Lithium Orthosilicate Solid Porous Membranes for CO2 Capture Obtained from Silica Microfibers
Abstract
:Highlights
- Silica microfibers obtained by the Cofiblas technique were reacted with lithium to produce lithium orthosilicate membranes.
- The method involving immersion of silica microfibers in an aqueous lithium solution followed by calcination was demonstrated to be effective.
- Their unique shape leads to the formation of 3D porous membranes, enabling their direct use as filters without the need for pelletizing.
- These membranes exhibited superior performance, as they adsorbed 31 wt.% of CO2 and demonstrated complete regeneration capacity.
Abstract
1. Introduction
2. Materials and Methods
2.1. Precursor Materials
2.2. Materials Synthesis Methods
2.3. Materials Characterization
3. Results and Discussion
3.1. Lithium Orthosilicate Fiber Synthesis
3.2. CO2 Adsorption Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
Cofiblas | Continuous fiberizing by laser melting |
CCS | Carbon Capture and Storage |
XRD | X-Ray Diffraction analysis |
SEM | Scanning Electron Microscope |
TGA | Thermogravimetric analyses |
References
- Rackley, S.A. Carbon Capture and Storage, 1st ed.; Butterworth-Heinemann: Burlington, MA, USA, 2010; ISBN 9781856176361. [Google Scholar]
- IEA. Net Zero Roadmap: A Global Pathway to Keep the 1.5 °C Goal in Reach; IEA: Paris, France, 2023.
- IPCC 2022 Climate Change 2022-Mitigation of Climate Change: Working Group III Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press (CUP): Cambridge, UK, 2023; ISBN 9789291691609.
- Rochelle, G.T. Amine Scrubbing for CO2 Capture. Science 2009, 325, 1652–1654. [Google Scholar] [CrossRef] [PubMed]
- Chen, E.; Zhang, Y.; Lin, Y.; Nielsenb, P.; Rochelle, G. Review of Recent Pilot Plant Activities with Concentrated Piperazine. Energy Procedia 2017, 114, 1110–1127. [Google Scholar] [CrossRef]
- Song, Z.; Dong, Q.; Xu, W.L.; Zhou, F.; Liang, X.; Yu, M. Molecular Layer Deposition-Modified 5A Zeolite for Highly Efficient CO2 Capture. ACS Appl. Mater. Interfaces 2018, 10, 769–775. [Google Scholar] [CrossRef] [PubMed]
- Mahinpey, N.; Karami, D.; Labbaf, B. 11-Zeolites and Their Composites for CO2 Adsorption. In CO2-philic Polymers, Nanocomposites and Chemical Solvents; Kumar Nadda, A., Sharma, S., Kalia, S., Eds.; Elsevier: Amsterdam, Netherlands, 2023; pp. 271–288. ISBN 978-0-323-85777-2. [Google Scholar]
- Wang, J.; Huang, L.; Yang, R.; Zhang, Z.; Wu, J.; Gao, Y.; Wang, Q.; O’Hare, D.; Zhong, Z. Recent Advances in Solid Sorbents for CO2 Capture and New Development Trends. Energy Environ. Sci. 2014, 7, 3478–3518. [Google Scholar] [CrossRef]
- Armutlulu, A.; Naeem, M.A.; Liu, H.J.; Kim, S.M.; Kierzkowska, A.; Fedorov, A.; Müller, C.R. Multishelled CaO Microspheres Stabilized by Atomic Layer Deposition of Al2O3 for Enhanced CO2 Capture Performance. Adv. Mater. 2017, 29, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Qi, G.; Fu, L.; Choi, B.H.; Giannelis, E.P. Efficient CO2 Sorbents Based on Silica Foam with Ultra-Large Mesopores. Energy Environ. Sci. 2012, 5, 7368–7375. [Google Scholar] [CrossRef]
- Shi, Y.; Ni, R.; Zhao, Y. Review on Multidimensional Adsorbents for CO2 Capture from Ambient Air: Recent Advances and Future Perspectives. Energy Fuels 2023, 37, 6365–6381. [Google Scholar] [CrossRef]
- Zou, L.; Sun, Y.; Che, S.; Yang, X.; Wang, X.; Bosch, M.; Wang, Q.; Li, H.; Smith, M.; Yuan, S.; et al. Porous Organic Polymers for Post-Combustion Carbon Capture. Adv. Mater. 2017, 29, 1700229. [Google Scholar] [CrossRef]
- Nair, B.N.; Burwood, R.P.; Goh, V.J.; Nakagawa, K.; Yamaguchi, T. Lithium Based Ceramic Materials and Membranes for High Temperature CO2 Separation. Prog. Mater. Sci. 2009, 54, 511–541. [Google Scholar] [CrossRef]
- Zhang, Y.; Gao, Y.; Pfeiffer, H.; Louis, B.; Sun, L.; O’Hare, D.; Wang, Q. Recent Advances in Lithium Containing Ceramic Based Sorbents for High-Temperature CO2 Capture. J. Mater. Chem. A 2019, 7, 7962–8005. [Google Scholar] [CrossRef]
- Hu, Y.; Liu, W.; Yang, Y.; Qu, M.; Li, H. CO2 Capture by Li4SiO4 Sorbents and Their Applications: Current Developments and New Trends. Chem. Eng. J. 2019, 359, 604–625. [Google Scholar] [CrossRef]
- Yan, X.; Li, Y.; Ma, X.; Zhao, J.; Wang, Z. Performance of Li4SiO4 Material for CO2 Capture: A Review. Int. J. Mol. Sci. 2019, 20, 928. [Google Scholar] [CrossRef]
- Kato, M.; Nakagawa, K.; Essaki, K.; Maezawa, Y.; Takeda, S.; Kogo, R.; Hagiwara, Y. Novel CO2 Absorbents Using Lithium-Containing Oxide. Int. J. Appl. Ceram. Technol. 2005, 2, 467–475. [Google Scholar] [CrossRef]
- Duan, Y.; Pfeiffer, H.; Li, B.; Romero-Ibarra, I.C.; Sorescu, D.C.; Luebke, D.R.; Halley, J.W. CO2 Capture Properties of Lithium Silicates with Different Ratios of Li2O/SiO2: An Ab Initio Thermodynamic and Experimental Approach. Phys. Chem. Chem. Phys. 2013, 15, 13538–13558. [Google Scholar] [CrossRef] [PubMed]
- Kato, M.; Yoshikawa, S.; Nakagawa, K. Carbon Dioxide Absorption by Lithium Orthosilicate in a Wide Range of Temperature and Carbon Dioxide Concentrations. J. Mater. Sci. Lett. 2002, 21, 485–487. [Google Scholar] [CrossRef]
- Bhatta, L.K.G.; Subramanyam, S.; Chengala, M.D.; Olivera, S.; Venkatesh, K. Progress in Hydrotalcite like Compounds and Metal-Based Oxides for CO2 Capture: A Review. J. Clean. Prod. 2015, 103, 171–196. [Google Scholar] [CrossRef]
- Luo, G.; Chen, J.; Wang, J.; Zhu, B.; Xu, M.; Yang, Y.; Sun, Y. Enhancement of CO2 Adsorption Performance and Widening of Adsorption Temperature Window by Co-Doping Different Valence State Metals on the Li4SiO4 (010) Surface. Ceram. Int. 2024, 50, 9293–9306. [Google Scholar] [CrossRef]
- Amorim, S.M.; Domenico, M.D.; Dantas, T.L.P.; José, H.J.; Moreira, R.F.P.M. Lithium Orthosilicate for CO2 Capture with High Regeneration Capacity: Kinetic Study and Modeling of Carbonation and Decarbonation Reactions. Chem. Eng. J. 2016, 283, 388–396. [Google Scholar] [CrossRef]
- Nambo, A.; He, J.; Nguyen, T.Q.; Atla, V.; Druffel, T.; Sunkara, M. Ultrafast Carbon Dioxide Sorption Kinetics Using Lithium Silicate Nanowires. Nano Lett. 2017, 17, 3327–3333. [Google Scholar] [CrossRef]
- Subha, P.V.; Nair, B.N.; Mohamed, A.P.; Anilkumar, G.M.; Warrier, K.G.K.; Yamaguchi, T.; Hareesh, U.S. Morphologically and Compositionally Tuned Lithium Silicate Nanorods as High-Performance Carbon Dioxide Sorbents. J. Mater. Chem. A 2016, 4, 16928–16935. [Google Scholar] [CrossRef]
- Puccini, M.; Stefanelli, E.; Seggiani, M.; Vitolo, S. Removal of CO2 from Flue Gas at High Temperature Using Novel Porous Solids. Chem. Eng. Trans. 2016, 47, 139–144. [Google Scholar] [CrossRef]
- Subha, P.V.; Nair, B.N.; Hareesh, P.; Mohamed, A.P.; Yamaguchi, T.; Warrier, K.G.K.; Hareesh, U.S. Enhanced CO2 Absorption Kinetics in Lithium Silicate Platelets Synthesized by a Sol–Gel Approach. J. Mater. Chem. A 2014, 2, 12792–12798. [Google Scholar] [CrossRef]
- Hu, Y.; Lu, H.; Li, H. Li4SiO4 Pellets Templated by Rice Husk for Cyclic CO2 Capture: Insight into the Modification Mechanism. Ceram. Int. 2021, 47, 32060–32067. [Google Scholar] [CrossRef]
- Kim, H.; Jang, H.D.; Choi, M. Facile Synthesis of Macroporous Li4SiO4 with Remarkably Enhanced CO2 Adsorption Kinetics. Chem. Eng. J. 2015, 280, 132–137. [Google Scholar] [CrossRef]
- Quintero, F.; Penide, J.; Riveiro, A.; del Val, J.; Comesaña, R.; Lusquiños, F.; Pou, J. Continuous Fiberizing by Laser Melting (Cofiblas): Production of Highly Flexible Glass Nanofibers with Effectively Unlimited Length. Sci. Adv. 2020, 6, eaax7210. [Google Scholar] [CrossRef] [PubMed]
- Penide, J.; Quintero, F.; Fernández, J.L.; Fernández-Arias, M.; Barciela, R.; del Val, J.; Lusquiños, F.; Pou, J. Anamorphic Beam Shaping System Designed to Optimize Irradiance Distribution in the Cofiblas Process for Glass Nanofibers Production. Opt. Lasers Eng. 2022, 152, 106972. [Google Scholar] [CrossRef]
- Degen, T.; Sadki, M.; Bron, E.; König, U.; Nénert, G. The HighScore Suite. Powder Diffr. 2014, 29, S13–S18. [Google Scholar] [CrossRef]
- Rietveld, H.M. A Profile Refinement Method for Nuclear and Magnetic Structures. J. Appl. Crystallogr. 1969, 2, 65–71. [Google Scholar] [CrossRef]
- Zhao, P.; Lu, L.; Liu, X.; De La Torre, A.G.; Cheng, X. Error Analysis and Correction for Quantitative Phase Analysis Based on Rietveld-Internal Standard Method: Whether the Minor Phases Can Be Ignored? Crystals 2018, 8, 110. [Google Scholar] [CrossRef]
- Essaki, K.; Nakagawa, K.; Kato, M.; Uemoto, H. CO 2 Absorption by Lithium Silicate at Room Temperature. J. Chem. Eng. JAPAN 2004, 37, 772–777. [Google Scholar] [CrossRef]
- Wu, X.; Wen, Z.; Xu, X.; Wang, X.; Lin, J. Synthesis and Characterization of Li4SiO4 Nano-Powders by a Water-Based Sol-Gel Process. J. Nucl. Mater. 2009, 392, 471–475. [Google Scholar] [CrossRef]
- Venegas, M.J.; Fregoso-Israel, E.; Escamilla, R.; Pfeiffer, H. Kinetic and Reaction Mechanism of CO2 Sorption on Li 4SiO4: Study of the Particle Size Effect. Ind. Eng. Chem. Res. 2007, 46, 2407–2412. [Google Scholar] [CrossRef]
- Thommes, M.; Kaneko, K.; Neimark, A.V.; Olivier, J.P.; Rodriguez-Reinoso, F.; Rouquerol, J.; Sing, K.S.W. Physisorption of Gases, with Special Reference to the Evaluation of Surface Area and Pore Size Distribution (IUPAC Technical Report). Pure Appl. Chem. 2015, 87, 1051–1069. [Google Scholar] [CrossRef]
- Gray, M.L.; Champagne, K.J.; Fauth, D.; Baltrus, J.P.; Pennline, H. Performance of Immobilized Tertiary Amine Solid Sorbents for the Capture of Carbon Dioxide. Int. J. Greenh. Gas Control 2008, 2, 3–8. [Google Scholar] [CrossRef]
- Sanna, A.; Ramli, I.; Mercedes Maroto-Valer, M. Development of Sodium/Lithium/Fly Ash Sorbents for High Temperature Post-Combustion CO2 Capture. Appl. Energy 2015, 156, 197–206. [Google Scholar] [CrossRef]
- Shan, S.; Jia, Q.; Jiang, L.; Li, Q.; Wang, Y.; Peng, J. Novel Li4SiO4-Based Sorbents from Diatomite for High Temperature CO2 Capture. Ceram. Int. 2013, 39, 5437–5441. [Google Scholar] [CrossRef]
- Rao, G.J.; Mazumder, R.; Bhattacharyya, S.; Chaudhuri, P. Synthesis, CO2 Absorption Property and Densification of Li4SiO4 Powder by Glycine-Nitrate Solution Combustion Method and Its Comparison with Solid State Method. J. Alloys Compd. 2017, 725, 461–471. [Google Scholar] [CrossRef]
- Izquierdo, M.T.; Turan, A.; García, S.; Maroto-Valer, M.M. Optimization of Li4SiO4 Synthesis Conditions by a Solid State Method for Maximum CO2 Capture at High Temperature. J. Mater. Chem. A 2018, 6, 3249–3257. [Google Scholar] [CrossRef]
Sample and Form | Silica Source | Lithium Source | Method | Solution Concentration (Mass %) |
---|---|---|---|---|
1-Fib | SiO2 fibers | LiOH·H2O | Impregnation | 6.6% |
2-Fib | SiO2 fibers | LiOH·H2O | Impregnation | 11% |
3-Powder | SiO2 powder | Li2CO3 | Sol-gel | Stoichiometric |
Sample: | As Produced Silica Fibers | 1-Fib Impregnated | 2-Fib Impregnated | 1-Fib Calcined | 2-Fib Calcined |
---|---|---|---|---|---|
Surface area m2/g | 1.34 | 11.91 | 17.16 | 0.51 | 0.10 |
Sample: | 1-Fib | 2-Fib | 3-Powder | |||
---|---|---|---|---|---|---|
Reference Phase | S | SQ (%) | S | SQ (%) | S | SQ (%) |
Li4SiO4 | 86 | 78.5 | 79 | 86.3 | 80 | 98.3 |
Li2SiO3 | 65 | 13.5 | 20 | 13.7 | 54 | 1.6 |
cSiO2 | 55 | 8 | - | 0 | 34 | 0.1 |
Sample: | 2 | 3 | |||
---|---|---|---|---|---|
Ref. Phase | S | SQ (%) | S | SQ (%) | |
Li4SiO4 | after | 48 | 77.5 | 46 | 96.6 |
before | 79 | 86.3 | 80 | 98.3 | |
Li2SiO3 | after | 34 | 16.7 | - | 0 |
before | 20 | 13.7 | 54 | 1.6 | |
Li2CO3 | after | 13 | 5.8 | 12 | 3.4 |
before | - | 0 | - | 0 | |
SiO2 | after | - | 0 | - | 0 |
before | - | 0 | 34 | 0.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Penide, J.; Stavrakakis, E.; Quintero, F.; Poulidi, D.; Riveiro, A.; del Val, J.; Comesaña, R.; Lusquiños, F.; Pou, J. Lithium Orthosilicate Solid Porous Membranes for CO2 Capture Obtained from Silica Microfibers. Fibers 2025, 13, 59. https://doi.org/10.3390/fib13050059
Penide J, Stavrakakis E, Quintero F, Poulidi D, Riveiro A, del Val J, Comesaña R, Lusquiños F, Pou J. Lithium Orthosilicate Solid Porous Membranes for CO2 Capture Obtained from Silica Microfibers. Fibers. 2025; 13(5):59. https://doi.org/10.3390/fib13050059
Chicago/Turabian StylePenide, Joaquín, Efstratios Stavrakakis, Félix Quintero, Danai Poulidi, Antonio Riveiro, Jesús del Val, Rafael Comesaña, Fernando Lusquiños, and Juan Pou. 2025. "Lithium Orthosilicate Solid Porous Membranes for CO2 Capture Obtained from Silica Microfibers" Fibers 13, no. 5: 59. https://doi.org/10.3390/fib13050059
APA StylePenide, J., Stavrakakis, E., Quintero, F., Poulidi, D., Riveiro, A., del Val, J., Comesaña, R., Lusquiños, F., & Pou, J. (2025). Lithium Orthosilicate Solid Porous Membranes for CO2 Capture Obtained from Silica Microfibers. Fibers, 13(5), 59. https://doi.org/10.3390/fib13050059