Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (408)

Search Parameters:
Keywords = space-cooling energy use

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
34 pages, 9378 KiB  
Article
Contribution of Glazed Additions as Passive Elements of the Reduction in Energy Consumption in Detached Houses
by Hristina Krstić, Dušan Ranđelović, Vladan Jovanović, Marko Mančić and Branislava Stoiljković
Buildings 2025, 15(15), 2715; https://doi.org/10.3390/buildings15152715 - 1 Aug 2025
Viewed by 125
Abstract
If implemented properly in architectural design, passive measures can contribute to achieving the desired comfort in a building while reducing its energy consumption. Glazed additions in the form of sunspaces or greenhouses can influence the improvement of building energy efficiency and, at the [...] Read more.
If implemented properly in architectural design, passive measures can contribute to achieving the desired comfort in a building while reducing its energy consumption. Glazed additions in the form of sunspaces or greenhouses can influence the improvement of building energy efficiency and, at the same time, create appealing and pleasant building extensions. Through energy simulations performed using EnergyPlus software, this study aims to analyze the potential contribution of glazed additions to a detached house to reducing energy consumption and creating additional space for living. Research was performed as a case study at the following locations: Niš (Serbia), Berlin (Germany), and Tromsø (Norway). For the purposes of this study, five models (M0–M4) were developed and subjected to analysis across two different scenarios. The results of the conducted research showed that the integration of glazed elements can significantly contribute to energy savings: maximum total annual savings regarding heating and cooling go from 21% for Tromsø, up to 32% for Berlin and 40% for Niš, depending on whether the building to which the glazed element(s) is/are attached is insulated or not and the number and the position of glazed elements. Although glazed additions can create a pleasant microclimate around the house, the overheating observed in the study indicates that proper ventilation and shading are mandatory, especially in more southern locations. Full article
(This article belongs to the Section Architectural Design, Urban Science, and Real Estate)
Show Figures

Figure 1

17 pages, 271 KiB  
Review
A Literature Review on the Use of Weather Data for Building Thermal Simulations
by Zhengen Ren
Energies 2025, 18(14), 3653; https://doi.org/10.3390/en18143653 - 10 Jul 2025
Viewed by 300
Abstract
Thermal simulations of buildings play a critical role in optimizing energy efficiency, thermal comfort, and heating, ventilation and air conditioning (HVAC) systems design. Accurate weather data is essential for reliable simulations, as local weather and climate have a significant impact on energy requirements [...] Read more.
Thermal simulations of buildings play a critical role in optimizing energy efficiency, thermal comfort, and heating, ventilation and air conditioning (HVAC) systems design. Accurate weather data is essential for reliable simulations, as local weather and climate have a significant impact on energy requirements for space heating and cooling and thermal comfort. This study conducted a literature review regarding the sources, types, and uncertainties of weather data used for thermal simulations of buildings, including typical meteorological years (TMYs) and extreme weather files under current and future climates. Additionally, this paper evaluates methods for weather data processing, including interpolation, downscaling, and synthetic generation, to improve simulation accuracy. Finally, approaches are proposed for constructing weather files for the future and extreme conditions under a changing climate. This review aims to provide a guide for researchers and practitioners to enhance the reliability of thermal modeling through informed construction, selection, and application of weather data. Full article
(This article belongs to the Special Issue Thermal Comfort and Energy Performance in Building)
26 pages, 918 KiB  
Review
The Role of Urban Green Spaces in Mitigating the Urban Heat Island Effect: A Systematic Review from the Perspective of Types and Mechanisms
by Haoqiu Lin and Xun Li
Sustainability 2025, 17(13), 6132; https://doi.org/10.3390/su17136132 - 4 Jul 2025
Viewed by 966
Abstract
Due to rising temperatures, energy use, and thermal discomfort, urban heat islands (UHIs) pose a serious environmental threat to urban sustainability. This systematic review synthesizes peer-reviewed literature on various forms of green infrastructure and their mechanisms for mitigating UHI effects, and the function [...] Read more.
Due to rising temperatures, energy use, and thermal discomfort, urban heat islands (UHIs) pose a serious environmental threat to urban sustainability. This systematic review synthesizes peer-reviewed literature on various forms of green infrastructure and their mechanisms for mitigating UHI effects, and the function of urban green spaces (UGSs) in reducing the impact of UHI. In connection with urban parks, green roofs, street trees, vertical greenery systems, and community gardens, important mechanisms, including shade, evapotranspiration, albedo change, and ventilation, are investigated. This study emphasizes how well these strategies work to lower city temperatures, enhance air quality, and encourage thermal comfort. For instance, the findings show that green areas, including parks, green roofs, and street trees, can lower air and surface temperatures by as much as 5 °C. However, the efficiency of cooling varies depending on plant density and spatial distribution. While green roofs and vertical greenery systems offer localized cooling in high-density urban settings, urban forests and green corridors offer thermal benefits on a larger scale. To maximize their cooling capacity and improve urban resilience to climate change, the assessment emphasizes the necessity of integrating UGS solutions into urban planning. To improve the implementation and efficacy of green spaces, future research should concentrate on policy frameworks and cutting-edge technology such as remote sensing. Full article
Show Figures

Figure 1

24 pages, 5026 KiB  
Article
Quantifying the Thermal and Energy Impacts of Urban Morphology Using Multi-Source Data: A Multi-Scale Study in Coastal High-Density Contexts
by Chenhang Bian, Chi Chung Lee, Xi Chen, Chun Yin Li and Panpan Hu
Buildings 2025, 15(13), 2266; https://doi.org/10.3390/buildings15132266 - 27 Jun 2025
Viewed by 308
Abstract
Urban thermal environments, characterized by the interplay between indoor and outdoor conditions, pose growing challenges in high-density coastal cities. This study proposes a multi-scale, integrative framework that couples a satellite-derived land surface temperature (LST) analysis with microscale building performance simulations to holistically evaluate [...] Read more.
Urban thermal environments, characterized by the interplay between indoor and outdoor conditions, pose growing challenges in high-density coastal cities. This study proposes a multi-scale, integrative framework that couples a satellite-derived land surface temperature (LST) analysis with microscale building performance simulations to holistically evaluate the high-density urban thermal environment in subtropical climates. The results reveal that compact, high-density morphologies reduce outdoor heat stress (UTCI) through self-shading but lead to significantly higher cooling loads, energy use intensity (EUI), and poorer daylight autonomy (DA) due to restricted ventilation and limited sky exposure. In contrast, more open, vegetation-rich forms improve ventilation and reduce indoor energy demand, yet exhibit higher UTCI values in exposed areas and increased lighting energy use in poorly oriented spaces. This study also proposes actionable design strategies, including optimal building spacing (≥15 m), façade orientation (30–60° offset from west), SVF regulation (0.4–0.6), and the integration of vertical greenery to balance solar access, ventilation, and shading. These findings offer evidence-based guidance for embedding morphological performance metrics into planning policies and building design codes. This work advances the integration of outdoor and indoor performance evaluation and supports climate-adaptive urban form design through quantitative, policy-relevant insights. Full article
(This article belongs to the Section Architectural Design, Urban Science, and Real Estate)
Show Figures

Figure 1

13 pages, 3040 KiB  
Article
Design and Development of Dipole Magnet for MIR/THz Free Electron Laser Beam Dumps and Spectrometers
by Ekkachai Kongmon, Kantaphon Damminsek, Nopadon Khangrang, Sakhorn Rimjaem and Chitrlada Thongbai
Particles 2025, 8(3), 66; https://doi.org/10.3390/particles8030066 - 25 Jun 2025
Viewed by 826
Abstract
This study presents the design and development of electromagnetic dipole magnets for use as beam dumps and spectrometers in the MIR and THz free-electron laser (FEL) beamlines at the PBP-CMU Electron Linac Laboratory (PCELL). The magnets were optimized to achieve a 60-degree bending [...] Read more.
This study presents the design and development of electromagnetic dipole magnets for use as beam dumps and spectrometers in the MIR and THz free-electron laser (FEL) beamlines at the PBP-CMU Electron Linac Laboratory (PCELL). The magnets were optimized to achieve a 60-degree bending angle for electron beams with energies up to 30 MeV, without requiring water cooling. Using CST EM Studio for 3D magnetic field simulations and ASTRA for particle tracking, the THz dipole (with 414 turns) and MIR dipole (with 600 turns) generated magnetic fields of 0.1739 T and 0.2588 T, respectively, while both operating at currents below 10 A. Performance analysis confirmed effective beam deflection, with the THz dipole showing that it was capable of handling beam energies up to 20 MeV and the MIR dipole could handle up to 30 MeV. The energy measurement at the spectrometer screen position was simulated, taking into account transverse beam size, fringe fields, and space charge effects, using ASTRA. The energy resolution, defined as the ratio of energy uncertainty to the mean energy, was evaluated for selected cases. For beam energies of 16 MeV and 25 MeV, resolutions of 0.2% and 0.5% were achieved with transverse beam sizes of 1 mm and 4 mm, respectively. All evaluated cases maintained energy resolutions below 1%, confirming the spectrometer’s suitability for high-precision beam diagnostics. Furthermore, the relationship between the initial and measured energy spread errors, taking into account a camera resolution of 0.1 mm/pixel, was evaluated. Simulations across various beam energies (10–16 MeV for the THz dipole and 20–25 MeV for the MIR dipole) confirmed that the measurement error in energy spread decreases with smaller RMS transverse beam sizes. This trend was consistent across all tested energies and magnet configurations. To ensure accurate energy spread measurements, a small initial beam size is recommended. Specifically, for beams with a narrow initial energy spread, a transverse beam size below 1 mm is essential. Full article
(This article belongs to the Special Issue Generation and Application of High-Power Radiation Sources 2025)
Show Figures

Figure 1

23 pages, 3663 KiB  
Article
A Study on the Optimization of Photovoltaic Installations on the Facades of Semi-Outdoor Substations
by Xiaohui Wu, Yanfeng Wang, Yufei Tan and Ping Su
Sustainability 2025, 17(12), 5460; https://doi.org/10.3390/su17125460 - 13 Jun 2025
Viewed by 467
Abstract
This paper explores the optimal configuration strategies for building-integrated photovoltaic (BIPV) systems in response to the low-carbon transformation needs of semi-outdoor substations, aiming to reconcile the contradiction between photovoltaic (PV) power generation efficiency and indoor environmental control in industrial buildings. Taking a 220 [...] Read more.
This paper explores the optimal configuration strategies for building-integrated photovoltaic (BIPV) systems in response to the low-carbon transformation needs of semi-outdoor substations, aiming to reconcile the contradiction between photovoltaic (PV) power generation efficiency and indoor environmental control in industrial buildings. Taking a 220 kV semi-outdoor substation of the China Southern Power Grid as a case study, a building energy consumption–PV power generation coupling model was established using EnergyPlus software. The impacts of three PV wall constructions and different building orientations on a transformer room and an air-conditioned living space were analyzed. The results show the EPS-filled PV structure offers superior passive thermal performance and cooling energy savings, making it more suitable for substation applications with high thermal loads. Building orientation plays a decisive role in the net energy performance, with an east–west alignment significantly enhancing the PV module’s output and energy efficiency due to better solar exposure. Based on current component costs, electricity prices, and subsidies, the BIPV system demonstrates a moderate annual return, though the relatively long payback period presents a challenge for widespread adoption. East–west orientations offer better returns due to their higher solar exposure. It is recommended to adopt east–west layouts in EPS-filled PV construction to optimize both energy performance and economic performance, while further shortening the payback period through technical and policy support. This study provides an optimized design path for industrial BIPV module integration and aids power infrastructure’s low-carbon shift. Full article
Show Figures

Figure 1

15 pages, 1829 KiB  
Article
A Low-Carbon Smart Campus Created by the Strategic Usage of Space—A Case Study of Korea University
by Da Yeon Park and Mi Jeong Kim
Buildings 2025, 15(12), 1972; https://doi.org/10.3390/buildings15121972 - 6 Jun 2025
Viewed by 581
Abstract
In the context of the building sector, university campus buildings play a crucial role in promoting a green economic transition toward carbon neutrality, as universities are among the largest emitters of greenhouse gases. This research proposed a strategy for the operation and management [...] Read more.
In the context of the building sector, university campus buildings play a crucial role in promoting a green economic transition toward carbon neutrality, as universities are among the largest emitters of greenhouse gases. This research proposed a strategy for the operation and management of university campuses that focused on reducing energy consumption by optimizing the utilization of building spaces. To gather empirical data, a case study was conducted to examine the energy consumption of campus buildings based on their characteristics at Korea University. The results indicated that effective space utilization, achieved through the efforts of stakeholders, led to a reduction in heating and cooling energy consumption. To achieve this, the study classified university buildings by considering both physical variables and human-centered factors that affect energy consumption, analyzed space usage behavior, and compared heating and cooling energy consumption across buildings. This study expands current knowledge because its approach differs from previous research, which has generally focused on using simulation tools to analyze factors associated with the physical aspects of buildings—such as the energy performance of a building envelope or the energy-efficiency of facility systems. Full article
Show Figures

Figure 1

28 pages, 3051 KiB  
Article
Improvement of Wild Horse Optimizer Algorithm with Random Walk Strategy (IWHO), and Appointment as MLP Supervisor for Solving Energy Efficiency Problem
by Şahiner Güler, Erdal Eker and Nejat Yumuşak
Energies 2025, 18(11), 2916; https://doi.org/10.3390/en18112916 - 2 Jun 2025
Viewed by 491
Abstract
This paper aims to enhance the success of the Wild Horse Optimization (WHO) algorithm in optimization processes by developing strategies to overcome the issues of stuckness and early convergence in local spaces. The performance change is observed through a Multi-Layer Perceptron (MLP) sample. [...] Read more.
This paper aims to enhance the success of the Wild Horse Optimization (WHO) algorithm in optimization processes by developing strategies to overcome the issues of stuckness and early convergence in local spaces. The performance change is observed through a Multi-Layer Perceptron (MLP) sample. In this context, an advanced Wild Horse Optimization (IWHO) algorithm with a random walking strategy was developed to provide solution diversity in local spaces using a random walking strategy. Two challenging test sets, CEC 2019, were selected for the performance measurement of IWHO. Its competitiveness with alternative algorithms was measured, showing that its performance was superior. This superiority is visually represented with convergence curves and box plots. The Wilcoxon signed-rank test was used to evaluate IWHO as a distinct and powerful algorithm. The IWHO algorithm was applied to MLP training, addressing a real-world problem. Both WHO and IWHO algorithms were tested using MSE results and ROC curves. The Energy Efficiency Problem dataset from UCI was used for MLP training. This dataset evaluates the heating load (HL) or cooling load (CL) factors by considering the input characteristics of smart buildings. The goal is to ensure that HL and CL factors are evaluated most efficiently through the use of HVAC technology in smart buildings. WHO and IWHO were selected to train the MLP architecture, and it was observed that the proposed IWHO algorithm produced better results. Full article
(This article belongs to the Section B: Energy and Environment)
Show Figures

Figure 1

30 pages, 9217 KiB  
Article
Navigating Energy Efficiency and Mould Risk in Australian Low-Rise Homes: A Comparative Analysis of Nine External Wall Systems in Southeast Australia
by Liqun Guan, Mark Dewsbury, Louise Wallis and Hartwig Kuenzel
Energies 2025, 18(11), 2843; https://doi.org/10.3390/en18112843 - 29 May 2025
Viewed by 877
Abstract
As energy-efficient buildings become central to climate change mitigation, the opportunity for interior and interstitial moisture accumulation and mould growth can increase. This study investigated the potential simulation-based mould growth risks associated with the current generation of insulated low-rise timber framed external wall [...] Read more.
As energy-efficient buildings become central to climate change mitigation, the opportunity for interior and interstitial moisture accumulation and mould growth can increase. This study investigated the potential simulation-based mould growth risks associated with the current generation of insulated low-rise timber framed external wall systems within southeastern Australia. More than 8000 hygrothermal and bio-hygrothermal simulations were completed to evaluate seasonal moisture patterns and calculate mould growth potential for nine typical external wall systems. Results reveal that the combination of increased thermal insulation and air-tightness measures between the 2010 and 2022 specified building envelope energy efficiency regulations further increased predicted Mould Index values, particularly in cool-temperate climates. This was in part due to insufficient moisture management requirements, like an air space between the cladding and the weather resistive layer and/or the low-water vapour permeability of exterior weather resistive pliable membranes. By contrast, warmer temperate climates and drier cool-temperate climates exhibit consistently lower calculated Mould Index values. Despite the 2022 requirement for a greater water vapour-permeance of exterior pliable membranes, the external walls systems explored in this research had a higher calculated Mould Index than the 2010 regulatory compliant external wall systems. Lower air change rates significantly increased calculated interstitial mould growth risk, while the use of interior vapour control membranes proved effective in its mitigation for most external wall systems. The addition of ventilated cavity in combination with either or both an interior vapour control membrane and a highly vapour-permeable exterior pliable membranes further reduced risk. The findings underscore the need for tailored, climate-responsive design interventions to minimise surface and interstitial mould growth risk and building durability, whilst achieving high performance external wall systems. Full article
Show Figures

Figure 1

27 pages, 1848 KiB  
Article
A Decision Support Tool to Assess the Energy Renovation Performance Through a Timber-Based Solution for Concrete-Framed Buildings
by Gianpiero Evola, Michele Torrisi, Vincenzo Costanzo, Marilena Lazzaro, Diego Arnone and Giuseppe Margani
Energies 2025, 18(11), 2839; https://doi.org/10.3390/en18112839 - 29 May 2025
Viewed by 369
Abstract
The present paper describes a novel and user-friendly Decision Support System (e-DSS) designed to assist technicians in the preliminary design stage of a building renovation process based on the solutions developed in the innovation project e-SAFE, funded by the EU under the H2020 [...] Read more.
The present paper describes a novel and user-friendly Decision Support System (e-DSS) designed to assist technicians in the preliminary design stage of a building renovation process based on the solutions developed in the innovation project e-SAFE, funded by the EU under the H2020 program. The e-DSS is engineered to rapidly assess key performance indicators, including energy performance before and after renovation, reduction in CO2 emission for space heating, space cooling, and DHW preparation, seismic upgrade feasibility, expected costs, and payback time. To demonstrate its capabilities, the e-DSS was applied to an existing public housing building in Catania, southern Italy. The predicted thermal energy needs for space heating and cooling were compared to the results from detailed simulations using a professional-grade software tool, for both as-built condition and a proposed renovation generated by the e-DSS itself. The discrepancies identified through this comparison will inform the refinement of the e-DSS algorithms to increase their accuracy and reliability. More generally, this paper recommends suitable algorithms that can be effectively employed in the development of simplified decision-making tools specifically tailored for building professionals operating in the early phase of building renovation projects. Full article
(This article belongs to the Special Issue Performance Analysis of Building Energy Efficiency)
Show Figures

Figure 1

51 pages, 4396 KiB  
Review
A Review of CO2 Clathrate Hydrate Technology: From Lab-Scale Preparation to Cold Thermal Energy Storage Solutions
by Sai Bhargav Annavajjala, Noah Van Dam, Devinder Mahajan and Jan Kosny
Energies 2025, 18(10), 2659; https://doi.org/10.3390/en18102659 - 21 May 2025
Viewed by 930
Abstract
Carbon dioxide (CO2) clathrate hydrate is gaining attention as a promising material for cold thermal energy storage (CTES) due to its high energy storage capacity and low environmental footprint. It shows strong potential in building applications, where space cooling accounts for [...] Read more.
Carbon dioxide (CO2) clathrate hydrate is gaining attention as a promising material for cold thermal energy storage (CTES) due to its high energy storage capacity and low environmental footprint. It shows strong potential in building applications, where space cooling accounts for nearly 40% of total energy use and over 85% of electricity demand in developed countries. CO2 hydrates are also being explored for use in refrigeration, cold chain logistics, supercomputing, biomedical cooling, and defense systems. With the growing number of applications in mind, this review focuses on the thermal behavior of CO2 hydrates and their environmental impact. It highlights recent efforts to reduce formation pressure and temperature using chemical promoters and surfactants. This paper also reviews key experimental techniques used to study hydrate properties, including Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), high-pressure differential scanning calorimetry (HP-DSC), and the T-history method. In lifecycle comparisons, CO2 hydrate systems show better energy efficiency and lower carbon emissions than traditional ice or other phase-change materials (PCMs). This review also discusses current commercialization challenges such as high energy input during formation and promoter toxicity. Finally, practical strategies to move CO2 hydrate-based CTES from lab-scale studies to real-world cooling and temperature control applications are discussed. Full article
Show Figures

Figure 1

20 pages, 7254 KiB  
Article
The Interplay Between Climate and Urban Expansion on Building Energy Demand in Morocco
by Mengqi Zhao, Lahouari Bounoua, Noah Prime, Hicham Bahi and Zarrar Khan
Urban Sci. 2025, 9(5), 168; https://doi.org/10.3390/urbansci9050168 - 14 May 2025
Viewed by 1245
Abstract
Understanding building energy demand is critical for addressing climate uncertainty challenges and ensuring sustainable urban growth. This study develops a building energy demand (BED) model to explore how climate variation and urban expansion affect residential and commercial space heating and cooling demands in [...] Read more.
Understanding building energy demand is critical for addressing climate uncertainty challenges and ensuring sustainable urban growth. This study develops a building energy demand (BED) model to explore how climate variation and urban expansion affect residential and commercial space heating and cooling demands in Morocco for three scenarios, namely, 2005, 2018, and 2018 + 1.5 °C. The results show that coastal cities have lower heating and cooling needs due to the oceanic influence, while interior cities require significantly higher heating demand per-unit-floorspace. Between 2005 and 2018, urban growth increased total heating and cooling demand by 218.8 GWh, particularly in northern and coastal regions, despite per-unit-floorspace reductions in milder climates and improved building efficiency in 2018. Residential heating remains the dominant energy use, though commercial demand is significant in urban centers. Under the 2018 + 1.5 °C hypothetical scenario, heating demand across Morocco declines by 335.8 GWh compared to 2018, with urban areas amplifying this trend. Meanwhile, cooling demand increases slightly by 44.4 GWh, with major cities experiencing relative increases of up to 50%. These findings highlight a trade-off where reduced winter heating needs are partly offset by increased summer cooling demands in densely urbanized areas. The study identifies key urban hotspots for targeted interventions, emphasizing the need for energy-efficient building designs, climate-adaptive urban planning, and resilient energy management strategies to sustainably address shifting seasonal energy patterns. Full article
Show Figures

Figure 1

27 pages, 7020 KiB  
Article
Heat Transfer by Transmission in a Zone with a Thermally Activated Building System: An Extension of the ISO 11855 Hourly Calculation Method. Measurement and Simulation
by Piotr Michalak
Energies 2025, 18(9), 2350; https://doi.org/10.3390/en18092350 - 4 May 2025
Viewed by 551
Abstract
Water systems with pipes embedded in the horizontal concrete core slabs can be used for efficient space heating and cooling of passive and low-energy buildings. ISO 11855-4 describes the hourly simulation method of such systems while recommending to use other simulation tools to [...] Read more.
Water systems with pipes embedded in the horizontal concrete core slabs can be used for efficient space heating and cooling of passive and low-energy buildings. ISO 11855-4 describes the hourly simulation method of such systems while recommending to use other simulation tools to assess heat flow by transmission to the ambient environment. As it plays an important role in the thermal balance of a conditioned zone, this paper presents two calculation methods to obtain heat flow through the envelope. They were integrated with a general algorithm given in ISO 11855-4 and the simulation tool was developed. To validate the presented solution measurements were performed in a passive office building during the heating (November) and cooling (July) periods. The total heat transfer coefficient by transmission was measured and compared with the theoretical design value. Both proposed simulation algorithms provided results with very good accuracy. In the first period, the mean absolute of percentage error (MAPE) of the indoor air and floor temperatures amounted to 0.65% and 0.75%, respectively. Simulations showed that heating demand was covered mainly by the floor (28.7%), internal gains (21.7%), and ceiling (18.7%), while heat loss to the environment was mainly due to external partitions (94.0%). In the second period MAE and MAPE did not exceed 0.19 °C and 0.90%, respectively. Floor and ceiling were mainly responsible for heat gains removal (61%). Solar radiation was the main source (91%) of internal gains. The results obtained confirmed the assumptions taken. The simulation programme developed does not require the use of additional tools. Full article
(This article belongs to the Collection Energy Efficiency and Environmental Issues)
Show Figures

Figure 1

26 pages, 2812 KiB  
Article
Dynamic Modeling, Trajectory Optimization, and Linear Control of Cable-Driven Parallel Robots for Automated Panelized Building Retrofits
by Yifang Liu and Bryan P. Maldonado
Buildings 2025, 15(9), 1517; https://doi.org/10.3390/buildings15091517 - 1 May 2025
Viewed by 832
Abstract
The construction industry faces a growing need for automation to reduce costs, improve accuracy and productivity, and address labor shortages. One area that stands to benefit significantly from automation is panelized prefabricated building envelope retrofits, which can improve a building’s energy efficiency in [...] Read more.
The construction industry faces a growing need for automation to reduce costs, improve accuracy and productivity, and address labor shortages. One area that stands to benefit significantly from automation is panelized prefabricated building envelope retrofits, which can improve a building’s energy efficiency in heating and cooling interior spaces. In this paper, we propose using cable-driven parallel robots (CDPRs), which can effectively lift and handle large objects, to install these panels. However, implementing CDPRs presents significant challenges because of their nonlinear dynamics, complex trajectory planning, and precise control requirements. To tackle these challenges, this work focuses on a new application of established control and trajectory optimization theories in a CDPR simulation of a building envelope retrofit under real-world conditions. We first model the dynamics of CDPRs, highlighting the critical role of damping in system behavior. Building on this dynamic model, we formulate a trajectory optimization problem to generate feasible and efficient motion plans for the robot under operational and environmental constraints. Given the high precision required in the construction industry, accurately tracking the optimized trajectory is essential. However, challenges such as partial observability and external vibrations complicate this task. To address these issues, a Linear Quadratic Gaussian control framework is applied, enabling the robot to track the optimized trajectories with precision. Simulation results show that the proposed controller enables precise end effector positioning with errors under 4 mm, even in the presence of external wind disturbances. Through comprehensive simulations, our approach allows for an in-depth exploration of the system’s nonlinear dynamics, trajectory optimization, and control strategies under controlled yet highly realistic conditions. The results demonstrate the feasibility of CDPRs for automating panel installation and provide insights into their practical deployment. Full article
(This article belongs to the Special Issue Robotics, Automation and Digitization in Construction)
Show Figures

Figure 1

14 pages, 7669 KiB  
Article
Towards Feasible Thermal Management Design of Electronic Control Module for Variable Frequency Air Conditioner Function in Extremely High Ambient Temperatures
by Lianyu Shan, Changbo Bu, Yuxi Su, Junhong Wu, Yunyi Wang, Limei Shen and Junlong Xie
Electronics 2025, 14(8), 1595; https://doi.org/10.3390/electronics14081595 - 15 Apr 2025
Cited by 1 | Viewed by 481
Abstract
The widespread adoption of variable frequency air conditioners (VFACs) in household appliances is primarily driven by their energy-saving qualities. However, extremely high ambient temperatures and limited space affect the heat dissipation of the electronic control module of a VFAC, resulting in a substantial [...] Read more.
The widespread adoption of variable frequency air conditioners (VFACs) in household appliances is primarily driven by their energy-saving qualities. However, extremely high ambient temperatures and limited space affect the heat dissipation of the electronic control module of a VFAC, resulting in a substantial increase in the temperature of its electronic chips. Its reliability and working performance will be largely compromised. To address this issue, we propose a feasible thermal management design based on thermoelectric coolers (TECs) that can cool electronic control modules working in an extremely high ambient temperature of 55 °C. Firstly, we designed four cooling schemes and established simulation models via Ansys Icepak. Then, we compared the chip temperatures across different schemes. The results indicate that the average temperatures of IPM, IGBT, FRD, and Rectifier Bridge were reduced by 13.58 °C, 14.03 °C, 15.88 °C, and 15.56 °C, respectively, in the scheme incorporating TECs, indicating that TECs have a significant impact on the thermal management of electronic control modules. This enables VFACs to operate at their full potential in extremely high ambient temperatures. This study explores the potential of using TECs to cool the electronic control modules of VFACs in extremely high ambient temperatures, suggesting that TECs can be effectively utilized at a large scale in the commercial VFAC field. Full article
Show Figures

Figure 1

Back to TopTop