Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (126)

Search Parameters:
Keywords = sparse system identification

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 2206 KB  
Article
Adaptive Bayesian System Identification for Long-Term Forecasting of Industrial Load and Renewables Generation
by Lina Sheng, Zhixian Wang, Xiaowen Wang and Linglong Zhu
Electronics 2026, 15(3), 530; https://doi.org/10.3390/electronics15030530 - 26 Jan 2026
Viewed by 113
Abstract
The expansion of renewables in modern power systems and the coordinated development of upstream and downstream industrial chains are promoting a shift on the utility side from traditional settlement by energy toward operation driven by data and models. Industrial electricity consumption data exhibit [...] Read more.
The expansion of renewables in modern power systems and the coordinated development of upstream and downstream industrial chains are promoting a shift on the utility side from traditional settlement by energy toward operation driven by data and models. Industrial electricity consumption data exhibit pronounced multi-scale temporal structures and sectoral heterogeneity, which makes unified long-term load and generation forecasting while maintaining accuracy, interpretability, and scalability a challenge. From a modern system identification perspective, this paper proposes a System Identification in Adaptive Bayesian Framework (SIABF) for medium- and long-term industrial load forecasting based on daily freeze electricity time series. By combining daily aggregation of high-frequency data, frequency domain analysis, sparse identification, and long-term extrapolation, we first construct daily freeze series from 15 min measurements, and then we apply discrete Fourier transforms and a spectral complexity index to extract dominant periodic components and build an interpretable sinusoidal basis library. A sparse regression formulation with 1 regularization is employed to select a compact set of key basis functions, yielding concise representations of sector and enterprise load profiles and naturally supporting multivariate and joint multi-sector modeling. Building on this structure, we implement a state-space-implicit physics-informed Bayesian forecasting model and evaluate it on real data from three representative sectors, namely, steel, photovoltaics, and chemical, using one year of 15 min measurements. Under a one-month-ahead evaluation using one year of 15 min measurements, the proposed framework attains a Mean Absolute Percentage Error (MAPE) of 4.5% for a representative PV-related customer case and achieves low single-digit MAPE for high-inertia sectors, often outperforming classical statistical models, sparse learning baselines, and deep learning architectures. These results should be interpreted as indicative given the limited time span and sample size, and broader multi-year, population-level validation is warranted. Full article
(This article belongs to the Section Systems & Control Engineering)
23 pages, 1715 KB  
Article
From Identification to Guiding Action: A Systematic Heuristic to Prioritise Drivers of Change for Water Management
by Jo Mummery and Leonie J. Pearson
Water 2026, 18(2), 278; https://doi.org/10.3390/w18020278 - 21 Jan 2026
Viewed by 117
Abstract
Global water management faces a critical challenge: whilst scholarly consensus recognises that multiple, interacting drivers fundamentally shape water availability and management capacity, operational governance frameworks fail to systematically incorporate this understanding. This disconnect is particularly acute in public good contexts where incomplete knowledge, [...] Read more.
Global water management faces a critical challenge: whilst scholarly consensus recognises that multiple, interacting drivers fundamentally shape water availability and management capacity, operational governance frameworks fail to systematically incorporate this understanding. This disconnect is particularly acute in public good contexts where incomplete knowledge, diverse stakeholder values, and statutory planning mandates create distinct challenges. Using Australia’s Murray–Darling Basin as a pilot case, this research develops and demonstrates a rapid, policy-relevant heuristic for identifying, prioritising, and incorporating drivers of change in complex socio-ecological water systems. Through structured participatory deliberation with 70 experts spanning research, policy, industry, and community sectors across three sequential workshops and 15 semi-structured interviews, we systematically identified key drivers across environmental, governance, economic, social, and legacy dimensions. A risk and sensitivity assessment framework enabled prioritisation based on impact, vulnerability, and urgency. Climate change, drought, water quality events, and cumulative impacts emerged as the highest-priority future drivers, with climate change acting as a threat multiplier, whilst governance drivers show declining relative significance. Using these methodological innovations, we synthesise the I-PLAN heuristic: five interdependent dimensions (Integrative Knowledge, Prioritisation for Management, Linkages between Drivers, Adaptive Agendas, and Normative Collaboration) that provide water planners with a transferable, operational tool for driver identification and bridging to planning and management in data-sparse contexts. Full article
Show Figures

Figure 1

22 pages, 1293 KB  
Article
A Meta-Contrastive Optimization Framework for Multilabel Bug Dependency Classification
by Jantima Polpinij, Manasawee Kaenampornpan and Bancha Luaphol
Mathematics 2026, 14(2), 334; https://doi.org/10.3390/math14020334 - 19 Jan 2026
Viewed by 113
Abstract
Software maintenance and release management demand proper identification of bug dependencies since priority violations or unresolved dependent issues can often lead to a chain of failures. However, dependency annotations in bug reports are extremely sparse and imbalanced. These dependencies are often expressed implicitly [...] Read more.
Software maintenance and release management demand proper identification of bug dependencies since priority violations or unresolved dependent issues can often lead to a chain of failures. However, dependency annotations in bug reports are extremely sparse and imbalanced. These dependencies are often expressed implicitly through natural language descriptions rather than explicit metadata. This creates challenges for automated multilabel dependency classification systems. To tackle these drawbacks, we introduce a meta-contrastive optimization framework (MCOF). This framework integrates established learning paradigms to enhance transformer-based classification through two key mechanisms: (1) a meta-contrastive objective adapted for enhancing discriminative representation learning under few-shot supervision, particularly for rare dependency types, and (2) dependency-aware Laplacian regularization that captures relational structures among different dependency types, reducing confusion between semantically related labels. Experimental evaluation on a real-world dataset demonstrates that MCOF achieves significant improvement over strong baselines, including BM25-based clustering and standard BERT fine-tuning. The framework attains a micro-F1 score of 0.76 and macro-F1 score of 0.58, while reducing hamming loss to 0.14. Label-wise analysis shows significant performance gain on low-frequency dependency types, with improvements of up to 16% in F1 score. Runtime analysis exhibits only modest inference overhead at 15%, confirming that MCOF remains practical for deployment in CI/AT pipelines. These results demonstrate that integrating meta-contrastive learning and structural regularization is an effective approach for robust bug dependency discovery. The framework provides both practical and accurate solutions for supporting real-world software engineering workflows. Full article
Show Figures

Figure 1

17 pages, 1025 KB  
Article
Identification of a Muscle-Invasive Bladder Carcinoma Molecular Subtype of Poor Responders to Neoadjuvant Chemotherapy and High Expression of Targetable Biomarkers
by Lucía Trilla-Fuertes, Jorge Pedregosa-Barbas, Eugenia García-Fernández, Francisco Zambrana, Imanol Martínez-Salas, Pablo Gajate, Fernando Becerril-Gómez, Pedro Lalanda-Delgado, Antje Dittmann, Rocío López-Vacas, Laura Kunz, Gustavo Rubio, Sandra Nieto-Torrero, Ana Pertejo, Pilar González-Peramato, Juan Ángel Fresno Vara, Angelo Gámez-Pozo and Álvaro Pinto-Marín
Int. J. Mol. Sci. 2026, 27(1), 476; https://doi.org/10.3390/ijms27010476 - 2 Jan 2026
Viewed by 612
Abstract
Neoadjuvant chemotherapy (NACT) is the standard treatment for muscle-invasive bladder carcinoma (MIBC), but its efficacy varies significantly among patients. The aim of this study is the identification of biomarkers and biological processes related to the response to neoadjuvant chemotherapy (NACT) in muscle-invasive bladder [...] Read more.
Neoadjuvant chemotherapy (NACT) is the standard treatment for muscle-invasive bladder carcinoma (MIBC), but its efficacy varies significantly among patients. The aim of this study is the identification of biomarkers and biological processes related to the response to neoadjuvant chemotherapy (NACT) in muscle-invasive bladder carcinoma (MIBC). Fifty-eight transurethral resection (TURBT) samples and thirty cystectomy samples from NACT non-responders were analyzed using mass spectrometry. Samples were classified with sparse k-means and consensus clustering. Protein networks were built using probabilistic graphical models, grouped into functional nodes, and analyzed for activity differences. Gene set enrichment analysis was applied to identify resistance mechanisms, and results were validated using The Cancer Genome Atlas (TCGA) cohort. Proteomic analysis revealed two independent classifications in TURBT samples. The first (Layer1) divided tumors into three groups, including one NACT non-responder subtype not aligned with traditional luminal or basal classifications but characterized by high expression of targetable markers NECTIN4 and Her2. The second (Layer3) separated luminal-papillary tumors from luminal-infiltrated/luminal and basal tumors. While Layer3 groups did not differ in NACT response, they showed distinct disease-free survival outcomes. Importantly, complete response to NACT was linked to improved survival in luminal subgroups but not in basal tumors, suggesting subtype-specific prognostic implications. Finally, analysis of cystectomy samples identified unique mechanisms of resistance for each subgroup, suggesting tailored therapeutic approaches. Two classification systems were defined as follows: one identified a proteomics-based non-responder group with actionable targets, and the other linked tumor subtype to prognosis. Distinct resistance mechanisms suggest opportunities for subtype-specific therapies, supporting improved management and treatment development for MIBC patients. Full article
(This article belongs to the Section Molecular Oncology)
Show Figures

Figure 1

47 pages, 31889 KB  
Review
Exploring the Design, Modeling, and Identification of Beneficial Nonlinear Restoring Forces: A Review
by Qinghua Liu
Appl. Sci. 2026, 16(1), 413; https://doi.org/10.3390/app16010413 - 30 Dec 2025
Viewed by 292
Abstract
Exploring the design of beneficial nonlinear restoring force structures has become a highly popular topic due to their extensive applications in energy harvesting, actuation, energy absorption, robotics, etc. However, the current literature lacks a systematic review and classification that addresses the design, modeling, [...] Read more.
Exploring the design of beneficial nonlinear restoring force structures has become a highly popular topic due to their extensive applications in energy harvesting, actuation, energy absorption, robotics, etc. However, the current literature lacks a systematic review and classification that addresses the design, modeling, and parameter identification of nonlinear restoring forces. Thus, the present paper provides a thorough examination of the latest advancements in the design of nonlinear restoring forces, as well as modeling and parameter identification in contemporary beneficial nonlinear designs. The seven design methodologies, namely magnetic coupling, oblique spring linkages, static or dynamic preloading, metamaterials, bio-inspired, MEMS (Micro-Electromechanical Systems) manufacturing, and dry friction applied approaches, are classified. The polynomial, hysteretic, and piecewise linear models are summarized for nonlinear restoring force characterization. The system parameter identification methods covering restoring force surface, Hilbert transform, time-frequency analysis, nonlinear subspace identification, unscented Kalman filter, optimization algorithms, physics-informed neural networks, and data-driven sparse regression are reviewed. Moreover, possible enhancement strategies for nonlinear system identification of nonlinear restoring forces are presented. Finally, broader implications and future directions for the design, characterization, and identification of nonlinear restoring forces are discussed. Full article
(This article belongs to the Special Issue New Challenges in Nonlinear Vibration and Aeroelastic Analysis)
Show Figures

Figure 1

12 pages, 1598 KB  
Article
Comparison of High-Frequency Circular Array Imaging Algorithms for Intravascular Ultrasound Imaging Simulations
by Weiting Liu, Zhiqing Zhang, Kanjie Du, Mang I. Vai and Qingqing Ke
Electronics 2025, 14(23), 4623; https://doi.org/10.3390/electronics14234623 - 25 Nov 2025
Viewed by 437
Abstract
A circular array transducer with high frequency and small aperture size is highly desired for intravascular ultrasound (IVUS) imaging application. With the breakthrough of array transducer techniques, high-frequency circular array transducers with the advantages of high frame rate and high resolution have been [...] Read more.
A circular array transducer with high frequency and small aperture size is highly desired for intravascular ultrasound (IVUS) imaging application. With the breakthrough of array transducer techniques, high-frequency circular array transducers with the advantages of high frame rate and high resolution have been developed and manufactured. Focusing on the development of a matched high-frequency imaging algorithms, this study introduces apodization functions into 55 MHz circular-array IVUS imaging, proposes a circular-array-specific apodization model, and breaks the lateral-resolution limit inherent to conventional delay-and-sum (DAS) beamforming. In the study, three typical algorithms—synthetic aperture (SA), apodized synthetic aperture (ASA), and sparse synthetic aperture (SSA)—are investigated in order to well achieve an effective imaging result for our newly derived circular array transducer with 55 MHz. In the scatterer’s simulation, at a depth of 1.5 mm, the ASA algorithm improves the lateral resolution from 260 μm for conventional SA to 175 μm (a 33% enhancement), while tripling the frame rate. Meanwhile, SSA maintains a resolution of 300 μm and reduces the data volume by 50%, laying the groundwork for real-time 3D imaging. Further phantom imaging testing shows that the SA algorithm has the best imaging effect on regional defects. The ASA algorithm has the best imaging effect on point defects while improving the imaging frame rate. This study provides insights and a foundation for optimizing circular-array intravascular ultrasound imaging, the proposed ASA model can be directly ported to existing 40–60 MHz circular-array IVUS systems, offering a new route for accurate early-plaque identification. Full article
(This article belongs to the Special Issue Signal and Image Processing for Theranostic Ultrasound)
Show Figures

Figure 1

31 pages, 9036 KB  
Article
Algorithmic Investigation of Complex Dynamics Arising from High-Order Nonlinearities in Parametrically Forced Systems
by Barka Infal, Adil Jhangeer and Muhammad Muddassar
Algorithms 2025, 18(11), 681; https://doi.org/10.3390/a18110681 - 25 Oct 2025
Viewed by 2359
Abstract
The geometric content of chaos in nonlinear systems with multiple stabilities of high order is a challenge to computation. We introduce a single algorithmic framework to overcome this difficulty in the present study, where a parametrically forced oscillator with cubic–quintic nonlinearities is considered [...] Read more.
The geometric content of chaos in nonlinear systems with multiple stabilities of high order is a challenge to computation. We introduce a single algorithmic framework to overcome this difficulty in the present study, where a parametrically forced oscillator with cubic–quintic nonlinearities is considered as an example. The framework starts with the Sparse Identification of Nonlinear Dynamics (SINDy) algorithm, which is a self-learned algorithm that extracts an interpretable and correct model by simply analyzing time-series data. The resulting parsimonious model is well-validated, and besides being highly predictive, it also offers a solid base on which one can conduct further investigations. Based on this tested paradigm, we propose a unified diagnostic pathway that includes bifurcation analysis, computation of the Lyapunov exponent, power spectral analysis, and recurrence mapping to formally describe the dynamical features of the system. The main characteristic of the framework is an effective algorithm of computational basin analysis, which is able to display attractor basins and expose the fine scale riddled structures and fractal structures that are the indicators of extreme sensitivity to initial conditions. The primary contribution of this work is a comprehensive dynamical analysis of the DM-CQDO, revealing the intricate structure of its stability landscape and multi-stability. This integrated workflow identifies the period-doubling cascade as the primary route to chaos and quantifies the stabilizing effects of key system parameters. This study demonstrates a systematic methodology for applying a combination of data-driven discovery and classical analysis to investigate the complex dynamics of parametrically forced, high-order nonlinear systems. Full article
Show Figures

Figure 1

15 pages, 2607 KB  
Article
Structural Health Monitoring of a Lamina in Unsteady Water Flow Using Modal Reconstruction Algorithms
by Gabriele Liuzzo, Stefano Meloni and Pierluigi Fanelli
Fluids 2025, 10(11), 276; https://doi.org/10.3390/fluids10110276 - 22 Oct 2025
Viewed by 412
Abstract
Ensuring the structural integrity of mechanical components operating in fluid environments requires precise and reliable monitoring techniques. This study presents a methodology for reconstructing the full-field deformation of a flexible aluminium plate subjected to unsteady water flow in a water tunnel, using a [...] Read more.
Ensuring the structural integrity of mechanical components operating in fluid environments requires precise and reliable monitoring techniques. This study presents a methodology for reconstructing the full-field deformation of a flexible aluminium plate subjected to unsteady water flow in a water tunnel, using a structural modal reconstruction approach informed by experimental data. The experimental setup involves an aluminium lamina (200 mm × 400 mm × 2.5 mm) mounted in a closed-loop water tunnel and exposed to a controlled flow with velocities up to 0.5 m/s, corresponding to Reynolds numbers on the order of 104, inducing transient deformations captured through an image-based optical tracking technique. The core of the methodology lies in reconstructing the complete deformation field of the structure by combining a reduced number of vibration modes derived from the geometry and boundary conditions of the system. The novelty of the present work consists in the integration of the Internal Strain Potential Energy Criterion (ISPEC) for mode selection with a data-driven machine learning framework, enabling real-time identification of active modal contributions from sparse experimental measurements. This approach allows for an accurate estimation of the dynamic response while significantly reducing the required sensor data and computational effort. The experimental validation demonstrates strong agreement between reconstructed and measured deflections, with normalised errors below 15% and correlation coefficients exceeding 0.94, confirming the reliability of the reconstruction. The results confirm that, even under complex, time-varying fluid–structure interactions, it is possible to achieve accurate and robust deformation reconstruction with minimal computational cost. This integrated methodology provides a reliable and efficient basis for structural health monitoring of flexible components in hydraulic and marine environments, bridging the gap between sparse measurement data and full-field dynamic characterisation. Full article
Show Figures

Figure 1

27 pages, 1706 KB  
Article
An End-to-End Framework for Spatiotemporal Data Recovery and Unsupervised Cluster Partitioning in Distributed PV Systems
by Bingxu Zhai, Yuanzhuo Li, Wei Qiu, Rui Zhang, Zhilin Jiang, Yinuo Zeng, Tao Qian and Qinran Hu
Processes 2025, 13(10), 3186; https://doi.org/10.3390/pr13103186 - 7 Oct 2025
Cited by 1 | Viewed by 602
Abstract
The growing penetration of distributed photovoltaic (PV) systems presents significant operational challenges for power grids, driven by the scarcity of historical data and the high spatiotemporal variability of PV generation. To address these challenges, we propose Generative Reconstruction and Adaptive Identification via Latents [...] Read more.
The growing penetration of distributed photovoltaic (PV) systems presents significant operational challenges for power grids, driven by the scarcity of historical data and the high spatiotemporal variability of PV generation. To address these challenges, we propose Generative Reconstruction and Adaptive Identification via Latents (GRAIL), a unified, end-to-end framework that integrates generative modeling with adaptive clustering to discover latent structures and representative scenarios in PV datasets. GRAIL operates through a closed-loop mechanism where clustering feedback guides a cluster-aware data generation process, and the resulting generative augmentation strengthens partitioning in the latent space. Evaluated on a real-world, multi-site PV dataset with a high missing data rate of 45.4%, GRAIL consistently outperforms both classical clustering algorithms and deep embedding-based methods. Specifically, GRAIL achieves a Silhouette Score of 0.969, a Calinski–Harabasz index exceeding 4.132×106, and a Davies–Bouldin index of 0.042, demonstrating superior intra-cluster compactness and inter-cluster separation. The framework also yields a normalized entropy of 0.994, which indicates highly balanced partitioning. These results underscore that coupling data generation with clustering is a powerful strategy for expressive and robust structure learning in data-sparse environments. Notably, GRAIL achieves significant performance gains over the strongest deep learning baseline that lacks a generative component, securing the highest composite score among all evaluated methods. The framework is also computationally efficient. Its alternating optimization converges rapidly, and clustering and reconstruction metrics stabilize within approximately six iterations. Beyond quantitative performance, GRAIL produces physically interpretable clusters that correspond to distinct weather-driven regimes and capture cross-site dependencies. These clusters serve as compact and robust state descriptors, valuable for downstream applications such as PV forecasting, dispatch optimization, and intelligent energy management in modern power systems. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

20 pages, 4498 KB  
Article
Vessel Traffic Density Prediction: A Federated Learning Approach
by Amin Khodamoradi, Paulo Alves Figueiras, André Grilo, Luis Lourenço, Bruno Rêga, Carlos Agostinho, Ruben Costa and Ricardo Jardim-Gonçalves
ISPRS Int. J. Geo-Inf. 2025, 14(9), 359; https://doi.org/10.3390/ijgi14090359 - 18 Sep 2025
Cited by 1 | Viewed by 1066
Abstract
Maritime safety, environmental protection, and efficient traffic management increasingly rely on data-driven technologies. However, leveraging Automatic Identification System (AIS) data for predictive modelling faces two major challenges: the massive volume of data generated in real-time and growing privacy concerns associated with proprietary vessel [...] Read more.
Maritime safety, environmental protection, and efficient traffic management increasingly rely on data-driven technologies. However, leveraging Automatic Identification System (AIS) data for predictive modelling faces two major challenges: the massive volume of data generated in real-time and growing privacy concerns associated with proprietary vessel information. This paper proposes a novel, privacy-preserving framework for vessel traffic density (VTD) prediction that addresses both challenges. The approach combines the European Maritime Observation and Data Network’s (EMODNet) grid-based VTD calculation method with Convolutional Neural Networks (CNN) to model spatiotemporal traffic patterns and employs Federated Learning to collaboratively build a global predictive model without the need for explicit sharing of proprietary AIS data. Three geographically diverse AIS datasets were harmonized, processed, and used to train local CNN models on hourly VTD matrices. These models were then aggregated via a Federated Learning framework under a lifelong learning scenario. Evaluation using Sparse Mean Squared Error shows that the federated global model achieves promising accuracy in sparse data scenarios and maintains performance parity when compared with local CNN-based models, all while preserving data privacy and minimizing hardware performance needs and data communication overheads. The results highlight the approach’s effectiveness and scalability for real-world maritime applications in traffic forecasting, safety, and operational planning. Full article
Show Figures

Figure 1

24 pages, 4503 KB  
Article
Single-Phase Ground Fault Detection Method in Three-Phase Four-Wire Distribution Systems Using Optuna-Optimized TabNet
by Xiaohua Wan, Hui Fan, Min Li and Xiaoyuan Wei
Electronics 2025, 14(18), 3659; https://doi.org/10.3390/electronics14183659 - 16 Sep 2025
Viewed by 1149
Abstract
Single-phase ground (SPG) faults pose significant challenges in three-phase four-wire distribution systems due to their complex transient characteristics and the presence of multiple influencing factors. To solve the aforementioned issues, a comprehensive fault identification framework is proposed, which uses the TabNet deep learning [...] Read more.
Single-phase ground (SPG) faults pose significant challenges in three-phase four-wire distribution systems due to their complex transient characteristics and the presence of multiple influencing factors. To solve the aforementioned issues, a comprehensive fault identification framework is proposed, which uses the TabNet deep learning architecture with hyperparameters optimized by Optuna. Firstly, a 10 kV simulation model is developed in Simulink to generate a diverse fault dataset. For each simulated fault, voltage and current signals from eight channels (L1–L4 voltage and current) are collected. Secondly, multi-domain features are extracted from each channel across time, frequency, waveform, and wavelet perspectives. Then, an attention-based fusion mechanism is employed to capture cross-channel dependencies, followed by L2-norm-based feature selection to enhance generalization. Finally, the optimized TabNet model effectively classifies 24 fault categories, achieving an accuracy of 97.33%, and outperforms baseline methods including Temporal Convolutional Network (TCN), Convolutional Neural Network-Long Short-Term Memory (CNN-LSTM), Capsule Network with Sparse Filtering (CNSF), and Dual-Branch CNN in terms of accuracy, macro-F1 score, and kappa coefficient. It also exhibits strong stability and fast convergence during training. These results demonstrate the robustness and interpretability of the proposed method for SPG fault detection. Full article
(This article belongs to the Section Power Electronics)
Show Figures

Figure 1

22 pages, 2818 KB  
Article
Fault Detection for Multimode Processes Using an Enhanced Gaussian Mixture Model and LC-KSVD Dictionary Learning
by Dongyang Zhou, Kang He, Qing Duan and Shengshan Bi
Appl. Sci. 2025, 15(18), 9943; https://doi.org/10.3390/app15189943 - 11 Sep 2025
Viewed by 788
Abstract
Monitoring multimode industrial processes presents significant challenges due to varying operating conditions, nonlinear dynamics, and mode-dependent feature distributions. This paper proposes a novel process monitoring framework that integrates an enhanced Gaussian Mixture Model (GMM) for mode identification with Label Consistent K-SVD (LC-KSVD) for [...] Read more.
Monitoring multimode industrial processes presents significant challenges due to varying operating conditions, nonlinear dynamics, and mode-dependent feature distributions. This paper proposes a novel process monitoring framework that integrates an enhanced Gaussian Mixture Model (GMM) for mode identification with Label Consistent K-SVD (LC-KSVD) for sparse dictionary learning. The improved GMM employs a parallelized Expectation–Maximization algorithm to achieve accurate and scalable mode partitioning in high-dimensional environments. Subsequently, the LC-KSVD then learns label-consistent, discriminative sparse representations, enabling effective monitoring across modes. The proposed method is evaluated through a simulation study and the widely used Continuous Stirred Tank Heater (CSTH) benchmark. Comparative results with traditional techniques such as LNS-PCA and FGMM demonstrate that the proposed method achieves superior fault detection rates (FDRs) and significantly lower false alarm rates (FARs), even under complex mode transitions and mild fault scenarios. Furthermore, the method also provides interpretable fault isolation through reconstruction-error-guided variable contribution analysis. These findings confirm that the proposed LC-KSVD-based scheme offers a reliable solution for fault detection and isolation in multimode process systems. Full article
Show Figures

Figure 1

22 pages, 6754 KB  
Article
Railway Intrusion Risk Quantification with Track Semantic Segmentation and Spatiotemporal Features
by Shanping Ning, Feng Ding, Bangbang Chen and Yuanfang Huang
Sensors 2025, 25(17), 5266; https://doi.org/10.3390/s25175266 - 24 Aug 2025
Cited by 1 | Viewed by 1341
Abstract
Foreign object intrusion in railway perimeter areas poses significant risks to train operation safety. To address the limitation of current visual detection technologies that overly focus on target identification while lacking quantitative risk assessment, this paper proposes a railway intrusion risk quantification method [...] Read more.
Foreign object intrusion in railway perimeter areas poses significant risks to train operation safety. To address the limitation of current visual detection technologies that overly focus on target identification while lacking quantitative risk assessment, this paper proposes a railway intrusion risk quantification method integrating track semantic segmentation and spatiotemporal features. An improved BiSeNetV2 network is employed to accurately extract track regions, while physical-constrained risk zones are constructed based on railway structure gauge standards. The lateral spatial distance of intruding objects is precisely calculated using track gauge prior knowledge. A lightweight detection architecture is designed, adopting ShuffleNetV2 as the backbone to reduce computational complexity, with an incorporated Dilated Transformer module to enhance global context awareness and sparse feature extraction, significantly improving detection accuracy for small-scale objects. The comprehensive risk assessment formula integrates object category weights, lateral risk coefficients in intrusion zones, longitudinal distance decay factors, and dynamic velocity compensation. Experimental results demonstrate that the proposed method achieves 84.9% mean average precision (mAP) on our proprietary dataset, outperforming baseline models by 3.3%. By combining lateral distance detection with multidimensional risk indicators, the method enables quantitative intrusion risk assessment and graded early warning, providing data-driven decision support for active train protection systems and substantially enhancing intelligent safety protection capabilities. Full article
(This article belongs to the Section Intelligent Sensors)
Show Figures

Figure 1

23 pages, 5058 KB  
Article
Integrated Assessment of Lake Degradation and Revitalization Pathways: A Case Study of Phewa Lake, Nepal
by Avimanyu Lal Singh, Bharat Raj Pahari and Narendra Man Shakya
Sustainability 2025, 17(14), 6572; https://doi.org/10.3390/su17146572 - 18 Jul 2025
Viewed by 2194
Abstract
Phewa Lake, Nepal’s second-largest natural lake, is under increasing ecological stress due to sedimentation, shoreline encroachment, and water quality decline driven by rapid urban growth, fragile mountainous catchments, and changing climate patterns. This study employs an integrated approach combining sediment yield estimation from [...] Read more.
Phewa Lake, Nepal’s second-largest natural lake, is under increasing ecological stress due to sedimentation, shoreline encroachment, and water quality decline driven by rapid urban growth, fragile mountainous catchments, and changing climate patterns. This study employs an integrated approach combining sediment yield estimation from its catchment using RUSLE, shoreline encroachment analysis via satellite imagery and historical records, and identification of pollution sources and socio-economic factors through field surveys and community consultations. The results show that steep, sparsely vegetated slopes are the primary sediment sources, with Harpan Khola (a tributary of Phewa Lake) contributing over 80% of the estimated 339,118 tons of annual sediment inflow. From 1962 to 2024, the lake has lost approximately 5.62 sq. km of surface area, primarily due to a combination of sediment deposition and human encroachment. Pollution from untreated sewage, urban runoff, and invasive aquatic weeds further degrades water quality and threatens biodiversity. Based on the findings, this study proposes a way forward to mitigate sedimentation, encroachment, and pollution, along with a sustainable revitalization plan. The approach of this study, along with the proposed sustainability measures, can be replicated in other lake systems within Nepal and in similar watersheds elsewhere. Full article
(This article belongs to the Special Issue Innovations in Environment Protection and Sustainable Development)
Show Figures

Figure 1

18 pages, 1539 KB  
Article
A Data-Driven Observer for Wind Farm Power Gain Potential: A Sparse Koopman Operator Approach
by Yue Chen, Bingchen Wang, Kaiyue Zeng, Lifu Ding, Yingming Lin, Ying Chen and Qiuyu Lu
Energies 2025, 18(14), 3751; https://doi.org/10.3390/en18143751 - 15 Jul 2025
Cited by 1 | Viewed by 722
Abstract
Maximizing the power output of wind farms is critical for improving the economic viability and grid integration of renewable energy. Active wake control (AWC) strategies, such as yaw-based wake steering, offer significant potential for power generation increase but require predictive models that are [...] Read more.
Maximizing the power output of wind farms is critical for improving the economic viability and grid integration of renewable energy. Active wake control (AWC) strategies, such as yaw-based wake steering, offer significant potential for power generation increase but require predictive models that are both accurate and computationally efficient for real-time implementation. This paper proposes a data-driven observer to rapidly estimate the potential power gain achievable through AWC as a function of the ambient wind direction. The approach is rooted in Koopman operator theory, which allows a linear representation of nonlinear dynamics. Specifically, a model is developed using an Input–Output Extended Dynamic Mode Decomposition framework combined with Sparse Identification (IOEDMDSINDy). This method lifts the low-dimensional wind direction input into a high-dimensional space of observable functions and then employs iterative sparse regression to identify a minimal, interpretable linear model in this lifted space. By training on offline simulation data, the resulting observer serves as an ultra-fast surrogate model, capable of providing instantaneous predictions to inform online control decisions. The methodology is demonstrated and its performance is validated using two case studies: a 9-turbine and a 20-turbine wind farm. The results show that the observer accurately captures the complex, nonlinear relationship between wind direction and power gain, significantly outperforming simpler models. This work provides a key enabling technology for advanced, real-time wind farm control systems. Full article
(This article belongs to the Special Issue Modeling, Control and Optimization of Wind Power Systems)
Show Figures

Figure 1

Back to TopTop