rheometer for yield stress, ultrasonic testing for modulus, empirical estimation of critical shear strain | Static yield stress, elastic modulus, thixotropy | Provides combined yield and buckling criteria; highly adaptable for various print geometries and printing conditions; effective in predicting maximum stable heights | Assumes constant elastic modulus across layers, simplified shear strain treatment; limited capture of local structural variations | |
Kruger’s Lower Bound Analytical Model | Static yield stress, structural build-up rate, re-flocculation rate, aspect ratio correction factor | Shear stress build-up measurements over defined rest intervals (0–120 s, 1200–3600 s), printing path analysis (CAD/G-code) | Static yield stress, thixotropy | Reliable for short, wide structures predominantly subject to plastic yielding; accurate within a 10% margin; practical for early mix-design optimization | Excludes elastic buckling explicitly; heavily dependent on geometry-specific calibration factors; may underestimate height limits for slender walls |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Si, W.; Khan, M.; McNally, C. A Comprehensive Review of Rheological Dynamics and Process Parameters in 3D Concrete Printing. J. Compos. Sci. 2025, 9, 299. https://doi.org/10.3390/jcs9060299
Si W, Khan M, McNally C. A Comprehensive Review of Rheological Dynamics and Process Parameters in 3D Concrete Printing. Journal of Composites Science. 2025; 9(6):299. https://doi.org/10.3390/jcs9060299
Chicago/Turabian StyleSi, Wen, Mehran Khan, and Ciaran McNally. 2025. "A Comprehensive Review of Rheological Dynamics and Process Parameters in 3D Concrete Printing" Journal of Composites Science 9, no. 6: 299. https://doi.org/10.3390/jcs9060299
APA StyleSi, W., Khan, M., & McNally, C. (2025). A Comprehensive Review of Rheological Dynamics and Process Parameters in 3D Concrete Printing. Journal of Composites Science, 9(6), 299. https://doi.org/10.3390/jcs9060299