Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (5,480)

Search Parameters:
Keywords = spatial-temporal systems

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
38 pages, 2523 KB  
Article
Methods for GIS-Driven Airspace Management: Integrating Unmanned Aircraft Systems (UASs), Advanced Air Mobility (AAM), and Crewed Aircraft in the NAS
by Ryan P. Case and Joseph P. Hupy
Drones 2026, 10(2), 82; https://doi.org/10.3390/drones10020082 (registering DOI) - 24 Jan 2026
Abstract
The rapid growth of Unmanned Aircraft Systems (UASs) and Advanced Air Mobility (AAM) presents significant integration and safety challenges for the National Airspace System (NAS), often relying on disconnected Air Traffic Management (ATM) and Unmanned Aircraft System Traffic Management (UTM) practices that contribute [...] Read more.
The rapid growth of Unmanned Aircraft Systems (UASs) and Advanced Air Mobility (AAM) presents significant integration and safety challenges for the National Airspace System (NAS), often relying on disconnected Air Traffic Management (ATM) and Unmanned Aircraft System Traffic Management (UTM) practices that contribute to airspace incidents. This study evaluates Geographic Information Systems (GISs) as a unified, data-driven framework to enhance shared airspace safety and efficiency. A comprehensive, multi-phase methodology was developed using GIS (specifically Esri ArcGIS Pro) to integrate heterogeneous aviation data, including FAA aeronautical data, Automatic Dependent Surveillance–Broadcast (ADS-B) for crewed aircraft, and UAS Flight Records, necessitating detailed spatial–temporal data preprocessing for harmonization. The effectiveness of this GIS-based approach was demonstrated through a case study analyzing a critical interaction between a University UAS (Da-Jiang Innovations (DJI) M300) and a crewed Piper PA-28-181 near Purdue University Airport (KLAF). The resulting two-dimensional (2D) and three-dimensional (3D) models successfully enabled the visualization, quantitative measurement, and analysis of aircraft trajectories, confirming a minimum separation of approximately 459 feet laterally and 339 feet vertically. The findings confirm that a GIS offers a centralized, scalable platform for collating, analyzing, modeling, and visualizing air traffic operations, directly addressing ATM/UTM integration deficiencies. This GIS framework, especially when combined with advancements in sensor technologies and Artificial Intelligence (AI) for anomaly detection, is critical for modernizing NAS oversight, improving situational awareness, and establishing a foundation for real-time risk prediction and dynamic airspace management. Full article
(This article belongs to the Special Issue Urban Air Mobility Solutions: UAVs for Smarter Cities)
23 pages, 3795 KB  
Article
Aligning Supply and Demand: The Evolution of Community Public Sports Facilities in Shanghai, China
by Lyu Hui and Peng Ye
Sustainability 2026, 18(3), 1209; https://doi.org/10.3390/su18031209 (registering DOI) - 24 Jan 2026
Abstract
Community public sport facilities are core carriers of the national fitness public service system, with their supply–demand alignment directly linked to megacity governance efficiency and residents’ well-being. To address structural issues, such as “human–land imbalance” in facility layout, this study uses the 2010–2024 [...] Read more.
Community public sport facilities are core carriers of the national fitness public service system, with their supply–demand alignment directly linked to megacity governance efficiency and residents’ well-being. To address structural issues, such as “human–land imbalance” in facility layout, this study uses the 2010–2024 panel data from Shanghai’s 16 districts, applies supply–demand equilibrium theory, and integrates quantitative methods to analyze spatio-temporal supply–demand coupling and identify key influencing factors. The study yields four key findings: (1) The spatial distribution of facilities and population demonstrates a differentiated evolutionary trajectory marked by “central dispersion and suburban stability”. (2) Supply–demand alignment has continuously improved, as evidenced by the increase in coordinated administrative districts from six to thirteen. Nonetheless, the distance between sports facilities and population centers widened, suggesting that spatial adaptation remains incomplete. (3) Urban population growth exerts a significant positive impact on facility supply. Elasticity coefficients are generally high in suburban areas, while negative elasticity is detected in some central urban areas due to population outflow. (4) Facility construction intensity and residential activity intensity are core driving factors, with economic conditions, transportation infrastructure, and housing prices acting as key supporting factors. This study overcomes traditional aggregate-quantity research limitations, reveals megacity facility supply–demand “spatial mismatch” dynamics, and provides a scientific basis for targeted public sports facility layout and refined governance. Full article
(This article belongs to the Section Health, Well-Being and Sustainability)
Show Figures

Figure 1

22 pages, 3681 KB  
Article
The Pelagic Laser Tomographer for the Study of Suspended Particulates
by M. Dale Stokes, David R. Nadeau and James J. Leichter
J. Mar. Sci. Eng. 2026, 14(3), 247; https://doi.org/10.3390/jmse14030247 (registering DOI) - 24 Jan 2026
Abstract
An ongoing challenge in pelagic oceanography and limnology is to quantify and understand the distribution of suspended particles and particle aggregates with sufficient temporal and spatial fidelity to understand their dynamics. These particles include biotic (mesoplankton, organic fragments, fecal pellets, etc.) and abiotic [...] Read more.
An ongoing challenge in pelagic oceanography and limnology is to quantify and understand the distribution of suspended particles and particle aggregates with sufficient temporal and spatial fidelity to understand their dynamics. These particles include biotic (mesoplankton, organic fragments, fecal pellets, etc.) and abiotic (dusts, precipitates, sediments and flocks, anthropogenic materials, etc.) matter and their aggregates (i.e., marine snow), which form a large part of the total particulate matter > 200 μm in size in the ocean. The transport of organic material from surface waters to the deep-sea floor is of particular interest, as it is recognized as a key factor controlling the global carbon cycle and hence, a critical process influencing the sequestration of carbon dioxide from the atmosphere. Here we describe the development of an oceanographic instrument, the Pelagic Laser Tomographer (PLT), that uses high-resolution optical technology, coupled with post-processing analysis, to scan the 3D content of the water column to detect and quantify 3D distributions of small particles. Existing optical instruments typically trade sampling volume for spatial resolution or require large, complex platforms. The PLT addresses this gap by combining high-resolution laser-sheet imaging with large effective sampling volumes in a compact, deployable system. The PLT can generate spatial distributions of small particles (~100 µm and larger) across large water volumes (order 100–1000 m3) during a typical deployment, and allow measurements of particle patchiness over spatial scales to less than 1 mm. The instrument’s small size (6 kg), high resolution (~100 µm in each 3000 cm2 tomographic image slice), and analysis software provide a tool for pelagic studies that have typically been limited by high cost, data storage, resolution, and mechanical constraints, all usually necessitating bulky instrumentation and infrequent deployment, typically requiring a large research vessel. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

40 pages, 47197 KB  
Article
Remote Sensing and GIS Assessment of Drought Dynamics in the Ukrina River Basin, Bosnia and Herzegovina
by Luka Sabljić, Davorin Bajić, Slobodan B. Marković, Dragutin Adžić, Velibor Spalevic, Paul Sestraș, Dragoslav Pavić and Tin Lukić
Atmosphere 2026, 17(2), 124; https://doi.org/10.3390/atmos17020124 (registering DOI) - 24 Jan 2026
Abstract
The subject of this research is the exploration of the potential of remote sensing and Geographic Information Systems (GIS) for basin-scale spatio-temporal monitoring of drought and its impacts in the Ukrina River Basin, Bosnia and Herzegovina (BH), during the last decade (2015–2024). The [...] Read more.
The subject of this research is the exploration of the potential of remote sensing and Geographic Information Systems (GIS) for basin-scale spatio-temporal monitoring of drought and its impacts in the Ukrina River Basin, Bosnia and Herzegovina (BH), during the last decade (2015–2024). The aim is to integrate meteorological, hydrological, agricultural, and socio-economic drought signals and to delineate areas of long-term drought exposure. Meteorological drought was evaluated using CHIRPS precipitation and the Standardized Precipitation Index (SPI) calculated at 1-, 3-, 6-, and 12- month accumulation scales using Gamma fitting and a fixed long term reference period; hydrological drought was examined using available water-level records complemented by the Standardized Water Level Index (SWLI) and supported by correspondence with standardized ERA5-Land runoff anomalies; agricultural drought was mapped using remote sensing indices—the Temperature Condition Index (TCI), Vegetation Condition Index (VCI), and Vegetation Health Index (VHI)—calculated from MODIS satellite data; and socio-economic effects were assessed using municipal crop-production statistics (2015–2019). The results indicate that drought conditions were most pronounced in 2015, 2017, 2021, and especially 2022, showing consistent agreement between precipitation deficits, hydrological responses, and vegetation stress, while 2016, 2018–2020, 2023, and 2024 were generally more favorable. As a key novelty, a persistent drought-prone zone was delineated by intersecting drought-affected areas across major episodes, providing a basin-scale identification of chronic drought hotspots for a river basin in BH. The persistent zone covers 40.02% of the basin and spans nine cities and municipalities, with >93% located in Prnjavor, Derventa, Stanari, and Teslić. Hotspots are concentrated mainly in lowlands below 400 m a.s.l., with a statistically significant concentration across lower elevation classes, indicating higher long-term exposure in the central and northern valley sectors, and land use overlay further highlights high relative exposure of productive land. Overall, the integrated remote sensing and GIS framework strengthens drought monitoring by providing spatially explicit and repeatable evidence to support targeted adaptation planning and drought-risk management. Full article
Show Figures

Figure 1

26 pages, 14479 KB  
Article
SpeQNet: Query-Enhanced Spectral Graph Filtering for Spatiotemporal Forecasting
by Zongyao Feng and Konstantin Markov
Appl. Sci. 2026, 16(3), 1176; https://doi.org/10.3390/app16031176 - 23 Jan 2026
Abstract
Accurate spatiotemporal forecasting underpins high-stakes decision making in smart urban systems, from traffic control and energy scheduling to environment monitoring. Yet two persistent gaps limit current models: (i) spatial modules are often biased toward low-pass smoothing and struggle to reconcile slow global trends [...] Read more.
Accurate spatiotemporal forecasting underpins high-stakes decision making in smart urban systems, from traffic control and energy scheduling to environment monitoring. Yet two persistent gaps limit current models: (i) spatial modules are often biased toward low-pass smoothing and struggle to reconcile slow global trends with sharp local dynamics; and (ii) the graph structure required for forecasting is frequently latent, while learned graphs can be unstable when built from temporally derived node features alone. We propose SpeQNet, a query-enhanced spectral graph filtering framework that jointly strengthens node representations and graph construction while enabling frequency-selective spatial reasoning. SpeQNet injects global spatial context into temporal embeddings via lightweight learnable spatiotemporal queries, learns a task-oriented adaptive adjacency matrix, and refines node features with an enhanced ChebNetII-based spectral filtering block equipped with channel-wise recalibration and nonlinear refinement. Across twelve real-world benchmarks spanning traffic, electricity, solar power, and weather, SpeQNet achieves state-of-the-art performance and delivers consistent gains on large-scale graphs. Beyond accuracy, SpeQNet is interpretable and robust: the learned spectral operators exhibit a consistent band-stop-like frequency shaping behavior, and performance remains stable across a wide range of Chebyshev polynomial orders. These results suggest that query-enhanced spatiotemporal representation learning and adaptive spectral filtering form a complementary and effective foundation for effective spatiotemporal forecasting. Full article
(This article belongs to the Special Issue Research and Applications of Artificial Neural Network)
20 pages, 49658 KB  
Article
Dead Chicken Identification Method Based on a Spatial-Temporal Graph Convolution Network
by Jikang Yang, Chuang Ma, Haikun Zheng, Zhenlong Wu, Xiaohuan Chao, Cheng Fang and Boyi Xiao
Animals 2026, 16(3), 368; https://doi.org/10.3390/ani16030368 - 23 Jan 2026
Abstract
In intensive cage rearing systems, accurate dead hen detection remains difficult due to complex environments, severe occlusion, and the high visual similarity between dead hens and live hens in a prone posture. To address these issues, this study proposes a dead hen identification [...] Read more.
In intensive cage rearing systems, accurate dead hen detection remains difficult due to complex environments, severe occlusion, and the high visual similarity between dead hens and live hens in a prone posture. To address these issues, this study proposes a dead hen identification method based on a Spatial-Temporal Graph Convolutional Network (STGCN). Unlike conventional static image-based approaches, the proposed method introduces temporal information to enable dynamic spatial-temporal modeling of hen health states. First, a multimodal fusion algorithm is applied to visible light and thermal infrared images to strengthen multimodal feature representation. Then, an improved YOLOv7-Pose algorithm is used to extract the skeletal keypoints of individual hens, and the ByteTrack algorithm is employed for multi-object tracking. Based on these results, spatial-temporal graph-structured data of hens are constructed by integrating spatial and temporal dimensions. Finally, a spatial-temporal graph convolution model is used to identify dead hens by learning spatial-temporal dependency features from skeleton sequences. Experimental results show that the improved YOLOv7-Pose model achieves an average precision (AP) of 92.8% in keypoint detection. Based on the constructed spatial-temporal graph data, the dead hen identification model reaches an overall classification accuracy of 99.0%, with an accuracy of 98.9% for the dead hen category. These results demonstrate that the proposed method effectively reduces interference caused by feeder occlusion and ambiguous visual features. By using dynamic spatial-temporal information, the method substantially improves robustness and accuracy of dead hen detection in complex cage rearing environments, providing a new technical route for intelligent monitoring of poultry health status. Full article
(This article belongs to the Special Issue Welfare and Behavior of Laying Hens)
Show Figures

Figure 1

31 pages, 27773 KB  
Article
Machine Learning Techniques for Modelling the Water Quality of Coastal Lagoons
by Juan Marcos Lorente-González, José Palma, Fernando Jiménez, Concepción Marcos and Angel Pérez-Ruzafa
Water 2026, 18(3), 297; https://doi.org/10.3390/w18030297 - 23 Jan 2026
Abstract
This study evaluates the performance of several machine learning models in predicting dissolved oxygen concentration in the surface layer of the Mar Menor coastal lagoon. In recent years, this ecosystem has suffered a continuous process of eutrophication and episodes of hypoxia, mainly due [...] Read more.
This study evaluates the performance of several machine learning models in predicting dissolved oxygen concentration in the surface layer of the Mar Menor coastal lagoon. In recent years, this ecosystem has suffered a continuous process of eutrophication and episodes of hypoxia, mainly due to continuous influx of nutrients from agricultural activities, causing severe water quality deterioration and mortality of local flora and fauna. In this context, monitoring the ecological status of the Mar Menor and its watershed is essential to understand the environmental dynamics that trigger these dystrophic crises. Using field data, this study evaluates the performance of eight predictive modelling approaches, encompassing regularised linear regression methods (Ridge, Lasso, and Elastic Net), instance-based learning (k-nearest neighbours, KNN), kernel-based regression (support vector regression with a radial basis function kernel, SVR-RBF), and tree-based ensemble techniques (Random Forest, Regularised Random Forest, and XGBoost), under multiple experimental settings involving spatial variability and varying time lags applied to physicochemical and meteorological predictors. The results showed that incorporating time lags of approximately two weeks in physicochemical variables markedly improves the models’ ability to generalise to new data. Tree-based regression models achieved the best overall performance, with eXtreme Gradient Boosting providing the highest evaluation metrics. Finally, analysing predictions by sampling point reveals spatial patterns, underscoring the influence of local conditions on prediction quality and the need to consider both spatial structure and temporal inertia when modelling complex coastal lagoon systems. Full article
Show Figures

Figure 1

30 pages, 16556 KB  
Article
Assimilating FY4A AMV Winds with the Nudging–Forced–3DVar Method for Promoting the Numerical Nowcasting of “7.20” Rainstorm over Zhengzhou
by Yakai Guo, Aifang Su, Changliang Shao, Guanjun Niu, Dongmei Xu and Yanna Gao
Remote Sens. 2026, 18(3), 379; https://doi.org/10.3390/rs18030379 - 23 Jan 2026
Abstract
Geostationary atmospheric motion vectors (e.g., FY4A AMVs) are routine mid-upper atmospheric observations used in numerical weather prediction (NWP) models, yet their complex spatiotemporal errors and assimilation limitations, i.e., high-temporal/coarse-spatial data and large-scale-adjustment/direct-assimilation scheme, leave unclear impacts of AMVs assimilation on nowcasting forecasts. To [...] Read more.
Geostationary atmospheric motion vectors (e.g., FY4A AMVs) are routine mid-upper atmospheric observations used in numerical weather prediction (NWP) models, yet their complex spatiotemporal errors and assimilation limitations, i.e., high-temporal/coarse-spatial data and large-scale-adjustment/direct-assimilation scheme, leave unclear impacts of AMVs assimilation on nowcasting forecasts. To this end, a Nudging-Forced–3DVar scheme (NFV) is designed within a multi-scale (i.e., 12, 4, and 1 km) regional NWP framework to exploit AMVs characteristics; ablation experiments for the Zhengzhou “7.20” rainstorm isolate Nudging and 3DVar impacts on assimilation and nowcasting. Results show the following: (1) large-scale Nudging and high-resolution 3DVar both improve mid-upper analyses, with the former ingesting more observations; (2) Nudging retains large-scale background updates but yields significant misses, whereas 3DVar intensifies rainfall extremes yet blurs fine structures; (3) NFV merges its strengths, modulating deep convection through upper-level systems and markedly improving rainfall spatiotemporal patterns. Therefore, NFV is recommended for the FY4A AMVs’ future numerical nowcasting, which provides useful guidance for the regional application of geostationary 3D winds. Full article
(This article belongs to the Section Atmospheric Remote Sensing)
Show Figures

Figure 1

23 pages, 6538 KB  
Article
Multi-Scale Graph-Decoupling Spatial–Temporal Network for Traffic Flow Forecasting in Complex Urban Environments
by Hongtao Li, Wenzheng Liu and Huaixian Chen
Electronics 2026, 15(3), 495; https://doi.org/10.3390/electronics15030495 - 23 Jan 2026
Abstract
Accurate traffic flow forecasting is a fundamental component of Intelligent Transportation Systems and proactive urban mobility management. However, the inherent complexity of urban traffic flow, characterized by non-stationary dynamics and multi-scale temporal dependencies, poses significant modeling challenges. Existing spatio-temporal models often struggle to [...] Read more.
Accurate traffic flow forecasting is a fundamental component of Intelligent Transportation Systems and proactive urban mobility management. However, the inherent complexity of urban traffic flow, characterized by non-stationary dynamics and multi-scale temporal dependencies, poses significant modeling challenges. Existing spatio-temporal models often struggle to reconcile the discrepancy between static physical road constraints and highly dynamic, state-dependent spatial correlations, while their reliance on fixed temporal receptive fields limits the capacity to disentangle overlapping periodicities and stochastic fluctuations. To bridge these gaps, this study proposes a novel Multi-scale Graph-Decoupling Spatial–temporal Network (MS-GSTN). MS-GSTN leverages a Hierarchical Moving Average decomposition module to recursively partition raw traffic flow signals into constituent patterns across diverse temporal resolutions, ranging from systemic daily trends to high-frequency transients. Subsequently, a Tri-graph Spatio-temporal Fusion module synergistically models scale-specific dependencies by integrating an adaptive temporal graph, a static spatial graph, and a data-driven dynamic spatial graph within a unified architecture. Extensive experiments on four large-scale real-world benchmark datasets demonstrate that MS-GSTN consistently achieves superior forecasting accuracy compared to representative state-of-the-art models. Quantitatively, the proposed framework yields an overall reduction in Mean Absolute Error of up to 6.2% and maintains enhanced stability across multiple forecasting horizons. Visualization analysis further confirms that MS-GSTN effectively identifies scale-dependent spatial couplings, revealing that long-term traffic flow trends propagate through global network connectivity while short-term variations are governed by localized interactions. Full article
Show Figures

Figure 1

26 pages, 1205 KB  
Article
Iceberg Model as a Digital Risk Twin for the Health Monitoring of Complex Engineering Systems
by Igor Kabashkin
Mathematics 2026, 14(2), 385; https://doi.org/10.3390/math14020385 - 22 Jan 2026
Abstract
This paper introduces an iceberg-based digital risk twin (DRT) framework for the health monitoring of complex engineering systems. The proposed model transforms multidimensional sensor and contextual data into a structured, interpretable three-dimensional geometry that captures both observable and latent risk components. Each monitored [...] Read more.
This paper introduces an iceberg-based digital risk twin (DRT) framework for the health monitoring of complex engineering systems. The proposed model transforms multidimensional sensor and contextual data into a structured, interpretable three-dimensional geometry that captures both observable and latent risk components. Each monitored parameter is represented as a vertical geometric sheet whose height encodes a normalized risk level, producing an evolving iceberg structure in which the visible and submerged regions distinguish emergent anomalies from latent degradation. A formal mathematical formulation is developed, defining the mappings from the risk vector to geometric height functions, spatial layout, and surface composition. The resulting parametric representation provides both analytical tractability and intuitive visualization. A case study involving an aircraft fuel system demonstrates the capacity of the DRT to reveal dominant risk drivers, parameter asymmetries, and temporal trends not easily observable in traditional time-series analysis. The model is shown to integrate naturally into AI-enabled health management pipelines, providing an interpretable intermediary layer between raw data streams and advanced diagnostic or predictive algorithms. Owing to its modular structure and domain-agnostic formulation, the DRT approach is applicable beyond aviation, including power grids, rail systems, and industrial equipment monitoring. The results indicate that the iceberg representation offers a promising foundation for enhancing explainability, situational awareness, and decision support in the monitoring of complex engineering systems. Full article
22 pages, 1980 KB  
Article
Multi-Temporal Point Cloud Alignment for Accurate Height Estimation of Field-Grown Leafy Vegetables
by Qian Wang, Kai Yuan, Zuoxi Zhao, Yangfan Luo and Yuanqing Shui
Agriculture 2026, 16(2), 280; https://doi.org/10.3390/agriculture16020280 - 22 Jan 2026
Abstract
Accurate measurement of plant height in leafy vegetables is challenging due to their short stature, high planting density, and severe canopy occlusion during later growth stages. These factors often limit the reliability of single-plant monitoring across the full growth cycle in open-field environments. [...] Read more.
Accurate measurement of plant height in leafy vegetables is challenging due to their short stature, high planting density, and severe canopy occlusion during later growth stages. These factors often limit the reliability of single-plant monitoring across the full growth cycle in open-field environments. To address this, we propose a multi-temporal point cloud alignment method for accurate plant height measurement, focusing on Choy Sum (Brassica rapa var. parachinensis). The method estimates plant height by calculating the vertical distance between the canopy and the ground. Multi-temporal point cloud maps are reconstructed using an enhanced Oriented FAST and Rotated BRIEF–Simultaneous Localization and Mapping (ORB-SLAM3) algorithm. A fixed checkerboard calibration board, leveled using a spirit level, ensures proper vertical alignment of the Z-axis and unifies coordinate systems across growth stages. Ground and plant points are separated using the Excess Green (ExG) index. During early growth stages, when the soil is minimally occluded, ground point clouds are extracted and used to construct a high-precision reference ground model through Cloth Simulation Filtering (CSF) and Kriging interpolation, compensating for canopy occlusion and noise. In later growth stages, plant point cloud data are spatially aligned with this reconstructed ground surface. Individual plants are identified using an improved Euclidean clustering algorithm, and consistent measurement regions are defined. Within each region, a ground plane is fitted using the Random Sample Consensus (RANSAC) algorithm to ensure alignment with the X–Y plane. Plant height is then determined by the elevation difference between the canopy and the interpolated ground surface. Experimental results show mean absolute errors (MAEs) of 7.19 mm and 18.45 mm for early and late growth stages, respectively, with coefficients of determination (R2) exceeding 0.85. These findings demonstrate that the proposed method provides reliable and continuous plant height monitoring across the full growth cycle, offering a robust solution for high-throughput phenotyping of leafy vegetables in field environments. Full article
(This article belongs to the Topic Digital Agriculture, Smart Farming and Crop Monitoring)
25 pages, 2271 KB  
Article
Identification of the Spatio-Temporal Evolution Characteristics and Driving Factors of Ecosystem Service Supply and Demand in Typical Coal-Grain Overlapping Area, Eastern China
by Qian Niu, Di Zhu, Yinghong Wang, Zhongyi Ding and Guoqiang Qiu
Land 2026, 15(1), 201; https://doi.org/10.3390/land15010201 - 22 Jan 2026
Abstract
Investigating the spatio-temporal differentiation patterns and driving factors of ecosystem services (ESs) supply and demand is of great significance for early warning of ecosystem imbalance risks and identifying regional natural resource supply–demand conflicts. This study takes the typical coal-grain overlapping area (CGOA) in [...] Read more.
Investigating the spatio-temporal differentiation patterns and driving factors of ecosystem services (ESs) supply and demand is of great significance for early warning of ecosystem imbalance risks and identifying regional natural resource supply–demand conflicts. This study takes the typical coal-grain overlapping area (CGOA) in Eastern China as the research object, dividing it into mining townships (MT) and non-mining townships (NMT) for comparative analysis. By integrating the InVEST model, ESs supply–demand ratio (ESDR) index, four-quadrant model, and the XGBoost-SHAP algorithm, the study systematically reveals the spatiotemporal differentiation characteristics and driving mechanisms of ESs supply and demand from 2000 to 2020. The results indicated that: (1) grain production (GP) service maintained a continuous supply–demand surplus, with the ESDR of NMT areas surpassing that of MT areas in 2020. The ESDR of water yield (WY) service was significantly influenced by interannual fluctuations in supply, showing deficits in multiple years. The decline in carbon sequestration (CS) service and sharp increase in carbon emissions led to a continuous decrease in the ESDR of CS service, with MT areas facing a higher risk of carbon deficit. (2) The spatial heterogeneity of ESs supply and demand was significant, with GP and CS services exhibiting a typical urban-rural dual spatial structure, and the overall region was dominated by the Type Ⅱ ESs supply–demand matching (ESDM) pattern. The ESDR of WY service generally decreases from Southeast to Northwest across the region. with the Type Ⅳ ESDM pattern dominating in most years. (3) Human activities are the core driving force shaping the supply–demand patterns of ESs. Among these, land use intensity exhibits a nonlinear effect, high population density demonstrates an inhibitory effect, and MT areas are more significantly affected by coal mining subsidence. Natural environmental factors primarily drive WY service. The research findings can provide a scientific reference for the coordinated allocation of regional natural resources and the sustainable development of the human–land system. Full article
18 pages, 3948 KB  
Article
A Model-Based Spatio-Temporal Behavior Decider for Autonomous Driving
by Yiwen Huang, Huikang Zhang, Junchan Liao, Ruhong Zhuang, Honggou Yang and Xianming Liu
Machines 2026, 14(1), 127; https://doi.org/10.3390/machines14010127 - 22 Jan 2026
Abstract
Spatio-temporal planning has emerged as a robust methodology for solving trajectory planning challenges in complex autonomous driving scenarios. By integrating both spatial and temporal variables, this approach facilitates the generation of highly accurate, human-like, and interpretable trajectory decisions. This paper presents a novel [...] Read more.
Spatio-temporal planning has emerged as a robust methodology for solving trajectory planning challenges in complex autonomous driving scenarios. By integrating both spatial and temporal variables, this approach facilitates the generation of highly accurate, human-like, and interpretable trajectory decisions. This paper presents a novel learned planning model-based spatio-temporal behavior decider, engineered to produce optimal and explainable driving trajectories with enhanced efficiency and passenger comfort. The proposed decider systematically evaluates the action space of the ego-vehicle, selecting the trajectory that optimizes overall driving performance. This method is particularly significant for autonomous driving systems, as it ensures the generation of human-like trajectories while maintaining high driving efficiency. The efficacy of the proposed framework has been comprehensively validated through rigorous simulations and real-world experimental trials on a commercial passenger vehicle platform, demonstrating its practical utility and performance advantages. Full article
(This article belongs to the Special Issue Trajectory Planning for Autonomous Vehicles: State of the Art)
Show Figures

Figure 1

23 pages, 9954 KB  
Article
Multi-Output Random Forest Model for Spatial Drought Prediction
by Mir Jafar Sadegh Safari
Sustainability 2026, 18(2), 1130; https://doi.org/10.3390/su18021130 - 22 Jan 2026
Abstract
In regions with limited meteorological monitoring systems, spatial drought modeling is of importance for efficient water resource management. This study recommends an alternative drought modeling strategy for Standardized Precipitation Evapotranspiration Index (SPEI) prediction at multiple target stations using data from neighboring stations. The [...] Read more.
In regions with limited meteorological monitoring systems, spatial drought modeling is of importance for efficient water resource management. This study recommends an alternative drought modeling strategy for Standardized Precipitation Evapotranspiration Index (SPEI) prediction at multiple target stations using data from neighboring stations. The Multi-Output Random Forest (MORF) model is implemented in this study to consider the spatial correlations among stations for the simultaneous prediction of SPEI for multiple stations instead of training independent models for each station. The efficiency of MORF is further compared to Multi-Output Support Vector Regression (MOSVR) and three baselines; a single-output RF, a monthly climatology model, and a persistence model. In addition to statistical performance criteria, drought characteristics are evaluated using intensity–duration–frequency analysis for three temporal scales (SPEI-3, SPEI-6, and SPEI-12). Results demonstrate that MORF outperformed MOSVR and RF in approximating observed drought intensity, duration, and frequency under moderate, severe, and extreme drought scenarios. Furthermore, spatial analysis reveals that MORF accurately captured the seasonal evolution of drought conditions including onset and recovery phases. The remarkable success of MORF in contrast to MOSVR and three traditional baselines can be explained by its ability to detect nonlinear and complex interactions of drought condition among various neighboring stations. This study emphasizes the promise of multi-output machine learning algorithms for drought monitoring in water resource management and climate adaptation planning in data-scarce regions. Full article
(This article belongs to the Section Sustainable Water Management)
Show Figures

Figure 1

25 pages, 4273 KB  
Article
A Multi-Task Learning and GCN-Transformer-Based Forecasting Method for Day-Ahead Power of Wind-Solar Clusters
by Jianhong Jiang, Yi He, Yumo Zhang, Jian Yan, Zhiwei Lv, Zifan Liu, Haonan Dai and Zhao Zhen
Electronics 2026, 15(2), 462; https://doi.org/10.3390/electronics15020462 - 21 Jan 2026
Viewed by 45
Abstract
With the rapid increase in renewable energy penetration and the expansion of multi-regional interconnected power systems, there is a growing need to forecast the power output of renewable energy power plant clusters within a region. Existing methods primarily utilize spatio-temporal correlations between stations [...] Read more.
With the rapid increase in renewable energy penetration and the expansion of multi-regional interconnected power systems, there is a growing need to forecast the power output of renewable energy power plant clusters within a region. Existing methods primarily utilize spatio-temporal correlations between stations to directly predict cluster output, but they still have the following shortcomings: (1) lack of analysis and utilization of the similar output characteristics between wind and solar power stations; and (2) inadequate integration of individual plant characteristics and adaptability across different prediction spatial scales. Therefore, this study proposes a method for forecasting and correcting daily power generation zones of wind–solar clusters based on output similarity clustering. First, the output similarity characteristics of wind and solar plants within the cluster are evaluated, and a similarity matrix is constructed to cluster the plants into sub-clusters. Second, a single-site power prediction model based on the BiLSTM model and multi-task learning is constructed to aggregate preliminary power prediction results from individual sites within sub-clusters. Finally, a cluster power prediction correction model based on the GCN-Transformer model is developed to refine preliminary predictions using spatio-temporal correlations between sub-clusters. Simulation results demonstrate that the proposed method, through its integrated approach combining clustering partitioning, multi-task learning, and spatio-temporal correlation correction within a comprehensive forecasting workflow, achieves improvements of 15.2323%, 19.0581%, and 0.0283% over the baseline GCN model in terms of MAE, RMSE, and R-score, respectively. This effectively enhances the accuracy of power forecasting for wind-solar power plant clusters. Full article
Show Figures

Figure 1

Back to TopTop