Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (17)

Search Parameters:
Keywords = soot mass determination

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 10413 KiB  
Article
Fugitive Emission Characteristics of Fume and Dust from Short-Process Electric Furnace Tap Hole and Optimization of Dust Hood
by Yanpeng Wu, Shanshan Luan and Xiaoyu Li
Atmosphere 2023, 14(12), 1829; https://doi.org/10.3390/atmos14121829 - 15 Dec 2023
Viewed by 1659
Abstract
Due to the advantages of a short cycle, low investment and low energy consumption per ton of steel, short-process electric furnace steelmaking is about to welcome a golden period of rapid development in China. During the operation of the electric furnace, a large [...] Read more.
Due to the advantages of a short cycle, low investment and low energy consumption per ton of steel, short-process electric furnace steelmaking is about to welcome a golden period of rapid development in China. During the operation of the electric furnace, a large amount of smoke and dust is generated. Most studies focus on organized emissions, and the impact of unorganized emissions in workshops on the environment cannot be ignored. This paper evaluates the thermal environment in the electric furnace steelmaking workshop based on the analytic hierarchy process and obtains the influence weight of the fugitive emission location. The mass concentration of dust at each measuring point increased by 1.17 mg/m3 on average, and the concentration of unorganized emission dust near the outlet was 23.572 mg/m3. The numerical simulation calculation model is established by the CFD method, a fixed initial jet velocity is set, the initial velocity of the ladle soot plume is changed, and the inclination angle, arrangement height and dust removal air volume of the dust hood are respectively adjusted in different tapping periods. The impact of simulation on the efficiency of dust collection for different dust removal hood configurations was investigated, considering variations in inclination angle, arrangement height and dust removal airflow. The optimal structural parameters for the dust removal hood were determined to be an inclination angle of 60° and an arrangement height of 2.4 m, and an optimal dust removal airflow was determined to be 110,000 m3/h. This study provides a theoretical foundation for engineering practice. Full article
(This article belongs to the Special Issue Contributions of Emission Inventory to Air Quality)
Show Figures

Figure 1

18 pages, 5142 KiB  
Article
Effects of Methanol Addition on the Combustion Process of the Methanol/Diesel Dual-Fuel Based on an Optical Engine
by Jinping Liu, Guangzhao Guo and Mingrui Wei
Energies 2023, 16(24), 7946; https://doi.org/10.3390/en16247946 - 7 Dec 2023
Cited by 6 | Viewed by 2057
Abstract
The combustion process of traditional diesel engines is mainly determined by the injection timing of diesel. There is a trade-off relationship between the soot and NOx (nitrogen oxides) during this combustion process, making it difficult to reduce these two emissions simultaneously. The use [...] Read more.
The combustion process of traditional diesel engines is mainly determined by the injection timing of diesel. There is a trade-off relationship between the soot and NOx (nitrogen oxides) during this combustion process, making it difficult to reduce these two emissions simultaneously. The use of methanol can not only solve the above problem, but also replace some fossil fuels. However, the effects of methanol injection into the intake duct on the flame propagation in diesel/methanol dual-fuel engines is not yet clear, and there is relatively little research on it. The effects of methanol addition on the combustion process of diesel/methanol dual fuel (DMDF) were achieved based on a modified optical engine in this paper. One injector is installed on the intake inlet to inject methanol, and the other injector is installed in the cylinder to inject diesel in two stages before the top dead center of compression. There are three tests conducted separately in this paper. Firstly, the effects of the methanol ratio (40%, 50%, 60%, and 70%) on the combustion process are investigated, with the total heat remaining unchanged. Secondly, the effects of the pre-injection mass of diesel (20%, 30%, 40%, and 50%) on the combustion process are investigated, which keeps the total diesel mass unchanged. Finally, the effects of the total mass of diesel on the combustion process are investigated while maintaining the mass of methanol unchanged. The dual-fuel combustion process is recorded by a high-speed camera. A combustion analyzer and other equipment were used to analyze the combustion. The results showed that CA10 is delayed, the pressure and the heat release rate (HRR) are reduced, and the number of pixels of the KL factor (KL) decreases significantly with the increasing methanol ratio. CA10 and CA50 are advanced, the pressure and HRR decrease, and the KL increases when the mass of pre-injected diesel increases. CA10 and CA50 are advanced, respectively, and CA90 is postponed due to the increase in diesel mass. The pressure and HRR increase, and the KL increases when the total mass of diesel increases. Full article
(This article belongs to the Section I2: Energy and Combustion Science)
Show Figures

Figure 1

19 pages, 3927 KiB  
Article
Soot Monitoring of Gasoline Particulate Filters Using a Radio-Frequency-Based Sensor
by Stefanie Walter, Peter Schwanzer, Gunter Hagen, Hans-Peter Rabl, Markus Dietrich and Ralf Moos
Sensors 2023, 23(18), 7861; https://doi.org/10.3390/s23187861 - 13 Sep 2023
Cited by 3 | Viewed by 1583
Abstract
Owing to increasingly stringent emission limits, particulate filters have become mandatory for gasoline-engine vehicles. Monitoring their soot loading is necessary for error-free operation. The state-of-the-art differential pressure sensors suffer from inaccuracies due to small amounts of stored soot combined with exhaust gas conditions [...] Read more.
Owing to increasingly stringent emission limits, particulate filters have become mandatory for gasoline-engine vehicles. Monitoring their soot loading is necessary for error-free operation. The state-of-the-art differential pressure sensors suffer from inaccuracies due to small amounts of stored soot combined with exhaust gas conditions that lead to partial regeneration. As an alternative approach, radio-frequency-based (RF) sensors can accurately measure the soot loading, even under these conditions, by detecting soot through its dielectric properties. However, they face a different challenge as their sensitivity may depend on the engine operation conditions during soot formation. In this article, this influence is evaluated in more detail. Various soot samples were generated on an engine test bench. Their dielectric properties were measured using the microwave cavity perturbation (MCP) method and compared with the corresponding sensitivity of the RF sensor determined on a lab test bench. Both showed similar behavior. The values for the soot samples themselves, however, differed significantly from each other. A way to correct for this cross-sensitivity was found in the influence of exhaust gas humidity on the RF sensor, which can be correlated with the engine load. By evaluating this influence during significant humidity changes, such as fuel cuts, it could be used to correct the influence of the engineon the RF sensor. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Figure 1

20 pages, 5136 KiB  
Article
Investigation of Effect of Nozzle Numbers on Diesel Engine Performance Operated at Plateau Environment
by Zhipeng Li, Qiang Zhang, Fujun Zhang, Hongbo Liang and Yu Zhang
Sustainability 2023, 15(11), 8561; https://doi.org/10.3390/su15118561 - 25 May 2023
Cited by 4 | Viewed by 2162
Abstract
The effect of nozzle number on the combustion and emission characteristics of diesel engines operating at high altitudes was investigated in this study. A three-dimensional computational fluid dynamics model was developed to simulate the spray spatial distribution, which is closely related to the [...] Read more.
The effect of nozzle number on the combustion and emission characteristics of diesel engines operating at high altitudes was investigated in this study. A three-dimensional computational fluid dynamics model was developed to simulate the spray spatial distribution, which is closely related to the nozzle number. The intake pressure was identified as the dominant factor under varying altitudes, while the fuel mass, injection timing and temperature were maintained constant. Altitudes of 3000 m were chosen to represent typical high-altitude conditions, and sea level cases were simulated for comparison. The results demonstrated that high-altitude operation reduced the air utility in the combustion chamber, leading to suppressed soot oxidization and worse soot emissions. Moreover, more injection nozzles will decrease the fuel injection pressure, resulting in inadequate fuel diffusion and detrimental effects on the combustion efficiency and soot control. However, too few nozzles may cause wall collisions and worsen the combustion conditions. The number of nozzles also influences the combustion, with a higher number of nozzles exacerbating poor combustion conditions. The optimal number of nozzles for the engine studied is determined to be six. Hence, determining the optimal nozzle number plays a vital role in achieving the optimal performance of highland diesel engines. This study provides valuable guidance for the development of diesel engines in high-altitude environments, where controlling the fuel consumption and soot emissions is challenging. Full article
(This article belongs to the Special Issue Sustainable Development of Automotive Engineering)
Show Figures

Figure 1

23 pages, 4080 KiB  
Article
Characterization of Propane Fueled Flames: A Significant Source of Brown Carbon
by Jai Prakash, Kalyan Mitra, Harsh Raj Mishra, Xiangyu Pei, Evert Ljungström and Ravi Kant Pathak
Atmosphere 2022, 13(8), 1270; https://doi.org/10.3390/atmos13081270 - 10 Aug 2022
Viewed by 2447
Abstract
In this study, we developed a framework for interpreting the in situ morphological properties of black carbon (BC, also referred to as “soot” due to combustion relevance) mixed with primary organic aerosol. Integration of the experiment considering primary organic aerosol (POA) evaporation from [...] Read more.
In this study, we developed a framework for interpreting the in situ morphological properties of black carbon (BC, also referred to as “soot” due to combustion relevance) mixed with primary organic aerosol. Integration of the experiment considering primary organic aerosol (POA) evaporation from the soot particles was examined using a Differential mass–mobility analyzer (DMA) and showed the untold story of the mixing of BC and POA. We also hypothesize that morphological transformation of soots and determined such as (i) the evaporation of externally and internally mixed POA led to a decline in the particle number and size of monodisperse aerosol; (ii) presence of externally mixed BC was interpreted from the occurrence of two peaks of soot upon heating; (iii) heat-induced collapse of the BC core possibly resulted from the evaporation of material from the voids and effect of heat; (iv) volume equivalent to changes in the mobility diameter represented evaporation of POA from the surface and collapse upon heating. POA constituted a high fraction (20–40% by mass) of aerosol mass from these flames and was predominantly (i.e., 92–97% by mass) internally mixed with BC. POA was found to be highly light absorptive, i.e., an Ångström absorption exponent (AAE) value of (in general) >1.5 was estimated for BC + POA at 405/781 nm wavelengths. Interestingly, a much more highly absorptive POA [mass absorption cross-section (MAC)-5 m2 g−1] at 405 nm was discovered under a specific flame setting, which was comparable to MACs of BC particles (8–9 m2 g−1). Full article
(This article belongs to the Special Issue Feature Papers in Aerosol Research)
Show Figures

Figure 1

20 pages, 9200 KiB  
Article
Experimental Investigation on OBD Signal and PN Emission Characteristics by Damaged-DPF Types of 2.0 L Diesel Vehicle
by Insu Cho, Iljoo Moon, Daekuk Kim, Taeyoung Park, Dokyeong Lee and Jinwook Lee
Appl. Sci. 2022, 12(15), 7853; https://doi.org/10.3390/app12157853 - 4 Aug 2022
Cited by 6 | Viewed by 2128
Abstract
A diesel particulate filter (DPF) is an exhaust after-treatment device designed to capture and store exhaust particulate matter, such as soot and ash, to reduce emissions from diesel-powered vehicles. A DPF has a finite capacity and typically uses a substrate made of ceramic [...] Read more.
A diesel particulate filter (DPF) is an exhaust after-treatment device designed to capture and store exhaust particulate matter, such as soot and ash, to reduce emissions from diesel-powered vehicles. A DPF has a finite capacity and typically uses a substrate made of ceramic material that is formed into a honeycomb structure. Diesel particulate filters play an important role in diesel-fueled vehicles. Failure to maintain these filters can have significant consequences for vehicles. In this study, we investigated the failure type in cordierite DPF substrates. In addition, we experimentally characterized the particle number (PN) emission and on-board diagnostics (OBD) signal of a 2.0 L diesel-fueled vehicle generated by three types of DPF failure (crack, melting, and hollow). Specifically, X-ray photography analysis of the cordierite DPF was performed. The PN and OBD signals were assessed via the KD-147 vehicle driving mode and measured using a DMS-500 (PN measurement device) and global diagnosis tool (GDS) scanner (OBD diagnostic device), respectively. X-ray photography was used to characterize the internal structure of the three DPF-failure samples. A key result was that the maximum value of the OBD data, including airflow mass, boost pressure, and VGT actuator, was distinctly different for each DPF sample. The exhaust temperature gradient for the normal DPF and crack-damaged DPF followed the KD-147 driving pattern. This was because there was no volume damage inside the cordierite DPF substrates. However, in the case of the hollow and melting-damaged DPF, the volume inside the cordierite DPF substrates was reduced or the time for the exhaust gas to stay in the DPF substrates was decreased. The melting-damaged DPF continuously emitted the largest number of nanoparticles (of the order of 109 #/cc). This was regardless of the vehicle driving speed in the KD-147 driving mode. Eventually, an OBD-based algorithm to determine whether a DPF is damaged was derived in this study. Full article
Show Figures

Figure 1

17 pages, 4278 KiB  
Article
Mixing Rules for an Exact Determination of the Dielectric Properties of Engine Soot Using the Microwave Cavity Perturbation Method and Its Application in Gasoline Particulate Filters
by Stefanie Walter, Peter Schwanzer, Carsten Steiner, Gunter Hagen, Hans-Peter Rabl, Markus Dietrich and Ralf Moos
Sensors 2022, 22(9), 3311; https://doi.org/10.3390/s22093311 - 26 Apr 2022
Cited by 5 | Viewed by 2954
Abstract
In recent years, particulate filters have become mandatory in almost all gasoline-powered vehicles to comply with emission standards regarding particulate number. In contrast to diesel applications, monitoring gasoline particulate filters (GPFs) by differential pressure sensors is challenging due to lower soot masses to [...] Read more.
In recent years, particulate filters have become mandatory in almost all gasoline-powered vehicles to comply with emission standards regarding particulate number. In contrast to diesel applications, monitoring gasoline particulate filters (GPFs) by differential pressure sensors is challenging due to lower soot masses to be deposited in the GPFs. A different approach to determine the soot loading of GPFs is a radio frequency-based sensor (RF sensor). To facilitate sensor development, in previous work, a simulation model was created to determine the RF signal at arbitrary engine operating points. To ensure accuracy, the exact dielectric properties of the soot need to be known. This work has shown how small samples of soot-loaded filter are sufficient to determine the dielectric properties of soot itself using the microwave cavity perturbation method. For this purpose, mixing rules were determined through simulation and measurement, allowing the air and substrate fraction of the sample to be considered. Due to the different geometry of filter substrates compared to crushed soot samples, a different mixing rule had to be derived to calculate the effective filter properties required for the simulation model. The accuracy of the determined mixing rules and the underlying simulation model could be verified by comparative measurements on an engine test bench. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Figure 1

14 pages, 7416 KiB  
Article
Carbon and Trace Element Compositions of Total Suspended Particles (TSP) and Nanoparticles (PM0.1) in Ambient Air of Southern Thailand and Characterization of Their Sources
by Muanfun Inerb, Worradorn Phairuang, Phakphum Paluang, Mitsuhiko Hata, Masami Furuuchi and Prasit Wangpakapattanawong
Atmosphere 2022, 13(4), 626; https://doi.org/10.3390/atmos13040626 - 14 Apr 2022
Cited by 28 | Viewed by 3917
Abstract
The concentration of total suspended particles (TSP) and nanoparticles (PM0.1) over Hat Yai city, Songkhla province, southern Thailand was measured in 2019. Organic carbon (OC) and elemental carbon (EC) were evaluated by carbon aerosol analyzer (IMPROVE-TOR) method. Thirteen trace elements including [...] Read more.
The concentration of total suspended particles (TSP) and nanoparticles (PM0.1) over Hat Yai city, Songkhla province, southern Thailand was measured in 2019. Organic carbon (OC) and elemental carbon (EC) were evaluated by carbon aerosol analyzer (IMPROVE-TOR) method. Thirteen trace elements including Al, Ba, K, Cu, Cr, Fe, Mg, Mn, Na, Ni, Ti, Pb, and Zn were evaluated by ICP-OES. Annual average TSP and PM0.1 mass concentrations were determined to be 58.3 ± 7.8 and 10.4 ± 1.2 µg/m3, respectively. The highest levels of PM occurred in the wet season with the corresponding values for the dry seasons being lower. The averaged OC/EC ratio ranged from 3.8–4.2 (TSP) and 2.5–2.7 (PM0.1). The char to soot ratios were constantly less than 1.0 for both TSP and PM0.1, indicating that land transportation is the main emission source. A principal component analysis (PCA) revealed that road transportation, industry, and biomass burning are the key sources of these particles. However, PM arising from Indonesian peatland fires causes an increase in the carbon and trace element concentrations in southern Thailand. The findings make useful information for air quality management and strategies for controlling this problem, based on a source apportionment analysis. Full article
(This article belongs to the Special Issue Spatio-Temporal Analysis of Air Pollution)
Show Figures

Graphical abstract

15 pages, 1916 KiB  
Article
Computer Vision in Analyzing the Propagation of a Gas–Gunpowder Jet
by Irina G. Palchikova, Igor V. Latyshov, Evgenii S. Smirnov, Vasilii A. Vasiliev, Alexander V. Kondakov and Irina A. Budaeva
Sensors 2022, 22(1), 6; https://doi.org/10.3390/s22010006 - 21 Dec 2021
Cited by 3 | Viewed by 2785
Abstract
A method of mathematically processing the digital images of targets is developed. The theoretical and mathematical justification and the experimental validation of the possibility of estimating the amount of gunshot residue (GSR) and determining the GSR distribution over the target on the basis [...] Read more.
A method of mathematically processing the digital images of targets is developed. The theoretical and mathematical justification and the experimental validation of the possibility of estimating the amount of gunshot residue (GSR) and determining the GSR distribution over the target on the basis of its digital image is provided. The analysis of the optical density in selected concentric rings in the images reveals the radial dependence of soot distribution in the cross section of a gas–gunpowder jet. The analysis of the optical density in selected sectors of the circle reveals the angular dependence of the soot distribution in the gas–gunpowder jet cross section. It is shown that the integral optical density averaged over a selected area in the target image characterizes the mass of GSP deposited on it. It is possible to quantify the differences in the radial and angular distributions of the thickness of the GSR layer on various targets obtained both with the help of weapons of different types at the same distances and with the help of weapons of the same type at different distances, by calculating the distribution of optical density on their digital images. Full article
(This article belongs to the Collection Computer Vision Based Smart Sensing)
Show Figures

Figure 1

18 pages, 7577 KiB  
Article
The Influence of Hard Coal Combustion in Individual Household Furnaces on the Atmosphere Quality in Pszczyna (Poland)
by Danuta Smołka-Danielowska, Mariola Jabłońska and Sandra Godziek
Minerals 2021, 11(11), 1155; https://doi.org/10.3390/min11111155 - 20 Oct 2021
Cited by 7 | Viewed by 2517
Abstract
This study aimed to determine the influence of ashes produced in the combustion of hard coal and eco-pea coal in individual household furnaces on the air quality in the region under analysis. To achieve this objective, we analysed the chemical and mineral composition [...] Read more.
This study aimed to determine the influence of ashes produced in the combustion of hard coal and eco-pea coal in individual household furnaces on the air quality in the region under analysis. To achieve this objective, we analysed the chemical and mineral composition of ashes, suspended and respirable dusts with particular attention being paid to phases containing potentially toxic elements (PTE) (As, Cd, Pb, Se, Ni, Ba, Tl, S, Th and U), and sulphur. The research methods used included powder X-ray diffraction, scanning electron microscopy and inductively coupled plasma mass spectrometry. Measurements were taken for PM concentrations, total suspended particulate matter (TSP), gaseous TVOC pollutants (volatile organic compounds) and soot at various altitudes and a mobile laboratory with measuring apparatus placed in the basket of a manned hot-air balloon was used for the analysis. The use of Poland’s unique laboratory allowed us to obtain real-time measurements up to an altitude of 1200 m above sea level. Measurements using unmanned units such as drones do not enable such analyses. The research confirmed that PTE concentrations in ash and its mineral composition are varied. The PM10 and PM2.5 ashes are dominated by sodium chloride, particles containing C, and a substance composed of S + C + O + N + Na. Trace amounts of Pb and Zn sulphides are also present. Full article
Show Figures

Figure 1

21 pages, 3667 KiB  
Article
Ambient Levels, Emission Sources and Health Effect of PM2.5-Bound Carbonaceous Particles and Polycyclic Aromatic Hydrocarbons in the City of Kuala Lumpur, Malaysia
by Hamidah Suradi, Md Firoz Khan, Nor Asrina Sairi, Haasyimah Ab Rahim, Sumiani Yusoff, Yusuke Fujii, Kai Qin, Md. Aynul Bari, Murnira Othman and Mohd Talib Latif
Atmosphere 2021, 12(5), 549; https://doi.org/10.3390/atmos12050549 - 24 Apr 2021
Cited by 17 | Viewed by 6298
Abstract
With increasing interest in understanding the contribution of secondary organic aerosol (SOA) to particulate air pollution in urban areas, an exploratory study was carried out to determine levels of carbonaceous aerosols and polycyclic aromatic hydrocarbons (PAHs) in the city of Kuala Lumpur, Malaysia. [...] Read more.
With increasing interest in understanding the contribution of secondary organic aerosol (SOA) to particulate air pollution in urban areas, an exploratory study was carried out to determine levels of carbonaceous aerosols and polycyclic aromatic hydrocarbons (PAHs) in the city of Kuala Lumpur, Malaysia. PM2.5 samples were collected using a high-volume sampler for 24 h in several areas in Kuala Lumpur during the north-easterly monsoon from January to March 2019. Samples were analyzed for water-soluble organic carbon (WSOC), organic carbon (OC), and elemental carbon (EC). Secondary organic carbon (SOC) in PM2.5 was estimated. Particle-bound PAHs were analyzed using gas chromatography-flame ionization detector (GC-FID). Average concentrations of WSOC, OC, and EC were 2.73 ± 2.17 (range of 0.63–9.12) µg/m3, 6.88 ± 4.94 (3.12–24.1) µg/m3, and 3.68 ± 1.58 (1.33–6.82) µg/m3, respectively, with estimated average SOC of 2.33 µg/m3, contributing 34% to total OC. The dominance of char-EC over soot-EC suggests that PM2.5 is influenced by biomass and coal combustion sources. The average of total PAHs was 1.74 ± 2.68 ng/m3. Source identification methods revealed natural gas and biomass burning, and urban traffic combustion as dominant sources of PAHs in Kuala Lumpur. A deterministic health risk assessment of PAHs was conducted for several age groups, including infant, toddler, children, adolescent, and adult. Carcinogenic and non-carcinogenic risk of PAH species were well below the acceptable levels recommended by the USEPA. Backward trajectory analysis revealed north-east air mass brought pollutants to the studied areas, suggesting the north-easterly monsoon as a major contributor to increased air pollution in Kuala Lumpur. Further work is needed using long-term monitoring data to understand the origin of PAHs contributing to SOA formation and to apply source-risk apportionment to better elucidate the potential risk factors posed by the various sources in urban areas in Kuala Lumpur. Full article
Show Figures

Figure 1

20 pages, 2935 KiB  
Article
Submicron Aerosol and Black Carbon in the Troposphere of Southwestern Siberia (1997–2018)
by Mikhail Panchenko, Elena Yausheva, Dmitry Chernov, Valerii Kozlov, Valery Makarov, Svetlana Popova and Vladimir Shmargunov
Atmosphere 2021, 12(3), 351; https://doi.org/10.3390/atmos12030351 - 8 Mar 2021
Cited by 6 | Viewed by 2347
Abstract
Based on the multiyear measurements in the surface atmospheric layer (from five stations) and regular flights of aircraft laboratory over the background region of Southwestern Siberia, the compositions of mass concentrations of submicron aerosol and absorbing substances (soot and black carbon) are analyzed. [...] Read more.
Based on the multiyear measurements in the surface atmospheric layer (from five stations) and regular flights of aircraft laboratory over the background region of Southwestern Siberia, the compositions of mass concentrations of submicron aerosol and absorbing substances (soot and black carbon) are analyzed. The annual average concentrations of submicron aerosol and black carbon were found to be maximal in 1997, 2012, and 2016, when the largest numbers of wildfires occurred across the entire territory of Siberia. No significant, unidirectional trend of interannual variations in the concentration of submicron particles was observed, while the concentration of absorbing substance reliably decreased by 1.5% each year. To estimate the effect of urban pollutants, mass concentrations of aerosol and absorbing substance in the surface layer at the Aerosol Station (in the suburban region of Tomsk) were compared to those at the Fonovaya Observatory (in the background region). It was shown that the largest contribution of anthropogenic sources in the suburban region was observed in the winter season, while minimal difference was observed in the warm period of the year. The seasonal behavior of the concentrations of elemental carbon at three stations in Novosibirsk Oblast almost completely matched the dynamics of the variations in the black carbon concentration in the atmosphere of Tomsk Oblast. Data of aircraft sensing in the troposphere of the background region of Southwestern Siberia (2000–2018) were used to determine the average values of the vertical distribution of the submicron aerosol and black carbon concentrations in the altitude range of 0.5–7 km for each season. It was found that at altitudes of 0.5–7 km, there were no unidirectional trends in submicron aerosol; however, there was an increase of black carbon concentration at all altitudes with a positive trend of 5.3 ± 2.2% per year at an altitude of 1.5 km, significant at a p-value = 0.05. Full article
(This article belongs to the Special Issue Air Pollution Estimation)
Show Figures

Figure 1

19 pages, 2706 KiB  
Article
Modelling the Influence of Different Soot Types on the Radio-Frequency-Based Load Detection of Gasoline Particulate Filters
by Stefanie Walter, Peter Schwanzer, Gunter Hagen, Gerhard Haft, Hans-Peter Rabl, Markus Dietrich and Ralf Moos
Sensors 2020, 20(9), 2659; https://doi.org/10.3390/s20092659 - 6 May 2020
Cited by 6 | Viewed by 3114
Abstract
Gasoline particulate filters (GPFs) are an appropriate means to meet today’s emission standards. As for diesel applications, GPFs can be monitored via differential pressure sensors or using a radio-frequency approach (RF sensor). Due to largely differing soot properties and engine operating modes of [...] Read more.
Gasoline particulate filters (GPFs) are an appropriate means to meet today’s emission standards. As for diesel applications, GPFs can be monitored via differential pressure sensors or using a radio-frequency approach (RF sensor). Due to largely differing soot properties and engine operating modes of gasoline compared to diesel engines (e.g., the possibility of incomplete regenerations), the behavior of both sensor systems must be investigated in detail. For this purpose, extensive measurements on engine test benches are usually required. To simplify the sensor development, a simulation model was developed using COMSOL Multiphysics® that not only allowed for calculating the loading and regeneration process of GPFs under different engine operating conditions but also determined the impact on both sensor systems. To simulate the regeneration behavior of gasoline soot accurately, an oxidation model was developed. To identify the influence of different engine operating points on the sensor behavior, various samples generated at an engine test bench were examined regarding their kinetic parameters using thermogravimetric analysis. Thus, this compared the accuracy of soot mass determination using the RF sensor with the differential pressure method. By simulating a typical driving condition with incomplete regenerations, the effects of the soot kinetics on sensor accuracy was demonstrated exemplarily. Thereby, the RF sensor showed an overall smaller mass determination error, as well as a lower dependence on the soot kinetics. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Figure 1

21 pages, 6768 KiB  
Article
Chemical and Mineralogical Composition of Soot and Ash from the Combustion of Peat Briquettes in Household Boilers
by Jana Růžičková, Marek Kucbel, Helena Raclavská, Barbora Švédová, Konstantin Raclavský, Michal Šafář and Pavel Kantor
Energies 2019, 12(19), 3784; https://doi.org/10.3390/en12193784 - 5 Oct 2019
Cited by 4 | Viewed by 4773
Abstract
Soot and ash as residues from the combustion of peat briquettes were analysed by chemical and mineralogical methods. The study aimed to characterize combustion in domestic boilers of two different emission classes. Ten samples of soot deposited in exhausting ways of boilers were [...] Read more.
Soot and ash as residues from the combustion of peat briquettes were analysed by chemical and mineralogical methods. The study aimed to characterize combustion in domestic boilers of two different emission classes. Ten samples of soot deposited in exhausting ways of boilers were obtained (five of each emission class). The analyses of organic substances in soot were performed using a combination of the methods for the determination of elemental and organic forms of carbon with analytical pyrolysis. Pyrolysis gas chromatography with mass spectrometric detection (Py-GC/MS) allowed the identification of organic compounds belonging to twenty different groups. The major and minor elements in peat briquettes, char and soot, were determined by X-ray fluorescence spectroscopy. The identification of grains and the chemical character of soot was performed using a scanning electron microscope with energy dispersive X-ray spectrometry. The mineral phases in ash were determined by X-ray diffraction. The behaviour of the inorganic elements in combustion products (ash and soot) was studied by means of an enrichment factor. The analytical results are used for characterizing the technological conditions of combustion. The soot deposits from the more advanced boilers with increased combustion temperature contain more organic compounds which indicate the highly carbonized cellulose (benzofurans and dibenzofurans). The increased combustion temperature is indicated by increased concentrations of heterocyclic and aliphatic nitrogen compounds, while the total concentrations of nitrogen in soot from boilers of both types are comparable. Full article
Show Figures

Figure 1

16 pages, 4091 KiB  
Article
Chemical Characteristics of PM2.5 and Water-Soluble Organic Nitrogen in Yangzhou, China
by Yuntao Chen, Yanfang Chen, Xinchun Xie, Zhaolian Ye, Qing Li, Xinlei Ge and Mindong Chen
Atmosphere 2019, 10(4), 178; https://doi.org/10.3390/atmos10040178 - 3 Apr 2019
Cited by 24 | Viewed by 5427
Abstract
Chemical characterization of fine atmospheric particles (PM2.5) is important for effective reduction of air pollution. This work analyzed PM2.5 samples collected in Yangzhou, China, during 2016. Ionic species, organic matter (OM), elemental carbon (EC), and trace metals were determined, and [...] Read more.
Chemical characterization of fine atmospheric particles (PM2.5) is important for effective reduction of air pollution. This work analyzed PM2.5 samples collected in Yangzhou, China, during 2016. Ionic species, organic matter (OM), elemental carbon (EC), and trace metals were determined, and an Aerodyne soot-particle aerosol mass spectrometer (SP-AMS) was introduced to determine the OM mass, rather than only organic carbon mass. We found that inorganic ionic species was dominant (~52%), organics occupied about 1/4, while trace metals (~1%) and EC (~2.1%) contributed insignificantly to the total PM2.5 mass. Water-soluble OM appeared to link closely with secondary OM, while water-insoluble OM correlated well with primary OM. The PM2.5 concentrations were relatively low during summertime, while its compositions varied little among different months. Seasonal variations of water-soluble organic nitrogen (WSON) concentrations were not significant, while the mass contributions of WSON to total nitrogen were remarkably high during summer and autumn. WSON was found to associate better with secondary sources based on both correlation analyses and principle component analyses. Analyses of potential source contributions to WSON showed that regional emissions were dominant during autumn and winter, while the ocean became relatively important during spring and summer. Full article
(This article belongs to the Special Issue Urban Atmospheric Aerosols: Sources, Analysis and Effects)
Show Figures

Figure 1

Back to TopTop