Impact of Green Financial Reform on Urban Economic Resilience—A Quasi-Natural Experiment Based on Green Financial Reform and Innovation Pilot Zones
Abstract
1. Introduction
2. Theoretical Analysis and Research Hypotheses
2.1. The Impact of Green Finance Reform Policies on Urban Economic Resilience
2.2. The Effect of Green Finance Reform and Innovation Policies on Urban Economic Resilience
2.2.1. Green Finance Reform and Innovation Policies Are Conducive to Enhancing the Availability of Credit, Thereby Enhancing the Resilience of Urban Economies
2.2.2. Green Finance Reform and Innovation Policies Are Conducive to Improving the Efficiency of Capital Allocation, Thereby Enhancing the Resilience of Urban Economy
3. Model Design
3.1. Setting of the Econometric Model
3.1.1. Setting of the DID Model
3.1.2. Setting of the Mediation Mechanism Model
3.2. Variable Selection
3.2.1. Dependent Variable: Economic Resilience (ER)
3.2.2. Explanatory Variable: Green Finance Reform and Innovation Policy (Treat × Time)
3.2.3. Control Variables
3.2.4. Mediating Variables
3.3. Data Sources
3.4. Rationality and Scientificity of the Urban Economic Resilience Evaluation System
3.4.1. Theoretical Basis: Alignment with the Core Connotation of Economic Resilience
3.4.2. Comprehensive and Systematic Indicator Selection
3.4.3. Scientificity of the Measurement Method
3.4.4. Reliability of Data Sources
4. Empirical Tests and Result Analysis
4.1. Baseline Regression Results
4.1.1. Parallel Trend Test
4.1.2. Baseline Regression
4.2. The Role of Green Financial Instruments
4.3. Considering Policy Overlapping Effects
4.4. Robustness Test
4.4.1. Sample Selection Bias
4.4.2. Placebo Test
4.4.3. The Problem of Omitted Variables
4.4.4. Replacing the Explained Variable
5. Tests of the Transmission Mechanism and Heterogeneity Analysis
5.1. Testing the Transmission Mechanism
5.2. Heterogeneity Analysis
5.2.1. Classification According to Urban Scale
5.2.2. Classification According to Urban Resource Endowments
5.2.3. Classification According to Urban Geographical Location
5.2.4. Classification According to Urban Environmental Regulation
6. Further Analysis: The Dynamic Evolutionary Trend of the Economic Resilience of Prefecture-Level Cities
6.1. Kernel Density Estimation
6.2. Markov Chain Analysis
6.3. Spatial Markov Chain Analysis
7. Research Conclusions and Policy Implications
7.1. Research Conclusions
7.2. Research Limitations
7.2.1. Incomplete Exploration of Long-Term Dynamic Effects and Threshold Characteristics
7.2.2. Limitations in Variable Measurement and Potential Confounding Factors
7.2.3. Lack of International Comparative Perspective Restricting Generalizability
7.3. Policy Implications
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ER | Economic Resilience |
AGG | Economic Agglomeration |
INF | Informatization Level |
BAS | Infrastructure Development |
OPE | Openness to Foreign Investment |
HUM | Human Capital |
GOV | Government Intervention |
POP | Population Density |
PI | Pollution Intensity |
LPA | Credit Accessibility |
EFF | resource allocation efficiency |
NNU | New-type Urbanization Policy |
NIE | National Integration of Industry and Education City Pilot Policy |
UMC | Urban Medical Consortium City Pilot Policy |
References
- Feng, Y.; Wang, J.; Zhang, T. The Impact of Smart City Policies on City Resilience: An Evaluation of 282 Chinese Cities. Sustainability 2024, 16, 8669. [Google Scholar] [CrossRef]
- Martin, R. Regional Economic Resilience, Hysteresis and Recessionary Shocks. J. Econ. Geogr. 2012, 12, 1–32. [Google Scholar] [CrossRef]
- Southwick, S.M.; Bonanno, G.A.; Masten, A.S.; Panter-Brick, C.; Yehuda, R. Resilience Definitions, Theory, and Challenges: Interdisciplinary Perspectives. Eur. J. Psychotraumatol. 2014, 5, 1. [Google Scholar] [CrossRef]
- Fu, L.; Han, X.; Peng, J. The impact of innovation-driven policies on urban resilience. Humanit. Soc. Sci. Commun. 2025, 12, 484. [Google Scholar] [CrossRef]
- Simmie, J.; Martin, R. The economic resilience of regions: Towards an evolutionary approach. Camb. J. Reg. Econ. Soc. 2010, 3, 27–43. [Google Scholar] [CrossRef]
- Niu, H.; Zhao, X.; Luo, Z.; Gong, Y.; Zhang, X. Green Credit and Enterprise Green Operation: Based on the Perspective of Enterprise Green Transformation. Front. Psychol. 2022, 13, 1041798. [Google Scholar] [CrossRef] [PubMed]
- Fan, D.; Li, M. Coupling and Coordinated Development Analysis of Digital Economy, Economic Resilience, and Ecological Protection. Sustainability 2025, 17, 4122. [Google Scholar] [CrossRef]
- Wang, S. Green Credit, Digital Economy and Enterprise Pollution Reduction. Sustainability 2025, 17, 3791. [Google Scholar] [CrossRef]
- Cheng, F.; Yang, S.; Wang, Y. Green Innovation or Expedient Compliance: Carbon Emission Reduction by Heavily Polluting Enterprises Under Green Finance Reform and Innovation Pilot Zone. Sustainability 2025, 17, 6395. [Google Scholar] [CrossRef]
- Peng, Y.; Wang, Z.; Zhang, Y.; Wang, W. Facilitating or Hindering? The Impact of Low-Carbon Pilot Policies on Socio-Ecological Resilience in Resource-Based Cities. Land 2025, 14, 147. [Google Scholar] [CrossRef]
- Wang, Y.; Cui, L.; Zhou, J. The Impact of Green Finance and Digital Economy on Regional Carbon Emission Reduction. Int. Rev. Econ. Financ. 2025, 97, 103748. [Google Scholar] [CrossRef]
- Xu, A.; Zhu, Y.; Wang, W. Micro Green Technology Innovation Effects of Green Finance Pilot Policy—From the Perspectives of Action Points and Green Value. J. Bus. Res. 2023, 159, 113724. [Google Scholar] [CrossRef]
- Wang, F.; Chen, H.; Li, C. Green Finance for Green Land: Coupling Economic and Ecological Systems Through Financial Innovation. Systems 2025, 13, 582. [Google Scholar] [CrossRef]
- Jin, X.; Chen, C.; Li, Y.; Yu, Y. Impact of Green Finance on Regional Green Innovation Performance. Sustainability 2024, 16, 10519. [Google Scholar] [CrossRef]
- Yu, T.; Huang, X.; Jia, S.; Cui, X. Unveiling the Spatio-Temporal Evolution and Key Drivers for Urban Green High-Quality Development: A Comparative Analysis of China’s Five Major Urban Agglomerations. Land 2023, 12, 1962. [Google Scholar] [CrossRef]
- Ouyang, H.; Guan, C.; Yu, B. Green Finance, Natural Resources, and Economic Growth: Theory Analysis and Empirical Research. Resour. Policy 2023, 83, 103604. [Google Scholar] [CrossRef]
- Chen, Z.; Ding, Z.; Lin, C.-T. Does the Commercialization Reform of Rural Credit Cooperatives Promote the Growth of Family Farms? Int. Rev. Econ. Financ. 2025, 102, 104271. [Google Scholar] [CrossRef]
- Guo, S.; Diao, Y.; Du, J. Coupling Coordination Measurement and Evaluation of Urban Digitalization and Green Development in China. Int. J. Environ. Res. Public Health 2022, 19, 15379. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Wang, Y. Green Innovation Effect of Pilot Zones for Green Finance Reform: Evidence of Quasi Natural Experiment. Technol. Forecast. Soc. Chang. 2023, 186, 122079. [Google Scholar] [CrossRef]
- Li, H.; Chen, C.; Umair, M. Green Finance, Enterprise Energy Efficiency, and Green Total Factor Productivity: Evidence from China. Sustainability 2023, 15, 11065. [Google Scholar] [CrossRef]
- Zhu, C.; Qi, J.; Feng, L.; Wang, X. Source Control or End-of-Pipe Treatment: How Green Finance Policy Impacts Enterprise Carbon Intensity. Int. Rev. Financ. Anal. 2025, 104, 104323. [Google Scholar] [CrossRef]
- Huang, H.; Zhang, J. Research on the Environmental Effect of Green Finance Policy Based on the Analysis of Pilot Zones for Green Finance Reform and Innovations. Sustainability 2021, 13, 3754. [Google Scholar] [CrossRef]
- Li, G.; Liu, M. Spatiotemporal Evolution and Influencing Factors of Economic Resilience: Evidence from Resource-Based Cities in China. Sustainability 2022, 14, 10434. [Google Scholar] [CrossRef]
- Umar, M.; Safi, A. Do Green Finance and Innovation Matter for Environmental Protection? A Case of OECD Economies. Energy Econ. 2023, 119, 106560. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, X. The Impact of the Green Finance Reform and Innovation Pilot Zone on the Green Innovation—Evidence from China. Int. J. Environ. Res. Public Health 2022, 19, 7330. [Google Scholar] [CrossRef]
- Lee, C.-C.; Lee, C.-C. How does green finance affect green total factor productivity? Evidence from China. Energy Econ. 2022, 107, 105863. [Google Scholar] [CrossRef]
- Li, L.; Wang, Y.; Tan, M.; Sun, H.; Zhu, B. Effect of Environmental Regulation on Energy-Intensive Enterprises’ Green Innovation Performance. Sustainability 2023, 15, 10108. [Google Scholar] [CrossRef]
- Gilchrist, D.; Yu, J.; Zhong, R. The Limits of Green Finance: A Survey of Literature in the Context of Green Bonds and Green Loans. Sustainability 2021, 13, 478. [Google Scholar] [CrossRef]
- Wang, Y.; Zhao, N.; Lei, X.; Long, R. Green Finance Innovation and Regional Green Development. Sustainability 2021, 13, 8230. [Google Scholar] [CrossRef]
- Qin, N.; Kong, D. Access to Credit and Entrepreneurship: Evidence from China. Econ. Dev. Cult. Chang. 2022, 71, 295–331. [Google Scholar] [CrossRef]
- Han, S.; Zhang, Z.; Yang, S. Green Finance and Corporate Green Innovation: Based on China’s Green Finance Reform and Innovation Pilot Policy. J. Environ. Public Health 2022, 2022, 1833377. [Google Scholar] [CrossRef]
- Lei, H.; Gao, R.; Ning, C.; Sun, G. Green Finance and Corporate Green Innovation. Financ. Res. Lett. 2025, 72, 106577. [Google Scholar] [CrossRef]
- Wen, H.; Lee, C.-C.; Zhou, F. Green Credit Policy, Credit Allocation Efficiency and Upgrade of Energy-Intensive Enterprises. Energy Econ. 2021, 94, 105099. [Google Scholar] [CrossRef]
- Zhang, W.; Hong, M.; Li, J.; Li, F. An Examination of Green Credit Promoting Carbon Dioxide Emissions Reduction: A Provincial Panel Analysis of China. Sustainability 2021, 13, 7148. [Google Scholar] [CrossRef]
- Yi, H.; Hao, L.; Liu, A.; Zhang, Z. Green finance development and resource efficiency: A financial structure perspective. Resour. Policy 2023, 85, 104068. [Google Scholar] [CrossRef]
- Chang, Q.; Sha, Y.; Chen, Y. The Coupling Coordination and Influencing Factors of Urbanization and Ecological Resilience in the Yangtze River Delta Urban Agglomeration, China. Land 2024, 13, 111. [Google Scholar] [CrossRef]
- Zeng, S.; Fu, Q.; Haleem, F.; Shen, Y.; Zhang, J. Carbon-Reduction, Green Finance, and High-Quality Economic Development: A Case of China. Sustainability 2023, 15, 13999. [Google Scholar] [CrossRef]
- Liu, R.; Hou, M.; Jing, R.; Bauer, A.; Wu, M. The Impact of National Big Data Pilot Zones on the Persistence of Green Innovation: A Moderating Perspective Based on Green Finance. Sustainability 2024, 16, 9570. [Google Scholar] [CrossRef]
- Zhao, T.; Zhou, H.; Jiang, J.; Yan, W. Impact of Green Finance and Environmental Regulations on the Green Innovation Efficiency in China. Sustainability 2022, 14, 3206. [Google Scholar] [CrossRef]
- Sun, X.; Zhou, C.; Gan, Z. Green Finance Policy and ESG Performance: Evidence from Chinese Manufacturing Firms. Sustainability 2023, 15, 6781. [Google Scholar] [CrossRef]
- Xu, W.; Feng, X.; Zhu, Y. The Impact of Green Finance on Carbon Emissions in China: An Energy Consumption Optimization Perspective. Sustainability 2023, 15, 10610. [Google Scholar] [CrossRef]
- Persico, N.; Postlewaite, A.; Silverman, D. The effect of adolescent experience on labor market outcomes: The case of height. J. Political Econ. 2004, 112, 1019–1053. [Google Scholar] [CrossRef]
- Sedita, S.R.; De Noni, I.; Pilotti, L. Out of the Crisis: An Empirical Investigation of Place-Specific Determinants of Economic Resilience. Eur. Plan. Stud. 2017, 25, 155–180. [Google Scholar] [CrossRef]
- Lv, H.; Lian, Y.; Hua, X. The Relationship between FDI Quality, New Quality Productivity Forces, and Economic Resilience in China’s Yangtze River Delta Region: Insights from an Empirical Spatial Durbin Model. Humanit. Soc. Sci. Commun. 2025, 12, 1083. [Google Scholar] [CrossRef]
- Liu, C. The Myth of Informatization in Rural Areas: The Case of China’s Sichuan Province. Gov. Inf. Q. 2012, 29, 85–97. [Google Scholar] [CrossRef]
- Atkociuniene, V.; Vaznoniene, G.; Pakeltiene, R. Aim of the Development of Rural Social Infrastructure: A Sustainable Community. Transform. Bus. Econ. 2015, 14, 42–59. [Google Scholar]
- Yu, H.; Liu, Y.; Liu, C.; Fan, F. Spatiotemporal Variation and Inequality in China’s Economic Resilience across Cities and Urban Agglomerations. Sustainability 2018, 10, 4754. [Google Scholar] [CrossRef]
- Ma, L.; Gan, Y.; Huang, P. Higher education investment, human capital, and high-quality economic development. Financ. Res. Lett. 2025, 71, 106419. [Google Scholar] [CrossRef]
- Ye, S.; Yi, S.; Fangjing, S.; Yuzhu, Q. Government intervention, internal control, and technology innovation of SMEs in China. Front. Psychol. 2022, 13, 960025. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Zhou, C.; Wang, S.; Gao, S.; Liu, Z. Spatial Heterogeneity in the Determinants of Urban Form: An Analysis of Chinese Cities with a GWR Approach. Sustainability 2019, 11, 479. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, X. Environmental regulation and high-quality economic growth: Quasi-natural experimental evidence from China. Environ. Sci. Pollut. Res. 2022, 29, 85389–85401. [Google Scholar] [CrossRef]
- Li, A.; Supanut, A.; Liu, J. Green Finance and Regional Technological Innovation in China: The Mediating Role of R&D Investment. Int. J. Financ. Stud. 2025, 13, 78. [Google Scholar]
- Lv, X.; Lu, X.; Fu, G.; Wu, C. A Spatial-Temporal Approach to Evaluate the Dynamic Evolution of Green Growth in China. Sustainability 2018, 10, 2341. [Google Scholar] [CrossRef]
- Huang, A.; Dai, L.; Xiao, Y. Achieving Sustainable Development Through Green Finance: A Case Study of High-Emission Industries. Sustain. Dev. 2025. [Google Scholar] [CrossRef]
- Wang, H.; Guo, J. New way out of efficiency-equity dilemma: Digital technology empowerment for local government environmental governance. Technol. Forecast. Soc. Chang. 2024, 200, 123184. [Google Scholar] [CrossRef]
- Lu, Y.; Gao, Y.; Zhang, Y.; Wang, J. Can the green finance policy force the green transformation of high-polluting enterprises? A quasi-natural experiment based on “Green Credit Guidelines”. Energy Econ. 2022, 114, 106265. [Google Scholar]
Primary Indicators | Secondary Indicators | Calculation Method | Direction |
---|---|---|---|
Resistance and Recovery Capacity Index | Per Capita GDP | GDP/Registered Population | Positive |
GDP Growth Rate | (Current Year GDP—Previous Year GDP)/Previous Year GDP | Positive | |
Per Capita Disposable Income of Residents | (Household Total Income—Income Tax—Social Security Contributions—Subsidies)/Household Population | Positive | |
Urban Registered Unemployment Rate | Registered Unemployed Population/(Urban Employed Population + Registered Unemployed Population) | Negative | |
Medical Insurance Coverage Rate | Basic Medical Insurance Participants/Registered Population | Positive | |
Pension Insurance Coverage Rate | Urban Employee Pension Insurance Participants/Registered Population | Positive | |
Unemployment Insurance Coverage Rate | Unemployment Insurance Participants/Registered Population | Positive | |
Adaptation and Adjustment Capacity Index | Fiscal Self-Sufficiency Rate | Local General Budget Revenue/Local General Budget Expenditure | Positive |
Per Capita Fiscal Expenditure | Local General Budget Expenditure/Registered Population | Positive | |
Commodity Market Activity | Total Retail Sales of Consumer Goods/GDP | Positive | |
Per Capita Household Consumption Expenditure | (Household Goods Purchases + Service Consumption)/Household Population | Positive | |
Per Capita Medical Beds | Hospital Beds/Registered Population | Positive | |
Innovation and Transformation Capacity Index | Per Capita Patent Grants | Number of Patents Granted/Registered Population | Positive |
Proportion of R&D Personnel | Number of Scientific Researchers/Registered Population | Positive | |
Per Capita Education Expenditure | Fiscal Education Expenditure/Registered Population | Positive | |
Per Capita R&D Expenditure | Fiscal R&D Expenditure/Registered Population | Positive | |
Industrial Upgrading Index | Tertiary Industry Added Value/Secondary Industry Added Value | Positive | |
Urbanization Rate | Urban Registered Population/Registered Population | Positive |
Variable Type | Variable Name | Symbol | Obs | Mean | Std. Dev. | Min | Max |
---|---|---|---|---|---|---|---|
Dependent Variable | Economic Resilience | 2917 | −0.05 | 1.77 | −2.1323 | 7.6026 | |
Explanatory Variable | Green Finance Reform Policy | 2917 | 0.02 | 0.13 | 0.0000 | 1.0000 | |
Control Variables | Economic Agglomeration | 2917 | −2.75 | 1.47 | −6.6144 | 0.7118 | |
Informatization Level | 2917 | 0.30 | 0.19 | 0.0530 | 0.9968 | ||
Infrastructure Development | 2917 | 3.46 | 0.84 | 1.5814 | 5.7843 | ||
Openness to Foreign Investment | 2917 | 3.97 | 1.81 | −1.2221 | 7.3927 | ||
Human Capital | 2917 | −4.48 | 1.07 | −7.0483 | −2.1162 | ||
Government Intervention | 2917 | −1.74 | 0.51 | −3.2545 | −0.4423 | ||
Population Density | 2917 | −4.28 | 1.07 | −7.3465 | −1.8899 | ||
Pollution Intensity | 2917 | −13.09 | 0.93 | −15.5686 | −11.1683 |
Variable | (1) | (2) |
---|---|---|
0.601 *** (3.13) | 0.516 *** | |
(2.79) | ||
0.110 * | ||
(1.85) | ||
0.570 *** | ||
(2.97) | ||
0.0817 ** | ||
(2.49) | ||
−0.00424 | ||
(−0.32) | ||
−0.0799 | ||
(−1.56) | ||
0.232 *** | ||
(5.64) | ||
0.921 ** | ||
(1.97) | ||
−0.206 *** | ||
(−3.21) | ||
−0.821 *** | 0.514 | |
(−36.62) | (0.25) | |
Urban fixed | YES | YES |
Year fixed | YES | YES |
Goodness of fit R2 | 0.7214 | 0.7482 |
Number of observations | 2917 | 2917 |
Variable | NNU (1) | NIE (2) | UMC (3) | Policy Superposition (4) |
---|---|---|---|---|
0.510 *** (3.00) | 0.497 *** (2.91) | 0.465 ** (2.36) | 0.448 ** (2.55) | |
0.382 *** (3.32) | 0.338 *** (3.25) | |||
0.546 *** (2.90) | 0.475 *** (2.64) | |||
0.251 *** (4.58) | 0.225 *** (4.43) | |||
0.983 (0.49) | 0.590 (0.29) | 0.803 (0.38) | 1.253 (0.62) | |
Control variables | YES | YES | YES | YES |
Urban fixed | YES | YES | YES | YES |
Year fixed | YES | YES | YES | YES |
Goodness of fit R2 | 0.753 | 0.758 | 0.759 | 0.774 |
Number of observations | 2917 | 2917 | 2917 | 2917 |
Variable | PSM-DID | Control Variables Lagged by One Period | Alternate Explanatory Variable |
---|---|---|---|
(1) | (2) | (3) | |
0.454 ** | 0.459 ** | 0.0144 *** | |
(2.47) | (2.52) | (2.81) | |
0.0791 (0.91) | 0.126 ** (2.20) | 0.00142 (0.69) | |
0.753 *** (3.33) | 0.504 ** (2.46) | 0.0176 *** (3.12) | |
0.0985 ** (2.06) | 0.0362 (0.68) | 0.00292 *** (2.86) | |
0.0318 (1.58) | −0.00377 (−0.32) | 0.000153 (0.30) | |
−0.186 ** (−2.52) | −0.0648 (−1.30) | −0.000338 (−0.20) | |
0.288 *** (6.25) | −0.0208 (−0.25) | 0.00373 ** (2.52) | |
1.172 ** (2.26) | 0.557 (1.40) | 0.0240 ** (2.26) | |
−0.323 *** (−3.73) | −0.187 *** (−2.85) | −0.00483 ** (−2.13) | |
−0.322 | −0.649 | 0.199 *** | |
(−0.13) | (−0.38) | (3.93) | |
Urban fixed | YES | YES | YES |
Year fixed | YES | YES | YES |
Goodness of fit R2 | 0.748 | 0.708 | 0.766 |
Number of observations | 2917 | 2917 | 2917 |
Variable | (1) | (2) | (3) | (4) | (5) | (6) |
---|---|---|---|---|---|---|
6.7102 * (1.71) | 0.480 *** (2.82) | −0.00111 *** (−2.65) | 0.507 *** (2.74) | |||
Mechanic variables | 0.0056 ** (1.87) | 0.0054 ** (1.80) | −8.770 *** (−2.91) | −8.456 *** (−3.20) | ||
Constant | 46.7265 (0.66) | 0.2692 (0.15) | 0.2610 (0.15) | 0.00909 (0.81) | −0.816 *** (−36.11) | 0.591 (0.29) |
Control variables | YES | YES | YES | YES | YES | YES |
Urban fixed | YES | YES | YES | YES | YES | YES |
Year fixed | YES | YES | YES | YES | YES | YES |
Sobel Z | −4.017 *** | 0.0315 ** | ||||
Bootstrap (1000 times) Confidence interval | [−0.2837504, −0.148421] | [0.0064669, 0.0564719] | ||||
Goodness of fit R2 | 0.1765 | 0.7553 | 0.7601 | 0.315 | 0.716 | 0.749 |
Number of observations | 2917 | 2917 | 2917 | 2917 | 2917 | 2917 |
Variable | Large Cities (1) | Small and Medium-Sized Cities (2) | Resource-Based Cities (3) | Non-Resource-Based Cities (4) |
---|---|---|---|---|
0.467 ** (2.31) | 0.460 * (1.76) | 0.740 *** (2.70) | 0.389 (1.55) | |
0.275 * (1.83) | 0.0604 (1.08) | 0.0491 (0.79) | 0.164 * (1.76) | |
0.915 ** (2.59) | 0.360 * (1.83) | 0.449 ** (2.05) | 0.660 *** (2.68) | |
0.0427 (0.56) | 0.0949*** (2.67) | 0.108 *** (2.69) | 0.0538 (1.09) | |
0.0153 (0.42) | −0.0135 (−1.06) | −0.00965 (−0.68) | 0.00246 (0.11) | |
−0.460 ** (−2.61) | 0.00852 (0.22) | 0.0102 (0.23) | −0.159 (−1.68) | |
0.126 * (1.69) | 0.197 *** (2.96) | 0.191 *** (4.18) | 0.237 *** (3.60) | |
0.584 (1.32) | 1.163 * (1.97) | 1.188 ** (2.37) | −0.124 (−0.42) | |
−0.155 (−0.96) | −0.174 *** (−3.20) | −0.150 ** (−2.34) | −0.150 (−1.43) | |
−1.231 (2.348) | 2.174 (2.836) | 2.601 (2.376) | −3.189 (1.728) | |
Control variables | YES | YES | YES | YES |
YES | YES | YES | YES | |
YES | YES | YES | YES | |
0.743 | 0.786 | 0.804 | 0.744 | |
Number of observations | 1025 | 1892 | 1143 | 1774 |
Variable | Inland Areas (1) | Coastal Areas (2) | Key Environmental Protection Cities (3) | Non-Key Environmental Protection Cities (4) |
---|---|---|---|---|
0.298 (1.28) | 0.639 *** (2.62) | 0.589 *** (3.35) | 0.0418 (0.94) | |
−0.0281 (−0.40) | 0.305 ** (2.50) | 0.0813 (0.98) | 0.132 ** (2.02) | |
0.398 * (1.95) | 0.754 ** (2.46) | 0.616 *** (2.76) | 0.394 (1.61) | |
0.0892 *** (2.75) | 0.0820 (0.95) | 0.0809 * (1.86) | 0.0406 (1.17) | |
−0.0112 (−0.75) | −0.00344 (−0.13) | 0.0217 (1.28) | −0.0431 ** (−2.36) | |
0.00573 (0.17) | −0.446 *** (−3.21) | −0.109 (−1.48) | 0.0227 (0.58) | |
0.204 *** (4.53) | 0.225 *** (3.17) | 0.209 *** (4.18) | 0.256 *** (4.34) | |
1.117 ** (2.24) | −0.797 (−1.48) | 1.068 ** (2.17) | 0.305 (0.97) | |
−0.239 *** (−3.49) | −0.158 (−1.08) | −0.193 ** (−2.19) | −0.0604 (−0.85) | |
0.920 (0.39) | −6.625 * (−2.41) | 0.828 (0.38) | 0.415 (0.25) | |
Urban fixed | YES | YES | YES | YES |
YES | YES | YES | YES | |
0.811 | 0.702 | 0.759 | 0.777 | |
Number of observations | 1744 | 1173 | 2134 | 783 |
I | II | III | IV | |
---|---|---|---|---|
I | 0.7644 | 0.2293 | 0.0062 | 0.0000 |
II | 0.0445 | 0.7381 | 0.2175 | 0.0000 |
III | 0.0035 | 0.0472 | 0.8497 | 0.0997 |
IV | 0.0000 | 0.0000 | 0.0293 | 0.9707 |
Spatial Lag Type | t/(t+1) | I | II | III | IV |
---|---|---|---|---|---|
I | I | 0.8419 | 0.1548 | 0.0032 | 0.0000 |
II | 0.0824 | 0.6706 | 0.2471 | 0.0000 | |
III | 0.0000 | 0.0476 | 0.9048 | 0.0476 | |
IV | 0.0000 | 0.0000 | 0.0000 | 1.0000 | |
II | I | 0.7467 | 0.2489 | 0.0044 | 0.0000 |
II | 0.0096 | 0.8373 | 0.1531 | 0.0000 | |
III | 0.0089 | 0.0536 | 0.8393 | 0.0982 | |
IV | 0.0000 | 0.0000 | 0.0408 | 0.9592 | |
III | I | 0.5385 | 0.4359 | 0.0256 | 0.0000 |
II | 0.0556 | 0.6984 | 0.2460 | 0.0000 | |
III | 0.0040 | 0.0553 | 0.8656 | 0.0751 | |
IV | 0.0000 | 0.0000 | 0.0316 | 0.9684 | |
IV | I | 0.6667 | 0.3333 | 0.0000 | 0.0000 |
II | 0.0656 | 0.6557 | 0.2787 | 0.0000 | |
III | 0.0000 | 0.0303 | 0.8182 | 0.1515 | |
IV | 0.0000 | 0.0000 | 0.0281 | 0.9719 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Y.; An, Y.; Nie, Z.; Chi, Y.; Jia, X. Impact of Green Financial Reform on Urban Economic Resilience—A Quasi-Natural Experiment Based on Green Financial Reform and Innovation Pilot Zones. Sustainability 2025, 17, 6969. https://doi.org/10.3390/su17156969
Chen Y, An Y, Nie Z, Chi Y, Jia X. Impact of Green Financial Reform on Urban Economic Resilience—A Quasi-Natural Experiment Based on Green Financial Reform and Innovation Pilot Zones. Sustainability. 2025; 17(15):6969. https://doi.org/10.3390/su17156969
Chicago/Turabian StyleChen, Yahui, Yi An, Zixun Nie, Yuanying Chi, and Xinyue Jia. 2025. "Impact of Green Financial Reform on Urban Economic Resilience—A Quasi-Natural Experiment Based on Green Financial Reform and Innovation Pilot Zones" Sustainability 17, no. 15: 6969. https://doi.org/10.3390/su17156969
APA StyleChen, Y., An, Y., Nie, Z., Chi, Y., & Jia, X. (2025). Impact of Green Financial Reform on Urban Economic Resilience—A Quasi-Natural Experiment Based on Green Financial Reform and Innovation Pilot Zones. Sustainability, 17(15), 6969. https://doi.org/10.3390/su17156969