Carbon and Trace Element Compositions of Total Suspended Particles (TSP) and Nanoparticles (PM0.1) in Ambient Air of Southern Thailand and Characterization of Their Sources
Abstract
:1. Introduction
2. Methodology
2.1. Sampling Site
2.2. Cascade Sampler for PM0.1 and High-Volume Sampler for TSP
2.3. Carbon Analysis Method
2.4. Trace Elements Analysis
2.5. Source Apportionment Analysis
2.6. Hot Spots and Backward Trajectories
3. Results and Discussion
3.1. PM0.1 and TSP Mass Concentrations
3.2. Carbon Components in PM0.1 and TSP
3.3. OC/EC and Char-EC/Soot-EC Ratios
3.4. Distribution of Metals
3.5. Source Apportionment of PM0.1 and TSP Bound Carbon and Metals
3.5.1. PM0.1 Source Apportionment
3.5.2. TSP Source Apportionment
3.6. Possible Local and Long-Range Transport of PM
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Deng, Q.; Deng, L.; Miao, Y.; Guo, X.; Li, Y. Particle deposition in the human lung: Health implications of particulate matter from different sources. Environ. Res. 2019, 169, 237–245. [Google Scholar] [CrossRef] [PubMed]
- Kampa, M.; Castanas, E. Human health effects of air pollution. Environ. Pollut. 2008, 151, 362–367. [Google Scholar] [CrossRef] [PubMed]
- Jacobson, M.Z. Air Pollution and Global Warming: History, Science, and Solutions; Cambridge University Press: Cambridge, UK, 2012. [Google Scholar]
- Lohmann, U.; Feichter, J. Global indirect aerosol effects: A review. Atmos. Chem. Phys. 2005, 5, 715–737. [Google Scholar] [CrossRef] [Green Version]
- Alias, N.F.; Khan, M.F.; Sairi, N.A.; Zain, S.M.; Suradi, H.; Rahim, H.A.; Banerjee, T.; Bari, M.A.; Othman, M.; Latif, M.T. Characteristics, emission sources and risk factors of heavy metals in PM2.5 from Southern Malaysia. ACS Earth Space Chem. 2020, 4, 1309–1323. [Google Scholar] [CrossRef]
- Chalermpong, S.; Thaithatkul, P.; Anuchitchanchai, O.; Sanghatawatana, P. Land use regression modeling for fine particulate matters in Bangkok, Thailand, using time-variant predictors: Effects of seasonal factors, open biomass burning, and traffic-related factors. Atmos. Environ. 2021, 246, 118128. [Google Scholar] [CrossRef]
- ChooChuay, C.; Pongpiachan, S.; Tipmanee, D.; Deelaman, W.; Suttinun, O.; Wang, Q.; Xing, L.; Li, G.; Han, Y.; Palakun, J.; et al. Long-range Transboundary Atmospheric Transport of Polycyclic Aromatic Hydrocarbons, Carbonaceous Compositions, and Water-soluble Ionic Species in Southern Thailand. Aerosol Air Qual. Res. 2020, 20, 1591–1606. [Google Scholar] [CrossRef]
- Ha Chi, N.N.; Kim Oanh, N.T. Photochemical smog modeling of PM2.5 for assessment of associated health impacts in crowded urban area of Southeast Asia. Environ. Technol. Innov. 2021, 21, 101241. [Google Scholar] [CrossRef]
- Moon, C.S. Correlation among PM10, PM2.5, Cd, and Pb Concentrations in Ambient Air and Asian Dust Storm Event. J. Environ. Health Sci. 2020, 46, 532–538. [Google Scholar] [CrossRef]
- Nuthammachot, N.; Phairuang, W.; Stratoulias, D. Estimation of carbon emission in the Ex-mega rice project, Indonesia based on sar satellite images. Appl. Ecol. Environ. Res. 2019, 17, 2489–2499. [Google Scholar] [CrossRef]
- Phairuang, W. Biomass Burning and Their Impacts on Air Quality in Thailand. In Biomass Burning in South and Southeast Asia; CRC Press: Boca Raton, FL, USA, 2021; pp. 21–38. [Google Scholar]
- Boongla, Y.; Chanonmuang, P.; Hata, M.; Furuuchi, M.; Phairuang, W. The characteristics of carbonaceous particles down to the nanoparticle range in Rangsit city in the Bangkok Metropolitan Region, Thailand. Environ. Pollut. 2020, 272, 115940. [Google Scholar] [CrossRef]
- Dahari, N.; Muda, K.; Latif, M.T.; Hussein, N. Studies of Atmospheric PM2.5 and its Inorganic Water Soluble Ions and Trace Elements around Southeast Asia: A Review. Asia-Pac. J. Atmos. Sci. 2021, 57, 361–385. [Google Scholar] [CrossRef]
- Jamhari, A.A.; Latif, M.T.; Wahab, M.I.A.; Hassan, H.; Othman, M.; Hamid, H.H.A.; Tekasakul, P.; Phairuang, W.; Hata, M.; Furuchi, M.; et al. Seasonal variation and size distribution of inorganic and carbonaceous components, source identification of size-fractioned urban air particles in Kuala Lumpur, Malaysia. Chemosphere 2021, 287, 132309. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.M.; Cao, J.; Lee, S.C.; Ho, K.F.; An, Z.S. Different characteristics of char and soot in the atmosphere and their ratio as an indicator for source identification in Xi’an, China. Atmos. Chem. Phys. 2010, 10, 595–607. [Google Scholar] [CrossRef] [Green Version]
- Phairuang, W.; Suwattiga, P.; Chetiyanukornkul, T.; Hongtieab, S.; Limpaseni, W.; Ikemori, F.; Hata, M.; Furuuchi, M. The influence of the open burning of agricultural biomass and forest fires in Thailand on the carbonaceous components in size-fractionated particles. Environ. Pollut. 2019, 247, 238–247. [Google Scholar] [CrossRef]
- Thuy, N.T.T.; Dung, N.T.; Sekiguchi, K.; Thuy, L.B.; Hien, N.T.T.; Yamaguchi, R. Mass Concentrations and Carbonaceous Compositions of PM0.1, PM2.5, and PM10 at Urban Locations of Hanoi, Vietnam. Aerosol Air Qual. Res. 2018, 18, 1591–1605. [Google Scholar] [CrossRef] [Green Version]
- Amin, M.; Handika, R.A.; Putri, R.M.; Phairuang, W.; Hata, M.; Tekasakul, P.; Furuuchi, M. Size-Segregated Particulate Mass and Carbonaceous Components in Roadside and Riverside Environments. Appl. Sci. 2021, 11, 10214. [Google Scholar] [CrossRef]
- Phairuang, W.; Inerb, M.; Furuuchi, M.; Hata, M.; Tekasakul, S.; Tekasakul, P. Size-fractionated carbonaceous aerosols down to PM0.1 in southern Thailand: Local and long-range transport effects. Environ. Pollut. 2020, 260, 114031. [Google Scholar] [CrossRef]
- Putri, R.M.; Amin, M.; Suciari, T.F.; Faisal, M.A.F.; Auliani, R.; Ikemori, F.; Wada, M.; Hata, M.; Tekasakul, P.; Furuuchi, M. Site-specific variation in mass concentration and chemical components in ambient nanoparticles (PM0.1) in North Sumatra Province-Indonesia. Atmos. Pollut. Res. 2021, 12, 101062. [Google Scholar] [CrossRef]
- Guo, Y. Carbonaceous aerosol composition over northern China in spring. Environ. Sci. Pollut. Res. 2015, 22, 10839–10849. [Google Scholar] [CrossRef]
- Gustafsson, O.; Ramanathan, V. Convergence on climate warming by black carbon aerosols. Proc. Natl. Acad. Sci. USA 2016, 113, 4243–4245. [Google Scholar] [CrossRef] [Green Version]
- Phairuang, W.; Inerb, M.; Hata, M.; Furuuchi, M. Characteristics of trace elements bound to ambient nanoparticles (PM0.1) and a health risk assessment in southern Thailand. J. Hazard. Mater. 2021, 425, 127986. [Google Scholar] [CrossRef] [PubMed]
- Pongpiachan, S.; Iijima, A. Assessment of selected metals in the ambient air PM10 in urban sites of Bangkok (Thailand). Environ. Sci. Pollut. Res. 2016, 23, 2948–2961. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Jia, C.; Yu, H.; Xu, H.; Ji, D.; Wang, C.; Xiao, H.; He, J. Characteristics, sources, and health risks of PM2.5-bound trace elements in representative areas of Northern Zhejiang Province, China. Chemosphere 2021, 272, 129632. [Google Scholar] [CrossRef]
- Nghiem, T.-D.; Nguyen, T.T.T.; Ly, B.T.; Sekiguchi, K.; Yamaguchi, R.; Pham, C.-T.; Ho, Q.B.; Nguyen, M.-T.; Duong, T.N. Chemical characterization and source apportionment of ambient nanoparticles: A case study in Hanoi, Vietnam. Environ. Sci. Pollut. Res. 2020, 27, 30661–30672. [Google Scholar] [CrossRef] [PubMed]
- Sanderson, P.; Delgado-Saborit, J.M.; Harrison, R.M. A review of chemical and physical characterisation of atmospheric metallic nanoparticles. Atmos. Environ. 2014, 94, 353–365. [Google Scholar] [CrossRef] [Green Version]
- IARC, International Agency for Research on Cancer. Agents Classified by the IARC Monographs; IARC: Lyon, Franch, 2011; Volumes 1–102. [Google Scholar]
- IARC, International Agency for Research on Cancer. Arsenic, Metals, Fibres and Dusts. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans; IARC: Lyon, Franch, 2012. [Google Scholar]
- Phairuang, W.; Suwattiga, P.; Hongtieab, S.; Inerb, M.; Furuuchi, M.; Hata, M. Characteristics, sources, and health risks of ambient nanoparticles (PM0.1) bound metal in Bangkok, Thailand. Atmos. Environ. X 2021, 12, 100141. [Google Scholar] [CrossRef]
- Phairuang, W.; Tekasakul, P.; Hata, M.; Tekasakul, S.; Chomanee, J.; Otani, Y.; Furuuchi, M. Estimation of air pollution from ribbed smoked sheet rubber in Thailand exports to Japan as a pre-product of tires. Atmos. Pollut. Res. 2019, 10, 642–650. [Google Scholar] [CrossRef]
- Thumanu, K.; Pongpiachan, S.; Ho, K.F.; Lee, S.C.; Sompongchaiyakul, P. Characterization of organic functional groups, water-soluble ionic species and carbonaceous compounds in PM10 from various emission sources in Songkhla Province, Thailand. WIT Trans. Ecol. Environ. 2009, 123, 295–306. [Google Scholar] [CrossRef] [Green Version]
- Thailand Meteorological Department (TMD). The Climate of Thailand. Available online: https://www.tmd.go.th/en/province.php?id1⁄443 (accessed on 24 March 2022).
- Han, Y.; Cao, J.; Chow, J.C.; Watson, J.G.; An, Z.; Jin, Z.; Fung, K.; Liu, S. Evaluation of the thermal/optical reflectance method for discrimination between Char- and Soot-EC. Chemosphere 2007, 69, 569–574. [Google Scholar] [CrossRef]
- Li, T.; Zhang, H.; Yuan, C.; Liu, Z.; Fan, C. A PCA-based method for construction of composite sustainability indicators. Int. J. Life Cycle Assess. 2012, 17, 593–603. [Google Scholar] [CrossRef]
- Jain, S.; Sharma, S.; Mandal, T.; Saxena, M. Source apportionment of PM10 in Delhi, India using PCA/APCS, UNMIX and PMF. Particuology 2018, 37, 107–118. [Google Scholar] [CrossRef]
- Air Resource Laboratory (ALR). The Air Resource Laboratory (HYSPLIP 4). Available online: http://ready.arl.noaa.gov/HYSPLIT.php (accessed on 9 March 2022).
- Oanh, N.T.K.; Leelasakultum, K. Analysis of meteorology and emission in haze episode prevalence over mountain-bounded region for early warning. Sci. Total Environ. 2011, 409, 2261–2271. [Google Scholar] [CrossRef]
- Shokoohinia, P.; Assareh, N.; Manomaiphiboon, K.; Chusai, C.; Kerkkaiwan, S.; Unapumnuk, K.; Aman, N. Impacts of transboundary smoke haze from biomass burning in lower Southeast Asia on air quality in Southern Thailand. J. Sustain. Energy Environ. 2020, 10, 1–10. [Google Scholar]
- Hata, M.; Bai, Y.; Furuuchi, M.; Fukumoto, M.; Otani, Y.; Sekiguchi, K.; Tajima, N. Status and characteristics of ambient aerosol nano-particles in Kakuma, Kanazawa and comparison between sampling characteristics of air samplers for aerosol particle separation. Jpn. Sea Res. 2009, 40, 135–140. [Google Scholar]
- Hongtieab, S.; Yoshikawa, F.; Matsuki, A.; Zhao, T.; Amin, M.; Hata, M.; Tekasakul, P.; Furuuchi, M. Seasonal behavior and emission sources of ambient PM0.1 in the Hokuriku region in Japan. Jpn. Sea Res. 2020, 49, 1–17. [Google Scholar]
- Chen, S.C.; Tsai, C.-J.; Chou, C.C.-K.; Roam, G.D.; Cheng, S.-S.; Wang, Y.N. Ultrafine particles at three different sampling locations in Taiwan. Atmos. Environ. 2010, 44, 533–540. [Google Scholar] [CrossRef]
- Ding, X.; Kong, L.; Du, C.; Zhanzakova, A.; Wang, L.; Fu, H.; Chen, J.; Yang, X.; Cheng, T. Long-range and regional transported size-resolved atmospheric aerosols during summertime in urban Shanghai. Sci. Total. Environ. 2017, 583, 334–343. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, A.; Roy, A.; Chatterjee, A.; Das, S.K.; Ghosh, S.K.; Raha, S. Impact of Biomass Burning Plumes on the Size-Segregated Aerosol Chemistry over an Urban Atmosphere at Indo-Gangetic Plain. Aerosol Air Qual. Res. 2019, 19, 163–180. [Google Scholar] [CrossRef] [Green Version]
- Venecek, M.A.; Yu, X.; Kleeman, M.J. Predicted ultrafine particulate matter source contribution across the continental United States during summertime air pollution events. Atmos. Chem. Phys. 2019, 19, 9399–9412. [Google Scholar] [CrossRef] [Green Version]
- De Jesus, A.L.; Rahman, M.; Mazaheri, M.; Thompson, M.; Knibbs, L.; Jeong, C.; Evans, G.; Nei, W.; Ding, A.; Qiao, L.; et al. Ultrafine particles and PM2.5 in the air of cities around the world: Are they representative of each other? Environ. Int. 2019, 129, 118–135. [Google Scholar] [CrossRef]
- Adam, M.G.; Tran, P.T.; Bolan, N.; Balasubramanian, R. Biomass burning-derived airborne particulate matter in Southeast Asia: A critical review. J. Hazard. Mater. 2020, 407, 124760. [Google Scholar] [CrossRef]
- Tham, J.; Sarkar, S.; Jia, S.; Reid, J.S.; Mishra, S.; Sudiana, I.; Swarup, S.; Ong, C.N.; Yu, L. Impacts of peat-forest smoke on urban PM2.5 in the Maritime Continent during 2012–2015: Carbonaceous profiles and indicators. Environ. Pollut. 2019, 248, 496–505. [Google Scholar] [CrossRef]
- Pongpiachan, S.; Ho, K.F.; Cao, J. Effects of Biomass and Agricultural Waste Burnings on Diurnal Variation and Vertical Distribution of OC/EC in Hat-Yai City, Thailand. Asian J. Appl. Sci. 2014, 7, 360–374. [Google Scholar] [CrossRef] [Green Version]
- Allen, J.O.; Mayo, P.R.; Hughes, L.S.; Salmon, L.G.; Cass, G.R. Emissions of Size-Segregated Aerosols from On-Road Vehicles in the Caldecott Tunnel. Environ. Sci. Technol. 2001, 35, 4189–4197. [Google Scholar] [CrossRef] [PubMed]
- Pio, C.; Cerqueira, M.; Harrison, R.M.; Nunes, T.; Mirante, F.; Alves, C.; Oliveira, C.; Sanchez de la Campa, A.; Artíñano, B.; Matos, M. OC/EC ratio observations in Europe: Re-thinking the approach for apportionment between primary and secondary organic carbon. Atmos. Environ. 2011, 45, 6121–6132. [Google Scholar] [CrossRef]
- Zhu, C.S.; Chen, C.C.; Cao, J.J.; Tsai, C.J.; Chou, C.C.K.; Liu, S.C.; Roam, G.D. Characterization of carbon fractions for atmospheric fine particles and nanoparticles in a highway tunnel. Atmos. Environ. 2010, 44, 2668–2673. [Google Scholar] [CrossRef]
- Cachier, H.; Liousse, C.; Pertuisol, M.H.; Gaudichet, A.; Echalar, F.; Lacaux, J.P. African fine particulate emissions and atmospheric influence. In Biomass Burning and Global Change; Levine, E.J.S., Ed.; MIT Press: London, UK, 1996; pp. 428–440. [Google Scholar]
- Saffari, A.; Daher, N.; Shafer, M.M.; Schauer, J.J.; Sioutas, C. Seasonal and spatial variation of trace elements and metals in quasi-ultrafine (PM0.25) particles in the Los Angeles metropolitan area and characterization of their sources. Environ. Pollut. 2013, 181, 14–23. [Google Scholar] [CrossRef] [PubMed]
- Pongpiachan, S.; Liu, S.; Huang, R.; Zhao, Z.; Palakun, J.; Kositanont, C.; Cao, J. Variation in Day-of-Week and Seasonal Concentrations of Atmospheric PM2.5-Bound Metals and Associated Health Risks in Bangkok, Thailand. Arch. Environ. Contam. Toxicol. 2017, 72, 364–379. [Google Scholar] [CrossRef]
- Xue, W.; Xue, J.; Mousavi, A.; Sioutas, C.; Kleeman, M.J. Positive matrix factorization of ultrafine particle mass (PM0.1) at three sites in California. Sci. Total Environ. 2020, 715, 136902. [Google Scholar] [CrossRef]
- Yin, J.; Harrison, R.M. Pragmatic mass closure study for PM1.0, PM2.5 and PM10 at roadside, urban background and rural sites. Atmos. Environ. 2008, 42, 980–988. [Google Scholar] [CrossRef]
- Adachi, K.; Buseck, P.R. Hosted and Free-Floating Metal-Bearing Atmospheric Nanoparticles in Mexico City. Environ. Sci. Technol. 2010, 44, 2299–2304. [Google Scholar] [CrossRef] [PubMed]
- Pollution Control Department (PCD). Emission Inventory in Songkhla Province; Pollution Control Department: Bangkok, Thailand, 2009. (In Thai) [Google Scholar]
- Liati, A.; Dimopoulos Eggenschwiler, P.; Müller Gubler, E.; Schreiber, D.; Aguirre, M. Investigation of diesel ash particulate matter: A scanning electron microscope and transmission electron microscope study. Atmos. Environ. 2012, 49, 391–402. [Google Scholar] [CrossRef]
- Miller, A.L.; Stipe, C.B.; Habjan, M.C.; Ahlstrand, G.G. Role of Lubrication Oil in Particulate Emissions from a Hydrogen-Powered Internal Combustion Engine. Environ. Sci. Technol. 2007, 41, 6828–6835. [Google Scholar] [CrossRef]
- Hata, M.; Chomanee, J.; Thongyen, T.; Bao, L.; Tekasakul, S.; Tekasakul, P.; Otani, Y.; Furuuchi, M. Characteristics of nanoparticles emitted from burning of biomass fuels. J. Environ. Sci. China 2014, 26, 1913–1920. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Wang, W.; Li, L.; Li, J.; Wei, L.; Chi, W.; Hong, L.; Zhao, Q.; Jiang, J. Seasonal concentration distribution of PM1.0 and PM2.5 and a risk assessment of bound trace metals in Harbin, China: Effect of the species distribution of heavy metals and heat supply. Sci. Rep. 2020, 10, 8160. [Google Scholar] [CrossRef] [PubMed]
- Reinard, M.S.; Adou, K.; Martini, J.M.; Johnston, M.V. Source characterization and identification by real-time single particle mass spectrometry. Atmos. Environ. 2007, 41, 9397–9409. [Google Scholar] [CrossRef]
- Tolocka, M.P.; Lake, D.A.; Johnston, M.V.; Wexler, A.S. Number concentrations of fine and ultrafine particles containing metals. Atmos. Environ. 2004, 38, 3263–3273. [Google Scholar] [CrossRef]
- Tran, T.D.; Nguyen, P.M.; Nghiem, D.T.; Le, T.H.; Tu, M.B.; Alleman, L.Y.; Nguyen, V.M.; Pham, D.T.; Ha, N.M.; Dang, M.N.; et al. Assessment of Air Quality in School Environments in Hanoi, Vietnam: A Focus on Mass-Size Distribution and Elemental Composition of Indoor-Outdoor Ultrafine/Fine/Coarse Particles. Atmos. Basel 2020, 11, 519. [Google Scholar] [CrossRef]
- Ondráček, J.; Schwarz, J.; Ždímal, V.; Andělová, L.; Vodička, P.; Bízek, V.; Tsai, C.-J.; Chen, S.-C.; Smolík, J. Contribution of the road traffic to air pollution in the Prague city (busy speedway and suburban crossroads). Atmos. Environ. 2011, 45, 5090–5100. [Google Scholar] [CrossRef]
- Buus Hansen, A.; Suzanne Witham, C.; Ming Chong, W.; Kendall, E.; Ning Chew, B.; Gan, C.; Craig Hort, M.; Lee, S.Y. Haze in Singapore-source attribution of biomass burning PM10 from Southeast Asia. Atmos. Chem. Phys. 2019, 19, 5363–5385. [Google Scholar] [CrossRef] [Green Version]
Sampling Period | Temperature (°C) | RH (%) | Wind Speed (m/s) | Pressure (hPa) | Rainfall (mm) |
---|---|---|---|---|---|
Jan–April, 2019 | 24.7–28.3 (26.8) | 65–82 (74) | 0.98–1.84 (1.40) | 913–1009 (977) | 28.6–215.8 (117.9) |
May–Aug, 2019 | 27.0–28.3 (27.9) | 77-81 (78) | 0.75–1.26 (0.99) | 975–1008 (1000) | 75.4–245.2 (153.2) |
Location | Site Description | Concentration | References |
---|---|---|---|
Hat Yai, Thailand | Mixed | 10.4 ± 1.2 | This study |
Bangkok, Thailand | Urban-traffic | 14.8 ± 2.0 | [16] |
Chiang Mai, Thailand | Suburban | 25.2 ± 4.7 | [16] |
Hanoi, Vietnam | Urban-traffic | 6.0 ± 2.7 | [17] |
North Sumatra, Indonesia | Urban-traffic | 16.8 ± 4.0 | [20] |
North Sumatra, Indonesia | Rural | 7.1 ± 2.5 | [20] |
Kanazawa, Japan | Mixed | 4.7 | [40] |
Kanazawa, Japan | Mixed | 2.6 ± 1.2 | [41] |
Suzu, Japan | Rural | 2.8 ± 0.9 | [41] |
Toyama, Japan | Urban | 5.4 ± 1.6 | [41] |
Hsinchu, Taiwan | Urban-traffic | 2.2 ± 0.6 | [42] |
Shanghai, China | Urban | 13.4 | [43] |
Kolkata, India | Urban | 8.8 ± 2.6 | [44] |
Size | Season | OC | EC | Char-EC | Soot-EC | TC | OC/EC (−) | Char-EC/Soot-EC (−) |
---|---|---|---|---|---|---|---|---|
PM0.1 | Dry | 1.6 ± 0.2 | 0.7 ± 0.1 | 0.1 ± 0.1 | 0.5 ± 0.1 | 2.3 ± 0.4 | 2.5 ± 0.5 | 0.3 ± 0.2 |
Wet | 4.9 ± 0.9 | 1.8 ± 0.5 | 0.4 ± 0.1 | 1.4 ± 0.1 | 6.7 ± 0.3 | 2.7 ± 0.7 | 0.3 ± 0.2 | |
Total | 3.3 ± 0.6 | 1.2 ± 0.4 | 0.3 ± 0.1 | 0.9 ± 0.1 | 4.5 ± 0.4 | 2.6 ± 0.6 | 0.3 ± 0.2 | |
TSP | Dry | 5.0 ± 1.2 | 1.4 ± 0.4 | 0.4 ± 0.2 | 1.1 ± 0.3 | 6.4 ± 2.9 | 3.8 ± 1.6 | 0.3 ± 0.1 |
Wet | 5.5 ± 3.6 | 1.5 ± 0.9 | 0.3 ± 0.2 | 1.1 ± 0.3 | 7.0 ± 4.2 | 4.2 ± 1.5 | 0.2 ± 0.1 | |
Total | 5.3 ± 4.6 | 1.4 ± 1.0 | 0.3 ± 0.2 | 1.1 ± 0.3 | 6.7 ± 5.4 | 4.0 ± 1.3 | 0.3 ± 0.2 |
Species | PM0.1 | TSP | ||||
---|---|---|---|---|---|---|
Dry | Wet | Annual | Dry | Wet | Annual | |
Al | 13.1 ± 8.8 | 19.1 ± 6.4 | 16.1 ± 8.1 | 33.6 ± 16.2 | 54.6 ± 32.6 | 44.1 ± 27.4 |
Ba | 0.5 ± 0.3 | 1.2 ± 0.8 | 0.8 ± 0.7 | 0.8 ± 0.4 | 1.6 ± 0.5 | 1.2 ± 0.6 |
Cr | 0.04 ± 0.01 | 0.09 ± 0.05 | 0.07 ± 0.41 | 0.13 ± 0.06 | 0.20 ± 0.11 | 0.16 ± 0.10 |
Cu | 2.12 ± 0.66 | 1.16 ± 0.91 | 1.64 ± 0.91 | 2.22 ± 0.61 | 1.99 ± 0.67 | 2.11 ± 0.64 |
Fe | 11.0 ± 11.9 | 15.3 ± 8.3 | 13.1 ± 10.2 | 56.0 ± 35.2 | 93.2 ± 40.7 | 74.6 ± 41.8 |
K | 32.2 ± 22.3 | 55.2 ± 19.6 | 43.7 ± 23.5 | 204.2 ± 185.8 | 422.3 ± 213.1 | 313.3 ± 225.1 |
Mg | 23.4 ± 17.3 | 44.4 ± 24.6 | 33.9 ± 23.5 | 131.2 ± 56.5 | 91.5 ± 48.4 | 111.4 ± 55.3 |
Mn | 1.26 ± 0.18 | 2.30 ± 1.65 | 1.78 ± 1.26 | 2.25 ± 1.40 | 4.78 ± 2.16 | 3.52 ± 2.20 |
Na | 39.7 ± 38.9 | 43.6 ± 30.2 | 41.6 ± 33.7 | 540.2 ± 335.2 | 151.7 ± 93.3 | 346.0 ± 311.9 |
Ni | 0.20 ± 0.09 | 0.31 ± 0.09 | 0.26 ± 0.10 | 0.29 ± 0.11 | 0.34 ± 0.22 | 0.32 ± 0.17 |
Pb | 0.11 ± 0.11 | 0.99 ± 1.25 | 0.55 ± 0.97 | 1.35 ± 1.42 | 1.20 ± 0.83 | 1.27 ± 1.14 |
Ti | 0.71 ± 0.17 | 0.61 ± 0.10 | 0.66 ± 0.14 | 1.36 ± 0.72 | 2.38 ± 1.59 | 1.87 ± 1.31 |
Zn | 5.10 ± 1.49 | 9.12 ± 3.39 | 7.11 ± 3.27 | 9.80 ± 5.06 | 11.94 ± 4.48 | 10.87 ± 4.80 |
Total | 129.5 ± 18.5 | 193.5 ± 22.5 | 161.5 ± 20.7 | 983.4 ± 173.5 | 837.8 ± 131.1 | 910.6 ± 157.5 |
Species | Dry Season (Jan–Apr) | Wet Season (May–Aug) | ||||||
---|---|---|---|---|---|---|---|---|
PC1 | PC2 | PC3 | PC4 | PC1 | PC2 | PC3 | PC4 | |
Al | 0.87 | 0.63 | ||||||
Ba | 0.82 | −0.41 | 0.52 | 0.48 | 0.53 | |||
Cr | 0.47 | 0.80 | −0.69 | 0.33 | 0.51 | |||
Cu | 0.60 | 0.37 | 0.61 | 0.42 | 0.77 | −0.35 | ||
Fe | 0.89 | 0.69 | −0.57 | |||||
K | 0.50 | 0.60 | −0.42 | 0.92 | ||||
Mg | 0.57 | 0.57 | −0.42 | 0.80 | 0.45 | |||
Mn | 0.92 | 0.22 | −0.45 | 0.52 | 0.39 | 0.33 | ||
Na | 0.71 | 0.64 | 0.94 | 0.30 | ||||
Ni | −0.36 | −0.43 | 0.65 | 0.34 | −0.59 | −0.61 | ||
Pb | 0.37 | −0.36 | 0.64 | −0.38 | 0.62 | 0.63 | 0.40 | |
Ti | 0.48 | −0.69 | 0.41 | −0.34 | 0.56 | −0.48 | 0.59 | |
Zn | 0.72 | −0.31 | 0.87 | −0.36 | 0.18 | |||
TC | −0.61 | 0.69 | 0.42 | 0.90 | ||||
OC | −0.52 | 0.76 | 0.36 | 0.92 | ||||
EC | −0.76 | 0.51 | 0.60 | 0.68 | ||||
Initial eigenvalue | 6.13 | 4.28 | 1.897 | 1.483 | 6.09 | 4.58 | 1.94 | 1.45 |
% Variance | 38.31 | 26.75 | 11.85 | 9.26 | 38.07 | 28.60 | 12.10 | 9.03 |
% Cumulative Variance | 38.31 | 65.06 | 76.92 | 86.19 | 38.07 | 66.67 | 78.77 | 87.80 |
Species | Dry Season (Jan–Apr) | Wet Season (May–Aug) | |||||
---|---|---|---|---|---|---|---|
PC1 | PC2 | PC3 | PC4 | PC1 | PC2 | PC3 | |
Al | 0.38 | 0.78 | 0.85 | 0.46 | |||
Ba | 0.86 | 0.91 | |||||
Cr | 0.46 | 0.69 | −0.36 | 0.96 | |||
Cu | 0.33 | 0.30 | −0.55 | 0.49 | −0.67 | 0.40 | |
Fe | 0.90 | 0.95 | 0.02 | ||||
K | 0.88 | −0.33 | 0.70 | −0.50 | −0.31 | ||
Mg | −0.35 | 0.84 | 0.32 | 0.95 | |||
Mn | 0.97 | 0.83 | −0.32 | ||||
Na | −0.57 | 0.72 | 0.31 | 0.82 | 0.34 | ||
Ni | 0.42 | 0.40 | 0.93 | ||||
Pb | 0.62 | 0.51 | 0.68 | 0.50 | |||
Ti | 0.75 | 0.54 | 0.94 | −0.08 | |||
Zn | 0.88 | 0.66 | −0.39 | 0.29 | |||
TC | 0.93 | 0.91 | 0.28 | ||||
OC | 0.89 | 0.90 | −0.06 | ||||
EC | 0.46 | 0.74 | 0.35 | 0.45 | 0.69 | ||
Initial eigenvalue | 6.16 | 3.30 | 2.46 | 1.40 | 9.15 | 3.29 | 1.47 |
% Variance | 38.52 | 20.63 | 15.35 | 8.75 | 57.18 | 20.56 | 9.20 |
% Cumulative Variance | 38.52 | 59.15 | 74.50 | 83.25 | 57.18 | 77.74 | 86.94 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Inerb, M.; Phairuang, W.; Paluang, P.; Hata, M.; Furuuchi, M.; Wangpakapattanawong, P. Carbon and Trace Element Compositions of Total Suspended Particles (TSP) and Nanoparticles (PM0.1) in Ambient Air of Southern Thailand and Characterization of Their Sources. Atmosphere 2022, 13, 626. https://doi.org/10.3390/atmos13040626
Inerb M, Phairuang W, Paluang P, Hata M, Furuuchi M, Wangpakapattanawong P. Carbon and Trace Element Compositions of Total Suspended Particles (TSP) and Nanoparticles (PM0.1) in Ambient Air of Southern Thailand and Characterization of Their Sources. Atmosphere. 2022; 13(4):626. https://doi.org/10.3390/atmos13040626
Chicago/Turabian StyleInerb, Muanfun, Worradorn Phairuang, Phakphum Paluang, Mitsuhiko Hata, Masami Furuuchi, and Prasit Wangpakapattanawong. 2022. "Carbon and Trace Element Compositions of Total Suspended Particles (TSP) and Nanoparticles (PM0.1) in Ambient Air of Southern Thailand and Characterization of Their Sources" Atmosphere 13, no. 4: 626. https://doi.org/10.3390/atmos13040626
APA StyleInerb, M., Phairuang, W., Paluang, P., Hata, M., Furuuchi, M., & Wangpakapattanawong, P. (2022). Carbon and Trace Element Compositions of Total Suspended Particles (TSP) and Nanoparticles (PM0.1) in Ambient Air of Southern Thailand and Characterization of Their Sources. Atmosphere, 13(4), 626. https://doi.org/10.3390/atmos13040626