Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (536)

Search Parameters:
Keywords = sorption rate

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 2630 KiB  
Article
Experimental and Kinetic Modelling Study of the Heterogeneous Catalytic Conversion of Bioethanol into n-Butanol Using MgO–Al2O3 Mixed Oxide Catalyst
by Amosi Makoye, Anna Vikár, András Bence Nacsa, Róbert Barthos, József Valyon, Ferenc Lónyi and Tibor Nagy
Catalysts 2025, 15(8), 709; https://doi.org/10.3390/catal15080709 - 25 Jul 2025
Viewed by 232
Abstract
Ethanol upgrading via catalytic C–C coupling, commonly known as the Guerbet reaction, offers a sustainable route to produce 1-butanol, a high-performance biofuel. To address gaps in the mechanistic understanding of the catalytic reaction, we investigated the process involving a fixed-bed reactor, operated at [...] Read more.
Ethanol upgrading via catalytic C–C coupling, commonly known as the Guerbet reaction, offers a sustainable route to produce 1-butanol, a high-performance biofuel. To address gaps in the mechanistic understanding of the catalytic reaction, we investigated the process involving a fixed-bed reactor, operated at 275–325 °C, 21 bar, and weight hourly space velocities of 0.25–2.5 gEtOH/(gcat·h), using helium as a carrier gas, with a 5:1 He/EtOH molar ratio. The catalyst was a MgO–Al2O3 mixed oxide (Mg/Al = 2:1), derived from a hydrotalcite precursor. A detailed kinetic model was developed, encompassing 15 species and 27 reversible steps (10 sorption and 17 reaction steps), within a 1+1D sorption–reaction–transport framework. Four C4-forming pathways were included: aldol condensation to form crotonaldehyde, semi-direct coupling to form butyraldehyde and crotyl alcohol, and direct coupling to form 1-butanol. To avoid overfitting, Arrhenius parameters were grouped by reaction type, resulting in sixty rate parameters and one active site-specific density parameter. The optimized model achieved high accuracy, with an average prediction error of 1.44 times the experimental standard deviation. The mechanistic analysis revealed aldol condensation as the dominant pathway below 335 °C, with semi-direct coupling to crotyl alcohol prevailing above 340 °C. The resulting model provides a robust framework for understanding and predicting complex reaction networks in ethanol upgrading systems. Full article
(This article belongs to the Special Issue Biomass Catalytic Conversion to Value-Added Chemicals)
Show Figures

Graphical abstract

25 pages, 6336 KiB  
Article
Treatment of Industrial Brine Using a Poly (Vinylidene Fluoride) Membrane Modified with Carbon Nanotubes
by Tshifhiwa T. Tshauambea, Soraya P. Malinga and Patrick G. Ndungu
Membranes 2025, 15(8), 220; https://doi.org/10.3390/membranes15080220 - 23 Jul 2025
Viewed by 341
Abstract
This study explores using polyvinylidene fluoride (PVDF) membranes modified with multi-walled carbon nanotubes (MWCNTs) to treat simulated and industrial brine from coal power stations. The MWCNTs were acid-treated and characterized using Fourier Transform Infrared Spectroscopy (FTIR), Raman, and nitrogen sorption at 77 K, [...] Read more.
This study explores using polyvinylidene fluoride (PVDF) membranes modified with multi-walled carbon nanotubes (MWCNTs) to treat simulated and industrial brine from coal power stations. The MWCNTs were acid-treated and characterized using Fourier Transform Infrared Spectroscopy (FTIR), Raman, and nitrogen sorption at 77 K, Thermogravimetric analysis (TGA), and Transmission electron microscopy (TEM). The desired membranes were obtained by casting from a solution of N-Methyl-2-pyrrolidone, PVDF, various weight percentages of MWCNTs, and a small amount of polyvinylpyrrolidone. The acid treatment of the MWCNTs introduced oxygen moieties on the surface, and increased pore volume and surface area while maintaining crystallinity and structural integrity remain preserved. The maximum rejection rate achieved was 41.82% with 1 wt.% of acid-treated MWCNTs in the PVDF membrane. Acid-treated MWCNTs loaded membranes had an improved rejection rate, which was 5× higher than membranes without MWCNTs. Full article
Show Figures

Figure 1

28 pages, 4509 KiB  
Article
Activated Biocarbons Based on Salvia officinalis L. Processing Residue as Adsorbents of Pollutants from Drinking Water
by Joanna Koczenasz, Piotr Nowicki, Karina Tokarska and Małgorzata Wiśniewska
Molecules 2025, 30(14), 3037; https://doi.org/10.3390/molecules30143037 - 19 Jul 2025
Viewed by 306
Abstract
This study presents research on the production of activated biocarbons derived from herbal waste. Sage stems were chemically activated with two activating agents of different chemical natures—H3PO4 and K2CO3—and subjected to two thermal treatment methods: conventional [...] Read more.
This study presents research on the production of activated biocarbons derived from herbal waste. Sage stems were chemically activated with two activating agents of different chemical natures—H3PO4 and K2CO3—and subjected to two thermal treatment methods: conventional and microwave heating. The effect of the activating agent type and heating method on the basic physicochemical properties of the resulting activated biocarbons was investigated. These properties included surface morphology, elemental composition, ash content, pH of aqueous extracts, the content and nature of surface functional groups, points of zero charge, and isoelectric points, as well as the type of porous structure formed. In addition, the potential of the prepared carbonaceous materials as adsorbents of model organic (represented by Triton X-100 and methylene blue) and inorganic (represented by iodine) pollutants was assessed. The influence of the initial adsorbate concentration (5–150 (dye) and 10–800 mg/dm3 (surfactant)), temperature (20–40 °C), and pH (2–10) of the system on the efficiency of contaminant removal from aqueous solutions was evaluated. The adsorption kinetics were also investigated to better understand the rate and mechanism of contaminant uptake by the prepared activated biocarbons. The results showed that materials activated with orthophosphoric acid exhibited a significantly higher sorption capacity for all tested adsorbates compared to their potassium carbonate-activated counterparts. Microwave heating was found to be more effective in promoting the formation of a well-developed specific surface area (471–1151 m2/g) and porous structure (mean pore size 2.17–3.84 nm), which directly enhanced the sorption capacity of both organic and inorganic contaminants. The maximum adsorption capacities for iodine, methylene blue, and Triton X-100 reached the levels of 927.0, 298.4, and 644.3 mg/g, respectively, on the surface of the H3PO4-activated sample obtained by microwave heating. It was confirmed that the heating method used during the activation step plays a key role in determining the physicochemical properties and sorption efficiency of activated biocarbons. Full article
Show Figures

Figure 1

21 pages, 4562 KiB  
Article
The Influence of the Plant Biomass Pyrolysis Conditions on the Structure of Biochars and Sorption Properties
by Bernadetta Kaźmierczak, Jolanta Drabik, Paweł Radulski, Anna Kaczmarczyk and Edyta Osuch-Słomka
Molecules 2025, 30(14), 2926; https://doi.org/10.3390/molecules30142926 - 10 Jul 2025
Viewed by 256
Abstract
The aim of this work was to obtain biochar materials from plant biomass and to determine the changes occurring under the conditions of the pyrolysis process and physical activation, as well as to characterize the physicochemical characteristics of the produced products in terms [...] Read more.
The aim of this work was to obtain biochar materials from plant biomass and to determine the changes occurring under the conditions of the pyrolysis process and physical activation, as well as to characterize the physicochemical characteristics of the produced products in terms of their practical use. The pyrolysis process was carried out at a temperature of 700 °C, under the flow of a protective gas, i.e., carbon dioxide, at a rate of 5.0 L/min. The pyrolysis processes were carried out in the absence and presence of an activating agent. For ecological safety, physical activation using water vapor was chosen. In the next stage of the work, biochars were produced and subjected to detailed physicochemical analysis. A scanning electron microscope with energy-dispersive SEM/EDS was used to determine the microstructure and changes in the chemical composition of the biochars. FTIR spectrophotometry was used to identify the functional groups present in the structures of biochars and to indicate changes occurring in the biomass during pyrolysis. Meanwhile, Raman spectroscopy was used to assess the ordering of the biochar structures based on the identification of spectral signals. The description of the specific surface areas of the biochars was made possible by studies conducted using a physical and chemical adsorption analyzer. Based on the obtained research results, the elementary structure, surface development, presence of functional groups on the surfaces of biochars and changes in the structure before and after activation with water vapor were determined. It was found that the biochars had functional groups, a well-developed specific surface area that increased after activation with water vapor, micropores and mesopores, as well as changes in structure under the influence of physical activation. It has been shown that the presence of functional groups influences the hydrogen sulfide sorption capacity. Full article
(This article belongs to the Special Issue Natural-Based Sorbents for Water Remediation)
Show Figures

Figure 1

12 pages, 2664 KiB  
Article
Heavy Metal Immobilization by Phosphate-Solubilizing Fungus and Phosphogypsum Under the Co-Existence of Pb(II) and Cd(II)
by Xu Li, Zhenyu Chao, Haoxuan Li, Jiakai Ji, Xin Sun, Yingxi Chen, Zhengda Li, Zhen Li, Chuanhao Li, Jun Yao and Lan Xiang
Agronomy 2025, 15(7), 1632; https://doi.org/10.3390/agronomy15071632 - 4 Jul 2025
Viewed by 308
Abstract
Globally, phosphogypsum (PG) is the primary by-product of the phosphorus industry. Aspergillus niger (A. niger), one of the most powerful types of phosphate-solubilizing fungi (PSF), can secrete organic acids to dissolve the phosphates in PG. This study investigated heavy metal (HM) [...] Read more.
Globally, phosphogypsum (PG) is the primary by-product of the phosphorus industry. Aspergillus niger (A. niger), one of the most powerful types of phosphate-solubilizing fungi (PSF), can secrete organic acids to dissolve the phosphates in PG. This study investigated heavy metal (HM) remediation by PG and A. niger under the co-existence of Pb and Cd. It demonstrated that 1 mmol/L Pb2+ stimulated the bioactivity of A. niger during incubation, based on the CO2 emission rate. PG successfully functioned as P source for the fungus, and promoted the growth of the fungal cells. Meanwhile, it also provided sulfates to immobilize Pb in the solution. The subsequently generated anglesite was confirmed using SEM imaging. The immobilization rate of Pb reached over 95%. Under co-existence, Pb2+ and 0.01 mmol/L Cd2+ maximized the stimulating effect of A. niger. However, the biotoxicity of Pb2+ and elevated Cd2+ (0.1 mmol/L) counterbalanced the stimulating effect. Finally, 1 mmol/L Cd2+ dramatically reduced the fungal activity. In addition, organic matters from the debris of A. niger could still bind Pb2+ and Cd2+ according to the significantly lowered water-soluble Pb and Cd concentrations. In all treatments with the addition of Cd2+, the relatively high biotoxicity of Cd2+ induced A. niger to absorb more Pb2+ to minimize the sorption of Cd2+ based on the XRD results. The functional group analysis of ATR-IR also confirmed the phenomenon. This pathway maintained the stability of Pb2+ immobilization using the fungus and PG. This study, hence, shed light on the application of A. niger and solid waste PG to remediate the pollution of Pb and Cd. Full article
Show Figures

Figure 1

21 pages, 4061 KiB  
Article
Pore Engineering in Carbon Monoliths Through Soft Templating, In Situ Grown Graphene, and Post-Activation for CO2 Capture, H2 Storage, and Electrochemical Capacitor
by Madhav P. Chavhan, Moomen Marzouki, Mouna Jaouadi, Ouassim Ghodbane, Gabriela Zelenková, Miroslav Almasi, Monika Maříková, Petr Bezdicka, Jakub Tolasz and Natalija Murafa
Nanomaterials 2025, 15(12), 900; https://doi.org/10.3390/nano15120900 - 10 Jun 2025
Viewed by 515
Abstract
Controlled porosity with precise pore sizes in carbon monoliths (CMs) is crucial for optimizing performance in electrochemical energy storage and adsorption applications. This study explores the influence of porosity in CMs, developed from polymer precursors via the sol–gel route, employing soft templating, in [...] Read more.
Controlled porosity with precise pore sizes in carbon monoliths (CMs) is crucial for optimizing performance in electrochemical energy storage and adsorption applications. This study explores the influence of porosity in CMs, developed from polymer precursors via the sol–gel route, employing soft templating, in situ graphene growth, and post-activation. The effects on CO2 and H2 sorption and electrochemical capacitor (EC) performance are analyzed. Graphene is successfully grown in situ from graphene oxide (GO), as confirmed by several characterization analyses. The amount of GO incorporated influences the crosslink density of the polymer gel, generating various pore structures at both micro- and mesoscales, which impacts performance. For instance, CO2 capture peaks at 5.01 mmol g−1 (0 °C, 101 kPa) with 10 wt % GO, due to the presence of wider micropores that allow access to ultramicropores. For H2 storage, the best performance is achieved with 5 wt % GO, reaching 12.8 mmol g−1 (−196 °C, 101 kPa); this is attributed to the enlarged micropore volumes between 0.75 and 2 nm that are accessible by mesopores of 2 to 3 nm. In contrast, for the ECs, lower GO loadings (0.5 to 2 wt %) improve ion accessibility via mesopores (4 to 6 nm), enhancing rate capability through better conduction. Full article
(This article belongs to the Section Energy and Catalysis)
Show Figures

Figure 1

19 pages, 2238 KiB  
Article
Activation of Coke Fines Using CO2 and Steam: Optimization and Characterization of Carbon Sorbents
by Aigul T. Ordabaeva, Zainulla M. Muldakhmetov, Mazhit G. Meiramov and Sergey V. Kim
Molecules 2025, 30(12), 2528; https://doi.org/10.3390/molecules30122528 - 10 Jun 2025
Viewed by 337
Abstract
In this study, the characteristics of coal sorbents obtained by the activation of coke fines in an atmosphere of a mixture of gases CO2 and H2O were studied. The experiment was conducted at various temperatures (700–900 °C), activation time (60–180 [...] Read more.
In this study, the characteristics of coal sorbents obtained by the activation of coke fines in an atmosphere of a mixture of gases CO2 and H2O were studied. The experiment was conducted at various temperatures (700–900 °C), activation time (60–180 min), and constant CO2 supply rate (0.5 L/min). The main parameters such as tinder, ash content, bulk density, sorption capacity, total pore volume, and specific surface area were analyzed to assess the efficiency of the process. The results showed that samples of sorbents obtained at a temperature of 800 °C and an activation time of 120 min have the highest sorption capacity for iodine (up to 64.77%). The specific surface area of the obtained carbon sorbents was ~432.6 m2/g. It was found that an increase in temperature to 900 °C leads to a decrease in sorption characteristics, which may be due to partial destruction of the porous structure of the material. It was also found that the duration of activation contributes to an increase in burn-off and ash content, which had an effect on sorption properties. Based on the data obtained, optimal conditions for the production of carbon sorbents have been established and a process model has been developed. Full article
(This article belongs to the Special Issue Recent Advances in Porous Materials, 2nd Edition)
Show Figures

Figure 1

24 pages, 3308 KiB  
Article
The Latest Achievements in the Design of Permanent Fillings for Conservative Dentistry Based on Indenoquinoxaline Derivatives as Photoinitiators of Visible-Light Polymerization: Mass and Colour Stability
by Ilona Pyszka, Oliwia Szczepańska and Beata Jędrzejewska
Int. J. Mol. Sci. 2025, 26(11), 5424; https://doi.org/10.3390/ijms26115424 - 5 Jun 2025
Viewed by 449
Abstract
The demand for polymer composite materials in the dental market is increasing every year. This rise is due to their excellent properties and ongoing technological advancements. The goal of this study was to develop new photoinitiators included in the liquid organic matrix, which [...] Read more.
The demand for polymer composite materials in the dental market is increasing every year. This rise is due to their excellent properties and ongoing technological advancements. The goal of this study was to develop new photoinitiators included in the liquid organic matrix, which is one of the main components of dental composites. Therefore, a series of compounds based on the indenoquinoxaline skeleton was synthesized, differing in the substituent. The spectroscopic properties of these compounds allowed their use as visible-light photoinitiators of radical polymerization in combination with (phenylthio)acetic acid. In addition to the polymerization kinetics, the lifetime and quantum yield of the triplet-state formation and the rate constants of its quenching by (phenylthio)acetic acid were determined. The durability of the designed composites was also assessed. Ageing tests included hydrothermal ageing, allowing for the determination of sorption, solubility, and mass change. Solutions imitating the oral cavity environment—distilled water, artificial saliva, n-heptane, and 3% acetic acid—as well as solutions containing pigments were used for these studies. Determination of the mass change and colour stability allowed for the assessment of how these materials react to long-term exposure in the oral environment. It was found that the solution simulating the natural oral environment has a significant impact on the hydrolytic stability and colour stability of the materials. Full article
(This article belongs to the Special Issue Application of Biotechnology to Dental Treatment)
Show Figures

Figure 1

15 pages, 1059 KiB  
Article
Adsorption Kinetics and Isotherms of Cd (II), As (III), and Pb (II) on Green Zn-Mn Ferrite Soft Magnetic Material
by Jia Wang, Mengyi Guan, Zijian Qin, Shihao Zhang, Jian Cheng and Baoping Xin
Water 2025, 17(11), 1630; https://doi.org/10.3390/w17111630 - 27 May 2025
Viewed by 366
Abstract
In this study, a Zn-Mn ferrite soft magnetic material (Mn0.6Zn0.4Fe2O4) was successfully prepared from a spent Zn-Mn battery using a novel multi-step process involving bioleaching, co-precipitation, and boiling reflux. The green Zn–Mn ferrite exhibited optimal [...] Read more.
In this study, a Zn-Mn ferrite soft magnetic material (Mn0.6Zn0.4Fe2O4) was successfully prepared from a spent Zn-Mn battery using a novel multi-step process involving bioleaching, co-precipitation, and boiling reflux. The green Zn–Mn ferrite exhibited optimal magnetic properties, with Ms, Mr, and Hc values of 68.9 emu/g, 4.7 emu/g, and 53.6 Oe, respectively. The adsorption kinetics and isotherms of Cd (II), As (III), and Pb (II) in wastewater on Mn0.6Zn0.4Fe2O4 were subsequently investigated. The sorption dosages of Cd (II), As (III), and Pb (II) were 22.9 mg/g, 8.7 mg/g, and 33.9 mg/g, respectively. The pseudo-second-order kinetic model provided a fitting correlation with the experimental data. The adsorption process exhibited a good correlation with the Langmuir model, with R2 = 0.997, and the qm and b values were 33.44 mg/g and 2.43 L/mg, respectively. The sorption rates followed the sequence Pb (II) > Cd (II) > As (III). On increasing the temperature, the saturated adsorption capacity of the Cd (II), As (III), and Pb (II) increased, thus indicating that the adsorption reaction was endothermic, with the corresponding activation energy (Ea) values determined to be 9.5 KJ/mol, 32.2 KJ/mol, and 1.4 KJ/mol, respectively. Full article
(This article belongs to the Section Wastewater Treatment and Reuse)
Show Figures

Figure 1

22 pages, 4604 KiB  
Article
Investigation of Biochars in Terms of Vitamin E Adsorption Capacity
by Franziska Witte, Ngoc Huyen Anh Dinh, Andreas Juadjur, Volker Heinz, Christian Visscher, Jochen Weiss and Nino Terjung
Appl. Sci. 2025, 15(11), 5983; https://doi.org/10.3390/app15115983 - 26 May 2025
Viewed by 381
Abstract
Vitamin E is important for ruminants’ health. To increase the rate of vitamin E resorption, the use of a carrier is recommended. One authorised porous feed additive is biochar. Biochar’s adsorption capacity is affected by its pore volume, which is determined, among other [...] Read more.
Vitamin E is important for ruminants’ health. To increase the rate of vitamin E resorption, the use of a carrier is recommended. One authorised porous feed additive is biochar. Biochar’s adsorption capacity is affected by its pore volume, which is determined, among other factors, by the biomass and the production process applied. For this purpose, the vitamin E adsorption capacity of ten commercial biochars with a varying surface area in the range of 2.6 to 20 nm was investigated. The results of these single-point batch experiments were compared to the theoretical results using a monolayer adsorption model. Our hypothesis was proven, as the theoretical model could predict the experimental adsorption capacity. This generally suggests that the number of trials required to identify optimal adsorbents can be reduced. A high percentage of vitamin E adsorption (>90%) was obtained with a short adsorption time of 10 min using an adsorbent dosage of 15.78 g/L and a vitamin E concentration of 1.70 g/L. The highest correlation of vitamin E adsorption existed for the mesopore class, ranging from 3.22 to 4.03 nm in Barrett–Joyner–Halenda surface area. This indicates the necessity of knowing the size of the adsorptive and the adsorbent in order to optimise sorption kinetics. Full article
Show Figures

Figure 1

21 pages, 1985 KiB  
Article
Antimony- and Bismuth-Based Ionic Liquids as Efficient Adsorbents for the Removal of Dyes
by Anham Zafar, Nouman Rafique, Saadia Batool, Muhammad Saleem, Aiyeshah Alhodaib and Amir Waseem
Catalysts 2025, 15(5), 492; https://doi.org/10.3390/catal15050492 - 19 May 2025
Viewed by 659
Abstract
A series of ionic liquids consisting of anilinium cations with varying alkyl chains and metallic (Sb and Bi) halides as anions have been synthesized and thoroughly characterized by using multinuclear (1H and 13C) NMR, FT-IR, Raman and XPS techniques. They [...] Read more.
A series of ionic liquids consisting of anilinium cations with varying alkyl chains and metallic (Sb and Bi) halides as anions have been synthesized and thoroughly characterized by using multinuclear (1H and 13C) NMR, FT-IR, Raman and XPS techniques. They have been exploited as adsorbents for the dye’s removal, such as malachite green, rhodamine B and Sudan II, from the aqueous solution. Various parameters like the effect of stirring rate, pH, reaction time, adsorbent amount and initial dye concentration have been optimized. Both antimony- and bismuth-based ionic liquids exhibit high adsorption efficiencies and have comparable performance for each dye. Kinetic data have been analyzed by applying kinetic models, and the best-fitted model was found to be pseudo-second order with an R2 value greater than 0.98. Adsorption capacity has been determined by analyzing the sorption data using the Langmuir and Freundlich equations, and the Langmuir isotherm model has been found to be the best fitting. The maximum adsorption capacities (qmax) derived from the Langmuir isotherm for malachite green, Sudan II and rhodamine B by M-Sb ILs were 217.36, 162.10 and 62.94 mg·g−1, whereas by M-Bi ILs, the adsorption capacities were slightly higher, at 230.18, 170.00 and 64.21 mg·g−1, respectively. Kinetic studies indicated pseudo-second-order behavior (R2 > 0.98), while thermodynamic analysis demonstrated an endothermic adsorption, and a spontaneous reaction was carried out by a physisorption process. These findings accentuate the potential of Sb- and Bi-based ionic liquids as efficient and reusable adsorbents for removing dyes from wastewater. Full article
Show Figures

Figure 1

25 pages, 4306 KiB  
Article
Design and Evaluation of a Crosslinked Chitosan-Based Scaffold Containing Hyaluronic Acid for Articular Cartilage Reconstruction
by Salim Hamidi, Mickael Maton, Feng Hildebrand, Valérie Gaucher, Cédric Bossard, Frédéric Cazaux, Jean Noel Staelens, Nicolas Blanchemain and Bernard Martel
Molecules 2025, 30(10), 2202; https://doi.org/10.3390/molecules30102202 - 17 May 2025
Viewed by 631
Abstract
Polymeric scaffolds are promising in tissue engineering due to their structural similarity to extracellular matrix components. This study aimed to design freeze-dried hydrogels based on chitosan (CHT) and hyaluronic acid (HA). Chitosan-based gels were crosslinked with oxidized maltodextrin (MDo) before the freeze-drying step, [...] Read more.
Polymeric scaffolds are promising in tissue engineering due to their structural similarity to extracellular matrix components. This study aimed to design freeze-dried hydrogels based on chitosan (CHT) and hyaluronic acid (HA). Chitosan-based gels were crosslinked with oxidized maltodextrin (MDo) before the freeze-drying step, resulting in spongy porous scaffolds. Based on the state-of-the-art, our hypothesis was that crosslinking would increase scaffold stiffness and delay the degradation of the CHT:HA resorbable scaffolds swelled in a hydrated physiological environment. The physicochemical and mechanical properties of crosslinked CHT- and CHT:HA-based scaffolds were analyzed. Hygroscopic and swelling behavior were assessed using dynamic vapor sorption analysis and batch studies. Degradation was evaluated under different conditions, including in phosphate-buffered saline (PBS), PBS with lysozyme, and lactic acid solutions, to investigate scaffold resistance against enzymatic and acidic degradation. The porosity of the spongy materials was characterized using scanning electron microscopy, while dynamic mechanical analysis provided information on the mechanical properties. Crosslinked scaffolds showed reduced swelling, slower degradation rates, and increased stiffness, confirming MDo as an effective crosslinking agent. Scaffolds loaded with ciprofloxacin (CFX) demonstrated their ability to deliver therapeutic agents, as the CFX loading capacity was promoted by CHT–CFX interactions. Microbiologic investigation confirmed the results. Finally, cytotoxicity tests displayed no toxicity. In conclusion, MDo-crosslinked CHT and CHT:HA scaffolds exhibit enhanced stability, functionality, and mechanical performance, making them promising for cartilage tissue engineering. Full article
Show Figures

Figure 1

11 pages, 3385 KiB  
Article
Functional Polyacrylate Textile Coatings with N,N-Diethyl-3-methylbenzamide (DEET) Immobilized on Zirconia, Alumina and Silica Sorbents
by Sergei Zverev, Sergei Andreev, Ekaterina Anosova, Varvara Morenova, Maria Rakitina and Vladimir Vinokurov
Surfaces 2025, 8(2), 33; https://doi.org/10.3390/surfaces8020033 - 9 May 2025
Viewed by 502
Abstract
In this study, polymer films based on the inorganic sorbents Al2O3, ZrO2 and SiO2-phenyl with repellent N,N-diethyl-3-methylbenzamide were prepared and used as functional textile coatings. The high sorption activity of oxides with respect [...] Read more.
In this study, polymer films based on the inorganic sorbents Al2O3, ZrO2 and SiO2-phenyl with repellent N,N-diethyl-3-methylbenzamide were prepared and used as functional textile coatings. The high sorption activity of oxides with respect to N,N-diethyl-3-methylbenzamide (63–239 mg/g) allows for the use of these compounds as repellent carrier materials, and their mixture with polyacrylates allows for the formation of functional coatings–polymer films. Scanning electron microscopy and Fourier transform infrared spectroscopy results revealed that the inorganic sorbents Al2O3, ZrO2 and SiO2-phenyl were successfully anchored in the polyacrylate structure, and the FTIR spectra confirmed the presence of repellent molecules. The thermal diffusion parameters of N,N-diethyl-3-methylbenzamide were also calculated via thermogravimetric analysis and high-performance liquid chromatography with diode array detection. The highest thermal diffusion rates and concentrations were observed for the material with Al2O3 (up to 148.3∙10−9 mol at 200 °C), and lower values for ZrO2 and SiO2-phenyl (up to 15.2∙10−9 mol and 34.3∙10−9 mol at 200 °C, respectively). The heat flux parameter Jf was also calculated according to Onsager’s theory and Fourier’s law. The release of repellent from polymeric materials can be achieved by applying less heat than that required to reach the boiling point of N,N-diethyl-3-methylbenzamide. Full article
(This article belongs to the Special Issue Surface Science: Polymer Thin Films, Coatings and Adhesives)
Show Figures

Figure 1

19 pages, 9914 KiB  
Article
Lithium Orthosilicate Solid Porous Membranes for CO2 Capture Obtained from Silica Microfibers
by Joaquín Penide, Efstratios Stavrakakis, Félix Quintero, Danai Poulidi, Antonio Riveiro, Jesús del Val, Rafael Comesaña, Fernando Lusquiños and Juan Pou
Fibers 2025, 13(5), 59; https://doi.org/10.3390/fib13050059 - 7 May 2025
Viewed by 892
Abstract
Lithium orthosilicate (Li4SiO4) has demonstrated a high CO2 adsorption rate and capacity and its suitability to be implemented in industry as CO2 capture technology at high temperatures. The optimum solid adsorbent should present a porous structure to [...] Read more.
Lithium orthosilicate (Li4SiO4) has demonstrated a high CO2 adsorption rate and capacity and its suitability to be implemented in industry as CO2 capture technology at high temperatures. The optimum solid adsorbent should present a porous structure to maximize surface and enable a high sorption rate. In this work, we present an original approach based on the use of a novel architecture of precursors in the form of very thin free-standing solid silica fibers. An original technique called continuous fiberizing by laser melting (Cobiflas) was used to obtain membranes of pure silica fibers with diameters in the micrometer range, forming a porous membrane which offer a high surface and porous connectivity to be used as precursors without any supporting substrate. Then, we employed a method based on the impregnation of the silica fibers within a lithium-containing aqueous solution and subsequent calcination to obtain a porous solid adsorbent with the maximum proportion of lithium orthosilicate. This method is compared with the results obtained using a sol-gel powder method by analyzing their composition using X-Ray Diffraction (XRD), and their adsorption capacity and adsorption kinetics by Thermogravimetric analyses (TGA). As a result, an outstanding type of solid adsorbent is reported with a 31% adsorption capacity and a total regeneration capacity, which is over 0.8 efficiency with regard to the theoretical maximum adsorption of this material. Full article
Show Figures

Figure 1

30 pages, 7964 KiB  
Article
Fabrication and Performance of PVAc-Incorporated Porous Self-Standing Zeolite-Based Geopolymer Membranes for Lead (Pb(II)) Removal in Water Treatment
by Samar Amari, Mariam Darestani, Graeme Millar and Bob Boshrouyeh
Polymers 2025, 17(9), 1155; https://doi.org/10.3390/polym17091155 - 24 Apr 2025
Viewed by 676
Abstract
This study explores the fabrication, structural characteristics, and performance of an innovative porous geopolymer membrane made from waste natural zeolite powder for Pb(II) removal, with potential applications in wastewater treatment. A hybrid geopolymer membrane incorporating polyvinyl acetate (PVAc) (10, 20, and 30 wt.%) [...] Read more.
This study explores the fabrication, structural characteristics, and performance of an innovative porous geopolymer membrane made from waste natural zeolite powder for Pb(II) removal, with potential applications in wastewater treatment. A hybrid geopolymer membrane incorporating polyvinyl acetate (PVAc) (10, 20, and 30 wt.%) was synthesized and thermally treated at 300 °C to achieve a controlled porous architecture. Characterization techniques, including Fourier-transform infrared spectroscopy (FTIR), revealed the disappearance of characteristic C=O and C-H stretching bands (~1730 cm−1 and ~2900 cm−1, respectively), confirming the full degradation of PVAc. Thermogravimetric analysis (TG) and differential scanning calorimetry (DSC) indicated a total mass loss of approximately 14.5% for the sample with PVAc 20 wt.%, corresponding to PVAc decomposition and water loss. Energy-dispersive spectroscopy (EDS) elemental mapping showed the absence of carbon residues post-annealing, further validating complete PVAc removal. X-ray diffraction (XRD) provided insight into the crystalline phases of the raw zeolite and geopolymer structure. Once PVAc removal was confirmed, the second phase of characterization assessed the membrane’s mechanical properties and filtration performance. The thermally treated membrane, with a thickness of 2.27 mm, exhibited enhanced mechanical properties, measured with a nano-indenter, showing a hardness of 1.8 GPa and an elastic modulus of 46.7 GPa, indicating improved structural integrity. Scanning electron microscopy (SEM) revealed a well-defined porous network. Filtration performance was evaluated using a laboratory-scale dead-end setup for Pb(II) removal. The optimal PVAc concentration was determined to be 20 wt.%, resulting in a permeation rate of 78.5 L/(m2·h) and an 87% rejection rate at an initial Pb(II) concentration of 50 ppm. With increasing Pb(II) concentrations, the flux rates declined across all membranes, while maximum rejection was achieved at 200 ppm. FTIR and EDS analyses confirmed Pb(II) adsorption onto the zeolite-based geopolymer matrix, with elemental mapping showing a uniform Pb(II) distribution across the membrane surface. The next step is to evaluate the membrane’s performance in a multi-cation water treatment environment, assessing the sorption kinetics and its selectivity and efficiency in removing various heavy metal contaminants from complex wastewater systems. Full article
(This article belongs to the Special Issue Innovative Polymers and Technology for Membrane Fabrication)
Show Figures

Graphical abstract

Back to TopTop