Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,574)

Search Parameters:
Keywords = southern urbanism

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 2104 KiB  
Article
Landscape Heterogeneity and Transition Drive Wildfire Frequency in the Central Zone of Chile
by Mariam Valladares-Castellanos, Guofan Shao and Douglass F. Jacobs
Remote Sens. 2025, 17(15), 2721; https://doi.org/10.3390/rs17152721 - 6 Aug 2025
Abstract
Wildfire regimes are closely linked to changes in landscape structure, yet the influence of accelerated land use transitions on fire activity remains poorly understood, particularly in rapidly transforming regions like central Chile. Although land use change has been extensively documented in the country, [...] Read more.
Wildfire regimes are closely linked to changes in landscape structure, yet the influence of accelerated land use transitions on fire activity remains poorly understood, particularly in rapidly transforming regions like central Chile. Although land use change has been extensively documented in the country, the specific role of the speed, extent, and spatial configuration of these transitions in shaping fire dynamics requires further investigation. To address this gap, we examined how landscape transitions influence fire frequency in central Chile, a region experiencing rapid land use change and heightened fire activity. Using multi-temporal remote sensing data, we quantified land use transitions, calculated landscape metrics to describe their spatial characteristics, and applied intensity analysis to assess their relationship with fire frequency changes. Our results show that accelerated landscape transitions significantly increased fire frequency, particularly in areas affected by forest plantation rotations, new forest establishment, and urban expansion, with changes exceeding uniform intensity expectations. Regional variations were evident: In the more densely populated northern areas, increased fire frequency was primarily linked to urban development and deforestation, while in the more rural southern regions, forest plantation cycles played a dominant role. Areas with a high number of large forest patches were especially prone to fire frequency increases. These findings demonstrate that both the speed and spatial configuration of landscape transitions are critical drivers of wildfire activity. By identifying the specific land use changes and landscape characteristics that amplify fire risks, this study provides valuable knowledge to inform fire risk reduction, landscape management, and urban planning in Chile and other fire-prone regions undergoing rapid transformation. Full article
Show Figures

Figure 1

21 pages, 6621 KiB  
Article
Ecological Restoration Reshapes Ecosystem Service Interactions: A 30-Year Study from China’s Southern Red-Soil Critical Zone
by Gaigai Zhang, Lijun Yang, Jianjun Zhang, Chongjun Tang, Yuanyuan Li and Cong Wang
Forests 2025, 16(8), 1263; https://doi.org/10.3390/f16081263 - 2 Aug 2025
Viewed by 235
Abstract
Situated in the southern hilly-mountain belt of China’s “Three Zones and Four Belts Strategy”, Gannan region is a critical ecological shelter belt for the Ganjiang River. Decades of intensive mineral extraction and irrational agricultural development have rendered it into an ecologically fragile area. [...] Read more.
Situated in the southern hilly-mountain belt of China’s “Three Zones and Four Belts Strategy”, Gannan region is a critical ecological shelter belt for the Ganjiang River. Decades of intensive mineral extraction and irrational agricultural development have rendered it into an ecologically fragile area. Consequently, multiple restoration initiatives have been implemented in the region over recent decades. However, it remains unclear how relationships among ecosystem services have evolved under these interventions and how future ecosystem management should be optimized based on these changes. Thus, in this study, we simulated and assessed the spatiotemporal dynamics of five key ESs in Gannan region from 1990 to 2020. Through integrated correlation, clustering, and redundancy analyses, we quantified ES interactions, tracked the evolution of ecosystem service bundles (ESBs), and identified their socio-ecological drivers. Despite a 31% decline in water yield, ecological restoration initiatives drove substantial improvements in key regulating services: carbon storage increased by 6.9 × 1012 gC while soil conservation rose by 4.8 × 108 t. Concurrently, regional habitat quality surged by 45% in mean scores, and food production increased by 2.1 × 105 t. Critically, synergistic relationships between habitat quality, soil retention, and carbon storage were progressively strengthened, whereas trade-offs between food production and habitat quality intensified. Further analysis revealed that four distinct ESBs—the Agricultural Production Bundle (APB), Urban Development Bundle (UDB), Eco-Agriculture Transition Bundle (ETB), and Ecological Protection Bundle (EPB)—were shaped by slope, forest cover ratio, population density, and GDP. Notably, 38% of the ETB transformed into the EPB, with frequent spatial interactions observed between the APB and UDB. These findings underscore that future ecological restoration and conservation efforts should implement coordinated, multi-service management mechanisms. Full article
Show Figures

Figure 1

18 pages, 4332 KiB  
Article
Soils of the Settlements of the Yamal Region (Russia): Morphology, Diversity, and Their Environmental Role
by Evgeny Abakumov, Alexandr Pechkin, Sergey Kouzov and Anna Kravchuk
Appl. Sci. 2025, 15(15), 8569; https://doi.org/10.3390/app15158569 (registering DOI) - 1 Aug 2025
Viewed by 138
Abstract
The landscapes of the Arctic seem endless. But they are also subject to anthropogenic impact, especially in urbanized and industrial ecosystems. The population of the Arctic zone of Russia is extremely urbanized, and up to 84% of the population lives in cities and [...] Read more.
The landscapes of the Arctic seem endless. But they are also subject to anthropogenic impact, especially in urbanized and industrial ecosystems. The population of the Arctic zone of Russia is extremely urbanized, and up to 84% of the population lives in cities and industrial settlements. In this regard, we studied the background soils of forests and tundras and the soils of settlements. The main signs of the urbanogenic morphogenesis of soils associated with the transportation of material for urban construction are revealed. The peculiarities of soils of recreational, residential, and industrial zones of urbanized ecosystems are described. The questions of diversity and the classification of soils are discussed. The specificity of bulk soils used in the construction of industrial structures in the context of the initial stage of soil formation is considered. For the first time, soils and soil cover of settlements in the central and southern parts of the Yamal region are described in the context of traditional pedology. It is shown that the construction of new soils and grounds can lead to both decreases and increases in biodiversity, including the appearance of protected species. Surprisingly, the forms of urban soil formation in the Arctic are very diversified in terms of morphology, as well as in the ecological functions performed by soils. The urbanization of past decades has drastically changed the local soil cover. Full article
(This article belongs to the Section Environmental Sciences)
Show Figures

Figure 1

21 pages, 16495 KiB  
Article
Regenerating Landscape Through Slow Tourism: Insights from a Mediterranean Case Study
by Luca Barbarossa and Viviana Pappalardo
Sustainability 2025, 17(15), 7005; https://doi.org/10.3390/su17157005 - 1 Aug 2025
Viewed by 176
Abstract
The implementation of the trans-European tourist cycle route network “EuroVelo” is fostering new strategic importance for non-motorized mobility and the associated practice of cycling tourism. Indeed, slow tourism offers a pathway for the development of inland areas. The infrastructure supporting it, such as [...] Read more.
The implementation of the trans-European tourist cycle route network “EuroVelo” is fostering new strategic importance for non-motorized mobility and the associated practice of cycling tourism. Indeed, slow tourism offers a pathway for the development of inland areas. The infrastructure supporting it, such as long-distance cycling and walking paths, can act as a vital connection, stimulating regeneration in peripheral territories by enhancing environmental and landscape assets, as well as preserving heritage, local identity, and culture. The regeneration of peri-urban landscapes through soft mobility is recognized as the cornerstone for accessibility to material and immaterial resources (including ecosystem services) for multiple categories of users, including the most vulnerable, especially following the restoration of green-area systems and non-urbanized areas with degraded ecosystems. Considering the forthcoming implementation of the Magna Grecia cycling route, the southernmost segment of the “EuroVelo” network traversing three regions in southern Italy, this contribution briefly examines the necessity of defining new development policies to effectively integrate sustainable slow tourism with the enhancement of environmental and landscape values in the coastal areas along the route. Specifically, this case study focuses on a coastal stretch characterized by significant morphological and environmental features and notable landscapes interwoven with densely built environments. In this area, environmental and landscape values face considerable threats from scattered, irregular, low-density settlements, abandoned sites, and other inappropriate constructions along the coastline. Full article
(This article belongs to the Special Issue A Systems Approach to Urban Greenspace System and Climate Change)
Show Figures

Figure 1

12 pages, 1043 KiB  
Article
Persistent Pharmaceuticals in a South African Urban Estuary and Bioaccumulation in Endobenthic Sandprawns (Kraussillichirus kraussi)
by Olivia Murgatroyd, Leslie Petrik, Cecilia Y. Ojemaye and Deena Pillay
Water 2025, 17(15), 2289; https://doi.org/10.3390/w17152289 - 1 Aug 2025
Viewed by 248
Abstract
Pharmaceuticals are increasingly being detected in coastal ecosystems globally, but contamination and bioaccumulation levels are understudied in temporarily closed estuaries. In these systems, limited freshwater inputs and periodic closure may predispose them to pharmaceutical accumulation. We quantified in situ water column pharmaceutical levels [...] Read more.
Pharmaceuticals are increasingly being detected in coastal ecosystems globally, but contamination and bioaccumulation levels are understudied in temporarily closed estuaries. In these systems, limited freshwater inputs and periodic closure may predispose them to pharmaceutical accumulation. We quantified in situ water column pharmaceutical levels at five sites in a temporarily closed model urban estuary (Zandvlei Estuary) in Cape Town, South Africa, that has been heavily anthropogenically modified. The results indicate an almost 100-fold greater concentration of pharmaceuticals in the estuary relative to False Bay, into which the estuary discharges, with acetaminophen (max: 2.531 µg/L) and sulfamethoxazole (max: 0.138 µg/L) being the primary pollutants. Acetaminophen was potentially bioaccumulative, while nevirapine, carbamazepine and sulfamethoxazole were bioaccumulated (BAF > 5000 L/kg) by sandprawns (Kraussillichirus kraussi), which are key coastal endobenthic ecosystem engineers in southern Africa. The assimilative capacity of temporarily closed estuarine environments may be adversely impacted by wastewater discharges that contain diverse pharmaceuticals, based upon the high bioaccumulation detected in key benthic engineers. Full article
Show Figures

Figure 1

32 pages, 2291 KiB  
Article
Impact of Green Financial Reform on Urban Economic Resilience—A Quasi-Natural Experiment Based on Green Financial Reform and Innovation Pilot Zones
by Yahui Chen, Yi An, Zixun Nie, Yuanying Chi and Xinyue Jia
Sustainability 2025, 17(15), 6969; https://doi.org/10.3390/su17156969 - 31 Jul 2025
Viewed by 349
Abstract
As a key engine driving China’s green financial transformation, the Green Financial Reform and Innovation Pilot Zones have demonstrated significant achievements in enhancing the capacity of financial services to support green real economies, preventing and mitigating green financial risks, and bolstering national and [...] Read more.
As a key engine driving China’s green financial transformation, the Green Financial Reform and Innovation Pilot Zones have demonstrated significant achievements in enhancing the capacity of financial services to support green real economies, preventing and mitigating green financial risks, and bolstering national and urban economic resilience. On this basis, a spatial Markov chain model is applied to further analyze the economic toughness of prefecture-level cities. This study treats the establishment of these pilot zones as a quasi-natural experiment, using panel data from 269 prefecture-level cities in China from 2013 to 2023 and employing a multi-period difference-in-differences (DID) model to empirically examine the impact of green financial reform on urban economic resilience and its underlying mechanisms. The results reveal that the establishment of these pilot zones significantly enhances urban economic resilience. Specifically, green financial reforms primarily improve urban economic resilience by increasing credit accessibility and capital allocation efficiency in the pilot cities. Furthermore, the policy effects are more pronounced in large cities and resource-dependent cities compared to small and medium-sized cities and non-resource-dependent cities, with stronger impacts observed in southern and coastal regions than in northern inland areas. Additionally, the policy effects are significantly greater in environmentally prioritized cities than in non-prioritized cities. By integrating green financial reforms and urban economic resilience into a unified analytical framework, this study provides valuable insights for policymakers to refine green financial strategies and design resilience-enhancing policies. Full article
Show Figures

Figure 1

19 pages, 5284 KiB  
Article
Integrating Dark Sky Conservation into Sustainable Regional Planning: A Site Suitability Evaluation for Dark Sky Parks in the Guangdong–Hong Kong–Macao Greater Bay Area
by Deliang Fan, Zidian Chen, Yang Liu, Ziwen Huo, Huiwen He and Shijie Li
Land 2025, 14(8), 1561; https://doi.org/10.3390/land14081561 - 29 Jul 2025
Viewed by 356
Abstract
Dark skies, a vital natural and cultural resource, have been increasingly threatened by light pollution due to rapid urbanization, leading to ecological degradation and biodiversity loss. As a key strategy for sustainable regional development, dark sky parks (DSPs) not only preserve nocturnal environments [...] Read more.
Dark skies, a vital natural and cultural resource, have been increasingly threatened by light pollution due to rapid urbanization, leading to ecological degradation and biodiversity loss. As a key strategy for sustainable regional development, dark sky parks (DSPs) not only preserve nocturnal environments but also enhance livability by balancing urban expansion and ecological conservation. This study develops a novel framework for evaluating DSP suitability, integrating ecological and socio-economic dimensions, including the resource base (e.g., nighttime light levels, meteorological conditions, and air quality) and development conditions (e.g., population density, transportation accessibility, and tourism infrastructure). Using the Guangdong–Hong Kong–Macao Greater Bay Area (GBA) as a case study, we employ Delphi expert consultation, GIS spatial analysis, and multi-criteria decision-making to identify optimal DSP locations and prioritize conservation zones. Our key findings reveal the following: (1) spatial heterogeneity in suitability, with high-potential zones being concentrated in the GBA’s northeastern, central–western, and southern regions; (2) ecosystem advantages of forests, wetlands, and high-elevation areas for minimizing light pollution; (3) coastal and island regions as ideal DSP sites due to the low light interference and high ecotourism potential. By bridging environmental assessments and spatial planning, this study provides a replicable model for DSP site selection, offering policymakers actionable insights to integrate dark sky preservation into sustainable urban–regional development strategies. Our results underscore the importance of DSPs in fostering ecological resilience, nighttime tourism, and regional livability, contributing to the broader discourse on sustainable landscape planning in high-urbanization contexts. Full article
Show Figures

Figure 1

21 pages, 5587 KiB  
Article
Suitability Evaluation of Underground Space Development in Coastal Cities Based on Combined Subjective and Objective Weight and an Improved Fuzzy Mathematics Method
by Shengtong Di, Yueheng Li, Caiping Hu, Yue Yuan, Zhongsheng Wang, Meijun Xu and Jie Dong
Sustainability 2025, 17(15), 6862; https://doi.org/10.3390/su17156862 - 28 Jul 2025
Viewed by 195
Abstract
The development of urban underground space is a necessary way to realize the sustainable development of the city, and it is also an essential means to solve urban environmental problems such as traffic congestion and resource shortage. Scientific suitability evaluation is the prerequisite [...] Read more.
The development of urban underground space is a necessary way to realize the sustainable development of the city, and it is also an essential means to solve urban environmental problems such as traffic congestion and resource shortage. Scientific suitability evaluation is the prerequisite for the rational planning and development of underground space. Previous studies have encountered problems such as an imperfect index system, a single weighting method, and loss of membership degrees in fuzzy evaluation, which have led to unreasonable evaluation results. Taking the northern coastal cities of Weifang as the research area, the evaluation index system is established, and the index weights are calculated by the improved structural CRITIC. An improved fuzzy mathematical evaluation model based on the weighted summation method is proposed to carry out the suitability evaluation of underground space development in the research area. The results show that: (1) The proposed method of combination weight and improved fuzzy mathematics evaluation takes into account the scientific weight and avoids the subjective bias, and also corrects the issue of membership degree loss in the membership matrix of comprehensive evaluation. (2) When the area of the grid unit is 0.02% of the area of the research area, the size of the evaluation unit is more reasonable. (3) The area that is very suitable for underground space development accounts for 8.69%, and the more suitable area accounts for 25.55%, mainly located in the northwest and central–southern regions of the research area. It can provide a reference for the suitability evaluation of underground space development. Full article
(This article belongs to the Section Sustainable Urban and Rural Development)
Show Figures

Figure 1

27 pages, 42290 KiB  
Article
Study on the Dynamic Changes in Land Cover and Their Impact on Carbon Stocks in Karst Mountain Areas: A Case Study of Guiyang City
by Rui Li, Zhongfa Zhou, Jie Kong, Cui Wang, Yanbi Wang, Rukai Xie, Caixia Ding and Xinyue Zhang
Remote Sens. 2025, 17(15), 2608; https://doi.org/10.3390/rs17152608 - 27 Jul 2025
Viewed by 359
Abstract
Investigating land cover patterns, changes in carbon stocks, and forecasting future conditions are essential for formulating regional sustainable development strategies and enhancing ecological and environmental quality. This study centers on Guiyang, a mountainous urban area in southwestern China, to analyze the dynamic changes [...] Read more.
Investigating land cover patterns, changes in carbon stocks, and forecasting future conditions are essential for formulating regional sustainable development strategies and enhancing ecological and environmental quality. This study centers on Guiyang, a mountainous urban area in southwestern China, to analyze the dynamic changes in land cover and their effects on carbon stocks from 2000 to 2035. A carbon stocks assessment framework was developed using a cellular automaton-based artificial neural network model (CA-ANN), the InVEST model, and the geographical detector model to predict future land cover changes and identify the primary drivers of variations in carbon stocks. The results indicate that (1) from 2000 to 2020, impervious surfaces expanded significantly, increasing by 199.73 km2. Compared to 2020, impervious surfaces are projected to increase by 1.06 km2, 13.54 km2, and 34.97 km2 in 2025, 2030, and 2035, respectively, leading to further reductions in grassland and forest areas. (2) Over time, carbon stocks in Guiyang exhibited a general decreasing trend; spatially, carbon stocks were higher in the western and northern regions and lower in the central and southern regions. (3) The level of greenness, measured by the normalized vegetation index (NDVI), significantly influenced the spatial variation of carbon stocks in Guiyang. Changes in carbon stocks resulted from the combined effects of multiple factors, with the annual average temperature and NDVI being the most influential. These findings provide a scientific basis for advancing low-carbon development and constructing an ecological civilization in Guiyang. Full article
(This article belongs to the Special Issue Smart Monitoring of Urban Environment Using Remote Sensing)
Show Figures

Figure 1

17 pages, 2008 KiB  
Article
The Comprehensive Benefit Evaluation of Urban Drainage Culverts and Pipes Based on Combination Weighting
by Weimin Geng and Zhixuan Cheng
Water 2025, 17(15), 2233; https://doi.org/10.3390/w17152233 - 26 Jul 2025
Viewed by 299
Abstract
The urban drainage system is a significant lifeline for ensuring the safe operation of a city. In recent years, defects and diseases in drainage pipes and their ancillary facilities have occurred frequently. Aiming to provide decision-makers with comprehensive benefit evaluation support, we chose [...] Read more.
The urban drainage system is a significant lifeline for ensuring the safe operation of a city. In recent years, defects and diseases in drainage pipes and their ancillary facilities have occurred frequently. Aiming to provide decision-makers with comprehensive benefit evaluation support, we chose to evaluate the security, environmental, social, and economic benefits of urban drainage culverts and pipes (UDCPs). An index system of 14 first-level indicators in four dimensions was established, and the indicators contain 28 influencing factors. The index weight was obtained by combining the analytical hierarchy process and entropy weight method, and the weights assigned to the security, environmental, social, and economic benefits were 0.448, 0.222, 0.202, and 0.128, respectively. The evaluation system was developed on the basis of a geographic information system (GIS), and the topological analysis of the GIS was applied in the calculation. To process the questionnaire results, this study adopted the automatic questionnaire analysis and scoring method combining natural language processing and optical character recognition technology. The method was applied in the study area in southern China, which contains 9 catchment areas and 1356 pipes. The results show that about 5% of the pipelines need to be included in the renewal plan. For UDCP renewal, the findings provide a decision-making tool of the comprehensive analysis for the selection of engineering technologies and the evaluation of the implementation effects. Full article
(This article belongs to the Special Issue Urban Drainage Systems and Stormwater Management)
Show Figures

Figure 1

20 pages, 11785 KiB  
Article
Spatiotemporal Variation in NDVI in the Sunkoshi River Watershed During 2000–2021 and Its Response to Climate Factors and Soil Moisture
by Zhipeng Jian, Qinli Yang, Junming Shao, Guoqing Wang and Vishnu Prasad Pandey
Water 2025, 17(15), 2232; https://doi.org/10.3390/w17152232 - 26 Jul 2025
Viewed by 472
Abstract
Given that the Sunkoshi River watershed (located in the southern foot of the Himalayas) is sensitive to climate change and its mountain ecosystem provides important services, we aim to evaluate its spatial and temporal variation patterns of vegetation, represented by the Normalized Difference [...] Read more.
Given that the Sunkoshi River watershed (located in the southern foot of the Himalayas) is sensitive to climate change and its mountain ecosystem provides important services, we aim to evaluate its spatial and temporal variation patterns of vegetation, represented by the Normalized Difference Vegetation Index (NDVI), during 2000–2021 and identify the dominant driving factors of vegetation change. Based on the NDVI dataset (MOD13A1), we used the simple linear trend model, seasonal and trend decomposition using loess (STL) method, and Mann–Kendall test to investigate the spatiotemporal variation features of NDVI during 2000–2021 on multiple scales (annual, seasonal, monthly). We used the partial correlation coefficient (PCC) to quantify the response of the NDVI to land surface temperature (LST), precipitation, humidity, and soil moisture. The results indicate that the annual NDVI in 52.6% of the study area (with elevation of 1–3 km) increased significantly, while 0.9% of the study area (due to urbanization) degraded significantly during 2000–2021. Daytime LST dominates NDVI changes on spring, summer, and winter scales, while precipitation, soil moisture, and nighttime LST are the primary impact factors on annual NDVI changes. After removing the influence of soil moisture, the contributions of climate factors to NDVI change are enhanced. Precipitation shows a 3-month lag effect and a 5-month cumulative effect on the NDVI; both daytime LST and soil moisture have a 4-month lag effect on the NDVI; and humidity exhibits a 2-month cumulative effect on the NDVI. Overall, the study area turned green during 2000–2021. The dominant driving factors of NDVI change may vary on different time scales. The findings will be beneficial for climate change impact assessment on the regional eco-environment, and for integrated watershed management. Full article
(This article belongs to the Section Hydrology)
Show Figures

Figure 1

23 pages, 3773 KiB  
Article
Spatiotemporal Differentiation of Carbon Emission Efficiency and Influencing Factors in the Five Major Maize Producing Areas of China
by Zhiyuan Zhang and Huiyan Qin
Agriculture 2025, 15(15), 1621; https://doi.org/10.3390/agriculture15151621 - 26 Jul 2025
Viewed by 217
Abstract
Understanding the carbon emission efficiency (CEE) of maize production and its determinants is critical to supporting China’s dual-carbon goals and advancing sustainable agriculture. This study employs a super-efficiency slack-based measure model (SBM) to evaluate the CEE of five major maize-producing regions in China [...] Read more.
Understanding the carbon emission efficiency (CEE) of maize production and its determinants is critical to supporting China’s dual-carbon goals and advancing sustainable agriculture. This study employs a super-efficiency slack-based measure model (SBM) to evaluate the CEE of five major maize-producing regions in China from 2001 to 2022. Kernel density estimation and the Dagum Gini coefficient are used to analyze spatiotemporal disparities, while a geographically and temporally weighted regression (GTWR) model explores the underlying drivers. Results indicate that the national average maize CEE was 0.86, exhibiting a “W-shaped” fluctuation with turning points in 2009 and 2016. From 2001 to 2015, the Southwestern Mountainous Region led with an average efficiency of 0.76. Post-2015, the Northern Spring Maize Region emerged as the most efficient area, reaching 0.90. Efficiency levels have generally become more concentrated across regions, though the Southern Hilly and Northwest Irrigated Regions showed higher volatility. Inter-regional differences were the primary source of overall CEE disparity, with an average annual contribution of 46.66%, largely driven by the efficiency gap between the Northwest Irrigated Region and other areas. Spatial heterogeneity was evident in the impact of key factors. Agricultural mechanization, cropping structure, and environmental regulation exhibited region-specific effects. Rural economic development and agricultural fiscal support were positively associated with CEE, while urbanization had a negative correlation. These findings provide a theoretical foundation and policy reference for region-specific emission reduction strategies and the green transition of maize production in China. Full article
(This article belongs to the Section Agricultural Economics, Policies and Rural Management)
Show Figures

Figure 1

20 pages, 2524 KiB  
Article
From Silos to Synergy: Improving Coordination in Local Flood Management
by Wibke de Boer, Lucas Flath, Michèle Knodt and Britta Schmalz
Water 2025, 17(15), 2212; https://doi.org/10.3390/w17152212 - 24 Jul 2025
Viewed by 249
Abstract
Flood risk governance has gained increasing attention as climate change and urbanization amplify flood risks. While much of the literature has focused on national and supranational governance frameworks, sectoral integration, and public participation, there remains a critical gap in understanding horizontal coordination within [...] Read more.
Flood risk governance has gained increasing attention as climate change and urbanization amplify flood risks. While much of the literature has focused on national and supranational governance frameworks, sectoral integration, and public participation, there remains a critical gap in understanding horizontal coordination within municipal administrations—particularly in medium-sized cities. This study examines how local governments coordinate flood risk management across different departments and administrative units, identifying key challenges and enabling factors. Using a case study of Mörfelden-Walldorf, a medium-sized city in southern Hesse, Germany, we analyze the internal governance dynamics shaping flood resilience. The research highlights institutional fragmentation, sectoral silos, and resource constraints as key barriers to effective coordination while also identifying mechanisms that facilitate cross-departmental collaboration. By integrating insights from the public administration literature with flood governance scholarship, this study contributes to a more nuanced understanding of local-level flood risk governance. The findings provide practical implications for enhancing municipal flood resilience through improved governance structures and coordination mechanisms. Full article
(This article belongs to the Section Water and Climate Change)
Show Figures

Figure 1

31 pages, 28883 KiB  
Article
Exploring Precipitable Water Vapor (PWV) Variability and Subregional Declines in Eastern China
by Taixin Zhang, Jiayu Xiong, Shunqiang Hu, Wenjie Zhao, Min Huang, Li Zhang and Yu Xia
Sustainability 2025, 17(15), 6699; https://doi.org/10.3390/su17156699 - 23 Jul 2025
Viewed by 327
Abstract
In recent years, China has experienced growing impacts from extreme weather events, emphasizing the importance of understanding regional atmospheric moisture dynamics, particularly Precipitable Water Vapor (PWV), to support sustainable environmental and urban planning. This study utilizes ten years (2013–2022) of Global Navigation Satellite [...] Read more.
In recent years, China has experienced growing impacts from extreme weather events, emphasizing the importance of understanding regional atmospheric moisture dynamics, particularly Precipitable Water Vapor (PWV), to support sustainable environmental and urban planning. This study utilizes ten years (2013–2022) of Global Navigation Satellite System (GNSS) observations in typical cities in eastern China and proposes a comprehensive multiscale frequency-domain analysis framework that integrates the Fourier transform, Bayesian spectral estimation, and wavelet decomposition to extract the dominant PWV periodicities. Time-series analysis reveals an overall increasing trend in PWV across most regions, with notably declining trends in Beijing, Wuhan, and southern Taiwan, primarily attributed to groundwater depletion, rapid urban expansion, and ENSO-related anomalies, respectively. Frequency-domain results indicate distinct latitudinal and coastal–inland differences in the PWV periodicities. Inland stations (Beijing, Changchun, and Wuhan) display annual signals alongside weaker semi-annual components, while coastal stations (Shanghai, Kinmen County, Hong Kong, and Taiwan) mainly exhibit annual cycles. High-latitude stations show stronger seasonal and monthly fluctuations, mid-latitude stations present moderate-scale changes, and low-latitude regions display more diverse medium- and short-term fluctuations. In the short-term frequency domain, GNSS stations in most regions demonstrate significant PWV periodic variations over 0.5 days, 1 day, or both timescales, except for Changchun, where weak diurnal patterns are attributed to local topography and reduced solar radiation. Furthermore, ERA5-derived vertical temperature profiles are incorporated to reveal the thermodynamic mechanisms driving these variations, underscoring region-specific controls on surface evaporation and atmospheric moisture capacity. These findings offer novel insights into how human-induced environmental changes modulate the behavior of atmospheric water vapor. Full article
(This article belongs to the Section Sustainability in Geographic Science)
Show Figures

Figure 1

26 pages, 3149 KiB  
Article
The Spatiotemporal Impact of Socio-Economic Factors on Carbon Sink Value: A Geographically and Temporally Weighted Regression Analysis at the County Level from 2000 to 2020 in China’s Fujian Province
by Tao Wang and Qi Liang
Land 2025, 14(7), 1479; https://doi.org/10.3390/land14071479 - 17 Jul 2025
Viewed by 332
Abstract
Evaluating the economic value of carbon sinks is fundamental to advancing carbon market mechanisms and supporting sustainable regional development. This study focuses on Fujian Province in China, aiming to assess the spatiotemporal evolution of carbon sink value and analyze the influence of socio-economic [...] Read more.
Evaluating the economic value of carbon sinks is fundamental to advancing carbon market mechanisms and supporting sustainable regional development. This study focuses on Fujian Province in China, aiming to assess the spatiotemporal evolution of carbon sink value and analyze the influence of socio-economic drivers. Carbon sink values from 2000 to 2020 were estimated using Net Ecosystem Productivity (NEP) simulation combined with the carbon market valuation method. Eleven socio-economic variables were selected through correlation and multicollinearity testing, and their impacts were examined using Geographically and Temporally Weighted Regression (GTWR) at the county level. The results indicate that the total carbon sink value in Fujian declined from CNY 3.212 billion in 2000 to CNY 2.837 billion in 2020, showing a spatial pattern of higher values in the southern region and lower values in the north. GTWR analysis reveals spatiotemporal heterogeneity in the effects of socio-economic factors. For example, the influence of urbanization and retail sales of consumer goods shifts direction over time, while the effects of industrial structure, population, road, and fixed asset investment vary across space. This study emphasizes the necessity of incorporating spatial and temporal dynamics into carbon sink valuation. The findings suggest that northern areas of Fujian should prioritize ecological restoration, rapidly urbanizing regions should adopt green development strategies, and counties guided by investment and consumption should focus on sustainable development pathways to maintain and enhance carbon sink capacity. Full article
(This article belongs to the Section Land Use, Impact Assessment and Sustainability)
Show Figures

Figure 1

Back to TopTop