Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (81)

Search Parameters:
Keywords = sonic crystal

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 2793 KiB  
Article
Toxicological Efficiency Evaluation of the ASEC Technology for Contaminated Mining Water Using Lemna minor
by Mercedes Conradi, J. Emilio Sánchez-Moyano, Estefanía Bonnail, T. Ángel DelValls and Inmaculada Riba
Water 2025, 17(15), 2175; https://doi.org/10.3390/w17152175 - 22 Jul 2025
Viewed by 158
Abstract
The Adiabatic Sonic Evaporation and Crystallization (ASEC) technology was developed as a disruptive zero-liquid discharge system to treat contaminated mining effluents. This study evaluates its ecotoxicological efficacy using Lemna minor, a freshwater macrophyte, as a sensitive bioindicator. Acute growth inhibition tests were [...] Read more.
The Adiabatic Sonic Evaporation and Crystallization (ASEC) technology was developed as a disruptive zero-liquid discharge system to treat contaminated mining effluents. This study evaluates its ecotoxicological efficacy using Lemna minor, a freshwater macrophyte, as a sensitive bioindicator. Acute growth inhibition tests were conducted using OECD Guideline 221. Lemna minor was exposed for 7 days to untreated and treated effluents from the Tharsis mine and the Tinto River in southern Spain. The results revealed 100% inhibition of frond growth and biomass in untreated samples (pH < 2.6), indicating acute toxicity. In contrast, effluents treated with ASEC showed growth and biomass accumulation statistically indistinguishable from the control, confirming the system’s efficiency in reducing toxicity and restoring water quality. These findings support the environmental viability of ASEC technology for mine and port effluent treatment. Full article
(This article belongs to the Special Issue Studies on Toxic Effects in Aquatic Organisms and Ecosystems)
Show Figures

Figure 1

18 pages, 2600 KiB  
Article
Structural Characterization of Micronized Lignocellulose Date Pits as Affected by Water Sonication Followed by Alcoholic Fractionations
by Khalid Al-Harrasi, Nasser Al-Habsi, Mohamed A. Al-Kindi, Linghong Shi, Hafiz A. R. Suleria, Muthupandian Ashokkumar and Mohammad Shafiur Rahman
Int. J. Mol. Sci. 2025, 26(14), 6644; https://doi.org/10.3390/ijms26146644 - 11 Jul 2025
Viewed by 269
Abstract
Date pits are considered waste, and micronized date pit powder could be developed for use in foods and bio-products. In this study, micronized date pit powders were extracted by alcoholic sedimentation after ultrasound treatment. The control was considered untreated, i.e., without sonication. Six [...] Read more.
Date pits are considered waste, and micronized date pit powder could be developed for use in foods and bio-products. In this study, micronized date pit powders were extracted by alcoholic sedimentation after ultrasound treatment. The control was considered untreated, i.e., without sonication. Six micronized fractions (i.e., three from control and three from treated) were prepared by three stages of alcoholic sedimentation. In the case of untreated date pit powder, the average particle size of the fractionated date pit powder (i.e., residue) from three stages of alcoholic sedimentation varied from 89 to 164 µm, while ultrasonic treatment showed variation from 39 to 65 µm. The average particle size of the supernatant fractions of untreated date pit powder varied from 22 to 63 µm, while ultrasonic treatment showed variation from 18 to 44 µm. Ultrasound treatment produced smaller particles. In all cases, Scanning Electron Microscopy (SEM) showed that supernatant fractions contained lumped particles compared to the residue fractions. Transmission Electron Microscopy (TEM) showed the presence of nanoparticles in all extracted fractions. Two glass transitions were observed in all fractions except for the residue from the first sedimentation stage. In addition, higher levels of degradation in the fractionated date pits could be achieved by ultrasonic treatment, as is evident from the Fourier Transform Infrared (FTIR) analysis. Full article
(This article belongs to the Special Issue Lignocellulose Bioconversion and High-Value Utilization)
Show Figures

Figure 1

22 pages, 2996 KiB  
Article
Surface Modification of TiO2 and ZrO2 Nanoparticles with Organic Acids and Ultrasound to Enhance Antibacterial Activity
by Guadalupe Tellez-Barrios, Gregorio Cadenas-Pliego, Iván Toledo-Manuel, Marissa Pérez-Alvarez, Carmen N. Alvarado-Canche, Sergio Mancillas-Salas, Marlene Andrade-Guel, José Manuel Mata-Padilla and Christian Javier Cabello-Alvarado
Materials 2025, 18(12), 2786; https://doi.org/10.3390/ma18122786 - 13 Jun 2025
Viewed by 1463
Abstract
Metal oxide nanoparticles (NPs) are known to have biological activity against various microorganisms; thus, they have been widely used as microbicidal agents, and their use poses potential solutions to problems such as biofouling. This study focuses on the surface modification of TiO2 [...] Read more.
Metal oxide nanoparticles (NPs) are known to have biological activity against various microorganisms; thus, they have been widely used as microbicidal agents, and their use poses potential solutions to problems such as biofouling. This study focuses on the surface modification of TiO2 and ZrO2 nanoparticles with lactic acid (LA) and stearic acid (SA) to enhance their antibacterial activity (AA). The surface modification of TiO2 and ZrO2 nanoparticles was performed using continuous frequency ultrasound. Sonication was performed at different reaction times. Characterization of the modified nanoparticles by TGA, DSC, XRD, FTIR, and XPS techniques demonstrated the presence of the organic ligand on the surface of the nanoparticles. The surface modification results in a reduction in the crystal size of the nanoparticles. Regarding the antibacterial properties of modified TiO2 and ZrO2 nanoparticles, their minimum bactericidal concentration (MBC) against Gram-negative and Gram-positive bacteria of the bacterial strains Escherichia coli and Staphylococcus aureus was evaluated. The results obtained from the AA of the modified and unmodified nanoparticles demonstrated greater efficacy of the modified nanoparticles, in the particular case of TiO2 and TiO2-LA, evaluated at concentrations of 200, 500, 800, 1100, and 1400 ppm, TiO2-LA nanoparticles showed better results at most of the concentrations studied and a bacterial inhibition percentage of 99.0% was achieved at a concentration of 500 ppm against the Escherichia coli bacteria, while TiO2 NPs only reached 55.0%, this shows that ligands with more than one functional group play an important role in improving AA. Full article
(This article belongs to the Special Issue Nanoarchitectonics in Materials Science, Second Edition)
Show Figures

Graphical abstract

15 pages, 2618 KiB  
Article
Pulsed Blue Light and Phage Therapy: A Novel Synergistic Bactericide
by Amit Rimon, Jonathan Belin, Ortal Yerushalmy, Yonatan Eavri, Anatoly Shapochnikov, Shunit Coppenhagen-Glazer, Ronen Hazan and Lilach Gavish
Antibiotics 2025, 14(5), 481; https://doi.org/10.3390/antibiotics14050481 - 9 May 2025
Viewed by 893
Abstract
Background: Antibiotic-resistant Pseudomonas aeruginosa (P. aeruginosa) strains are an increasing cause of morbidity and mortality. Pulsed blue light (PBL) enhances porphyrin-induced reactive oxygen species and has been clinically shown to be harmless to the skin at low doses. Bacteriophages, viruses that [...] Read more.
Background: Antibiotic-resistant Pseudomonas aeruginosa (P. aeruginosa) strains are an increasing cause of morbidity and mortality. Pulsed blue light (PBL) enhances porphyrin-induced reactive oxygen species and has been clinically shown to be harmless to the skin at low doses. Bacteriophages, viruses that infect bacteria, offer a promising non-antibiotic bactericidal approach. This study investigates the potential synergism between low-dose PBL and phage therapy against P. aeruginosa in planktonic cultures and preformed biofilms. Methods: We conducted a factorial dose–response in vitro study combining P. aeruginosa-specific phages with PBL (457 nm, 33 kHz) on both PA14 and multidrug-resistant PATZ2 strains. After excluding direct PBL effects on phage titer or activity, we assessed effectiveness on planktonic cultures using growth curve analysis (via growth_curve_outcomes, a newly developed, Python-based tool available on GitHub) , CFU, and PFU. Biofilm efficacy was evaluated using CFU post-sonication, crystal violet staining, and live/dead staining with confocal microscopy. Finally, we assessed reactive oxygen species (ROS) as a potential mechanism using the nitro blue tetrazolium reduction assay. ANOVA or Kruskal–Wallis tests with post hoc Tukey or Conover–Iman tests were used for comparisons (n = 5 biological replicates and technical triplicates). Results: The bacterial growth lag phase was significantly extended for phage alone or PBL alone, with a synergistic effect of up to 144% (p < 0.001 for all), achieving a 9 log CFU/mL reduction at 24 h (p < 0.001). In preformed biofilms, synergistic combinations significantly reduced biofilm biomass and bacterial viability (% Live, median (IQR): Control 80%; Phage 40%; PBL 25%; PBL&Phage 15%, p < 0.001). Mechanistically, PBL triggered transient ROS in planktonic cultures, amplified by phage co-treatment, while a biphasic ROS pattern in biofilms reflected time-dependent synergy. Conclusions: Phage therapy combined with PBL demonstrates a synergistic bactericidal effect against P. aeruginosa in both planktonic cultures and biofilms. Given the strong safety profile of PBL and phages, this approach may lead to a novel, antibiotic-complementary, safe treatment modality for patients suffering from difficult-to-treat antibiotic-resistant infections and biofilm-associated infections. Full article
(This article belongs to the Special Issue Antibiofilm Activity against Multidrug-Resistant Pathogens)
Show Figures

Graphical abstract

20 pages, 3620 KiB  
Article
Potential Therapeutic Effect of ZnO/CuO Nanocomposite as an Acaricidal, Immunostimulant, and Antioxidant in Rabbits
by Shimaa R. Masoud, Said I. Fathalla, Sherif M. Shawky, Hanem El-Gendy, Mahboba A. Z. Alakhras, Rashed A. Alhotan, Anam Ayyoub, Shaimaa Selim, Khaled Defallah Al-Otaibi and Ahmed M. A. El-Seidy
Vet. Sci. 2025, 12(4), 333; https://doi.org/10.3390/vetsci12040333 - 4 Apr 2025
Viewed by 744
Abstract
The present study aimed to identify a safe and novel approach using zinc oxide/copper oxide nanocomposites (AZ) to enhance growth parameters, immunity, and fight Sarcoptic mange in vitro and in vivo in rabbits. In vitro: the acaricidal activity of AZ was assessed at [...] Read more.
The present study aimed to identify a safe and novel approach using zinc oxide/copper oxide nanocomposites (AZ) to enhance growth parameters, immunity, and fight Sarcoptic mange in vitro and in vivo in rabbits. In vitro: the acaricidal activity of AZ was assessed at concentrations of AZ-25: 2.5% w/w AZ/molasses, AZ-125: 12.5% w/w AZ/molasses, and controls (normal saline, molasses, and Ivermectin) every hour for seven hours under a stereoscopic microscope. In vivo: involved 40 rabbits (10 replicates/group). G1 served as the control negative group (normal un-infected rabbits), G2 served as the control negative group (infected rabbits), the animals in the G3 group were given a combination of AZ (40 mg/kg body weight (BW)) and molasses (5 mg/mL), and G4 served as the control to the vehicle; receiving molasses 8 mL/kg BW twice weekly for 6 weeks. Blood, serum, and tissue samples were collected at the middle and the end of the trial. AZ was made using the sonication sol–gel method. X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) were performed to confirm the crystal structure, purity, particle size, and oxidation states. AZ showed immunostimulant, acaricidal, and antioxidant effects with normal tissue histological structure and low tissue residual levels. Additionally, there were improvements in blood interferon-gamma, immunoglobulin (Ig) M, IgG, phagocytic activity, phagocytic index, globulin, and total protein in the AZ group. The XRD patterns of AZ were coordinated by XRD reference codes Crystallography Open Database (COD): 9016326 for Tenorite (CuO) and by XRD reference COD: 9004179 for Zincite (ZnO). The CuO and ZnO crystal sizes were 21.87 Å and 24.89 Å, respectively. The XPS spectra indicated the presence of Cu as Cu (II) and Zn as ZnO.OH and ZnO. In conclusion, AZ exhibited antioxidant, acaricidal, and immunostimulant effects, with mild residues in the brain, liver, and kidney tissues, while maintaining a normal histological structure of tissues. Full article
Show Figures

Figure 1

12 pages, 2139 KiB  
Article
Biofilm Growth on Different Materials Used in Contemporary Femoral Head Prosthesis: An In Vitro Study
by Yonggyun Moon, Jaeyoung Hong, Sookyung Choi, Hyoungtae Kim, Hong Moon Sohn and Suenghwan Jo
J. Clin. Med. 2025, 14(5), 1722; https://doi.org/10.3390/jcm14051722 - 4 Mar 2025
Viewed by 855
Abstract
Background/Objectives: Periprosthetic joint infection (PJI) primarily results from bacterial biofilms adhering to prosthetic surfaces, making treatment challenging without prosthesis removal. This in vitro study aims to investigate whether the materials used in contemporary femoral head prosthesis influences bacterial biofilm development. Methods: Femoral [...] Read more.
Background/Objectives: Periprosthetic joint infection (PJI) primarily results from bacterial biofilms adhering to prosthetic surfaces, making treatment challenging without prosthesis removal. This in vitro study aims to investigate whether the materials used in contemporary femoral head prosthesis influences bacterial biofilm development. Methods: Femoral head prostheses made of three different materials—cobalt–chrome, oxinium, and ceramic—were inoculated with either Staphylococcus aureus or Pseudomonas aeruginosa in separate experiments, with each pathogen tested independently. The samples were cultured under shaking conditions at 37 °C for 96 h to promote biofilm formation. Scanning electron microscopy (SEM) was used to confirm the presence of biofilms, and adherent biofilms were quantified by counting colony-forming units (CFUs) after sonication. Additionally, crystal violet staining was performed to assess biofilm distribution on the femoral head surfaces. Statistical analyses compared CFU counts across the different materials. Results: The mean CFU counts for S. aureus were 7.6 × 105 ± 9.7 × 104 for cobalt–chrome, 6.9 × 105 ± 3.6 × 105 for oxinium, and 1.1 × 106 ± 3.0 × 105 for ceramic femoral head prostheses. For P. aeruginosa, the CFU counts were 2.3 × 106 ± 7.2 × 105, 3.7 × 106 ± 2.5 × 106, and 2.2 × 106 ± 8.9 × 105, respectively. Regardless of the bacterial strain, differences among the three materials were within one log range, and no statistical significance was observed. While biofilms were confirmed using SEM, limited adherence was observed on the bearing surface, with the biofilm predominantly localized in the taper hole. Conclusions: The findings suggest that the material used in contemporary femoral head prostheses has minimal impact on bacterial biofilm formation. Surgeons’ choice of femoral head prosthesis material should base their material selection on factors other than PJI prevention. Full article
(This article belongs to the Special Issue Clinical Advances in Orthopedic Infections)
Show Figures

Figure 1

10 pages, 3294 KiB  
Communication
First Appraisal of Effective Microplastics Removal from the Textile Manufacturing Processes
by Estefanía Bonnail, Sebastián Vera, Julián Blasco and T. Ángel DelValls
Appl. Sci. 2025, 15(5), 2630; https://doi.org/10.3390/app15052630 - 28 Feb 2025
Viewed by 831
Abstract
The textile industry consumes large volumes of freshwater, producing enormous wastewater containing chemicals from dyeing and bathing, but also microplastics concentrations that have not been deeply studied. Liquid wastes from the synthetic and natural textile manufacturers were treated with a new disruptive technology [...] Read more.
The textile industry consumes large volumes of freshwater, producing enormous wastewater containing chemicals from dyeing and bathing, but also microplastics concentrations that have not been deeply studied. Liquid wastes from the synthetic and natural textile manufacturers were treated with a new disruptive technology (Adiabatic Sonic Evaporation and Crystallization, ASEC), which completely removed contaminants from water, providing distilled water and crystallized solids. The current study presents the characterization of the industrial residues and the obtained by-products: microplastics and organic matter contained in the solid residue were analyzed and characterized through chromatography. The results of the analyses displayed that compounds such as benzene, benzoic acid and 2,4-dymethyl-1-heptene were found in the synthetic industry water samples as degraded compounds of polyester and polypropylene. Meanwhile, the natural industry water also contained polyester, nylon and PMM polymer. After the depuration of samples, microplastics were completely retained in the solid phase, together with the organic matter (sulfate and surfactants) resulting on clean water. This is the first study focused on the study of microplastics generated by the textile industry and their prevention by removing them as solid waste. Full article
Show Figures

Figure 1

16 pages, 2198 KiB  
Article
Decontamination and Circular Economy of Dredged Material and Mining Waters Using Adiabatic Sonic Evaporation and Crystallization (ASEC) Technology
by T. Ángel DelValls, Julián Blasco, Sebastián Vera, Nuria O. Núñez and Estefanía Bonnail
Appl. Sci. 2024, 14(24), 11593; https://doi.org/10.3390/app142411593 - 12 Dec 2024
Cited by 1 | Viewed by 1063
Abstract
Dredged material is a common environmental and economic issue worldwide. Tons of highly contaminated material, derived from cleaning the bottoms of bays and harbours, are stored until depuration. These volumes occupy huge extensions and require costly treatments. The Ria of Huelva (southwest Spain) [...] Read more.
Dredged material is a common environmental and economic issue worldwide. Tons of highly contaminated material, derived from cleaning the bottoms of bays and harbours, are stored until depuration. These volumes occupy huge extensions and require costly treatments. The Ria of Huelva (southwest Spain) receives additionally high metal contamination inputs from the Odiel and Tinto Rivers which are strongly affected by acid mine drainage (acid lixiviates with high metal content and sulphates). These two circumstances convert the port of Huelva into an acceptor/accumulator of contamination. The current study proposes an alternative active treatment of dredged material and mining residues using ASEC (Adiabatic Sonic Evaporation and Crystallization) technology to obtain distilled water and valuable solid conglomerates. Different samples were depurated and the efficiency of the technology was tested. The results show a complete recovery of the treated volumes with high-quality water (pH~7, EC < 56 µS/cm, complete removal of dissolved elements). Also, the characterization of the dried solids enable the calculation of approximate revenues from the valorization of some potentially exploitable elements (Rio Tinto: 4 M, Tharsis: 3.7 M, dredged material: 2.5 M USD/yr). The avoidance of residue discharge plus the aggregated value would promote a circular economy in sectors such as mining and dredging activities. Full article
(This article belongs to the Section Environmental Sciences)
Show Figures

Figure 1

17 pages, 3150 KiB  
Article
Potentiality of Antibacterial Gels for the Prophylactic Coating of Hernia Repair Prosthetic Materials
by Bárbara Pérez-Köhler, Selma Benito-Martínez, Celia Rivas-Santos, Verónica Gómez-Gil, Francisca García-Moreno and Gemma Pascual
Gels 2024, 10(11), 687; https://doi.org/10.3390/gels10110687 - 24 Oct 2024
Cited by 1 | Viewed by 1543
Abstract
Prosthetic mesh infection constitutes one of the major postsurgical complications following abdominal hernia repair. Antibacterial coatings represent a prophylactic strategy to reduce the risk of infection. This study assessed the in vitro response of two antibacterial gels made of 1% carboxymethylcellulose (CMC) functionalized [...] Read more.
Prosthetic mesh infection constitutes one of the major postsurgical complications following abdominal hernia repair. Antibacterial coatings represent a prophylactic strategy to reduce the risk of infection. This study assessed the in vitro response of two antibacterial gels made of 1% carboxymethylcellulose (CMC) functionalized with an antiseptic (chlorhexidine, CHX) or an antibiotic (rifampicin, RIF), developed for the coating of polypropylene (PP) meshes for hernia repair. Fragments of a lightweight PP mesh (1 cm2) presoaked in the unloaded or drug-loaded CMC (0.05% CHX; 0.13 mg/mL RIF) were challenged with 106 CFU/mL Staphylococcus aureus (Sa) and methicillin-resistant S. aureus (MRSA). Agar diffusion tests, sonication, turbidimetry, crystal violet staining, scanning electron microscopy and cell viability assays (fibroblasts, mesothelial cells) were performed to evaluate the response of the gels. Both compounds—especially the RIF-loaded gel—exerted a biocidal effect against gram-positive bacteria, developing wide inhibition halos, precluding adhesion to the mesh surface, and hampering bacterial survival in culture. The antibiotic gel proved innocuous, while lower viability was found in cells exposed to the antiseptic (p < 0.05). Together with their fast, affordable, convenient processing and easy application, the results suggest the potential effectiveness of these drug-loaded CMC gels in providing meshes with an antibacterial coating exhibiting great biocide performance. Full article
(This article belongs to the Special Issue Gel-Based Novel Wound Dressing)
Show Figures

Graphical abstract

14 pages, 5742 KiB  
Article
The Physical Properties and Crystal Structure Changes of Stabilized Ice Cream Affected by Ultrasound-Assisted Freezing
by Anna Kamińska-Dwórznicka and Anna Kot
Processes 2024, 12(9), 1957; https://doi.org/10.3390/pr12091957 - 12 Sep 2024
Cited by 1 | Viewed by 1709
Abstract
In this study, the effect of ultrasound-assisted freezing with frequencies of 21.5 and 40 kHz, and a power of 2.4 kW in the chopped mode of milk ice cream in comparison to a standard freezer on the freezing course and formed crystal structure [...] Read more.
In this study, the effect of ultrasound-assisted freezing with frequencies of 21.5 and 40 kHz, and a power of 2.4 kW in the chopped mode of milk ice cream in comparison to a standard freezer on the freezing course and formed crystal structure was examined. The first part of the research included the preparation of an ice cream mixture on the basis of skimmed milk with the addition of an emulsifier, locust bean gum, xanthan gum, ι-carrageenan and a reference mixture without stabilizer addition. Ultrasound-assisted freezing shortened the processing time of both stabilized and non-stabilized ice cream. Stabilized samples of milk ice cream exposed to ultrasound (US) at a frequency of 21.5 kHz were characterized by the most homogeneous structure, consisting of crystals with the smallest diameters among all of the tested samples, the size of which, after 3 months of storage at −18 °C, was 7.8 µm (for the reference sample, it was 14.9 µm). The ice recrystallization inhibition (IRI effect) in the samples after US treatment with a frequency of 40 kHz was also observed, regardless of the addition of stabilizers, which may suggest that sonication with these parameters could replace or limit the addition of these substances. Full article
Show Figures

Figure 1

8 pages, 1574 KiB  
Short Note
Diisoamyl (1R, 4S)-7-oxabicyclo[2.2.1]hept-5-ene-2,3-dicarboxylate
by Brandon Quillian, Kennedy Musso, Elizabeth M. Vinson, Joseph G. Bazemore, Allison R. Marks and Clifford W. Padgett
Molbank 2024, 2024(3), M1852; https://doi.org/10.3390/M1852 - 18 Jul 2024
Viewed by 1674
Abstract
Diisoamyl (1R,4S)-7-oxabicyclo[2.2.1]hept-5-ene-2,3-dicarboxylate (2) was prepared by reacting exo-7-oxabicyclo[2.2.1]hept-5-ene-2,3-dicarboxylic anhydride (1) with isoamyl alcohol in the presence of a sulfuric acid catalyst under sonication conditions. Compound 2 was characterized by 1H, 13C NMR, [...] Read more.
Diisoamyl (1R,4S)-7-oxabicyclo[2.2.1]hept-5-ene-2,3-dicarboxylate (2) was prepared by reacting exo-7-oxabicyclo[2.2.1]hept-5-ene-2,3-dicarboxylic anhydride (1) with isoamyl alcohol in the presence of a sulfuric acid catalyst under sonication conditions. Compound 2 was characterized by 1H, 13C NMR, DEPT-135, infrared, and UV-vis spectroscopy. Gas chromatography–mass spectrometry, elemental analysis, and melting point determination were used to assess purity. The structure of compound 2 was also determined by single-crystal X-ray diffraction. It crystallizes in the monoclinic space group P21/c (14) with cell values of a = 15.5647(3) Å, b = 12.8969(2) Å, c = 9.0873(2) Å; β= 99.3920(10)°. Full article
(This article belongs to the Section Organic Synthesis and Biosynthesis)
Show Figures

Figure 1

14 pages, 5102 KiB  
Article
Curcumin-Assisted Synthesis of MoS2 Nanoparticles as an Electron Transport Material in Perovskite Solar Cells
by Vajjiravel Murugesan and Balamurugan Rathinam
Micromachines 2024, 15(7), 840; https://doi.org/10.3390/mi15070840 - 28 Jun 2024
Cited by 1 | Viewed by 1558
Abstract
Recently, two-dimensional (2D) transition metal dichalcogenides (2D TMDs), such as molybdenum sulfide (MoS2) and molybdenum selenide (MoSe2), have been presented as effective materials for extracting the generated holes from perovskite layers. Thus, the work function of MoS2 can [...] Read more.
Recently, two-dimensional (2D) transition metal dichalcogenides (2D TMDs), such as molybdenum sulfide (MoS2) and molybdenum selenide (MoSe2), have been presented as effective materials for extracting the generated holes from perovskite layers. Thus, the work function of MoS2 can be tuned in a wide range from 3.5 to 4.8 eV by adjusting the number of layers, chemical composition, elemental doping, surface functionalization, and surface states, depending on the synthetic approach. In this proposed work, we attempt to synthesize MoS2 nanoparticles (NPs) from bulk MoS2 using two steps: (1) initial exfoliation of bulk MoS2 into few-layer MoS2 by using curcumin-cholesteryl-derived organogels (BCC-ED) and curcumin solution in ethylene diamine (C-ED) under sonication; (2) ultrasonication of the subsequently obtained few-layer MoS2 at 60–80 °C, followed by washing of the above chemicals. The initial treatment with the BCC-ED/C-ED undergoes exfoliation of bulk MoS2 resulted in few-layer MoS2, as evidenced by the morphological analysis using SEM. Further thinning or reduction of the size of the few-layer MoS2 by prolonged ultrasonication at 60–80 °C, followed by repeated washing with DMF, resulted in uniform nanoparticles (MoS2 NPs) with a size of ~10 nm, as evidenced by morphological analysis. Since BCC-ED and C-ED produced similar results, C-ED was utilized for further production of NPs over BCC-ED owing to the ease of removal of curcumin from the MoS2 NPs. Utilization of the above synthesized MoS2 NPs as an ETL layer in the cell structure FTO/ETL/perovskite absorber/spiro-OMeTAD/Ag enhanced the efficiency significantly. The results showed that MoS2 NPs as an ETL exhibited a power conversion efficiency (PEC) of 11.46%, a short-circuit current density of 18.65 mA/cm2, an open-circuit voltage of 1.05 V, and a fill factor of 58.66%, at the relative humidity of 70 ± 10% (open-air conditions) than that of the ED-treated MoS2 devices without curcumin. These results suggest that the synergistic effect of both curcumin and ED plays a critical role in obtaining high-quality MoS2 NPs, beneficial for efficient charge transport, lowering the crystal defect density/trap sites and reducing the charge recombination rate, thus, significantly enhancing the efficiency. Full article
(This article belongs to the Special Issue Photonic and Optoelectronic Devices and Systems, Second Edition)
Show Figures

Figure 1

27 pages, 7085 KiB  
Article
Ceftazidime and Usnic Acid Encapsulated in Chitosan-Coated Liposomes for Oral Administration against Colorectal Cancer-Inducing Escherichia coli
by Jaqueline Barbosa de Souza, Davi de Lacerda Coriolano, Rayza Camila dos Santos Silva, Sérgio Dias da Costa Júnior, Luís André de Almeida Campos, Iago Dillion Lima Cavalcanti, Mariane Cajubá de Britto Lira Nogueira, Valéria Rêgo Alves Pereira, Maria Carolina Accioly Brelaz-de-Castro and Isabella Macário Ferro Cavalcanti
Pharmaceuticals 2024, 17(6), 802; https://doi.org/10.3390/ph17060802 - 19 Jun 2024
Cited by 8 | Viewed by 2001
Abstract
Escherichia coli has been associated with the induction of colorectal cancer (CRC). Thus, combined therapy incorporating usnic acid (UA) and antibiotics such as ceftazidime (CAZ), co-encapsulated in liposomes, could be an alternative. Coating the liposomes with chitosan (Chi) could facilitate the oral administration [...] Read more.
Escherichia coli has been associated with the induction of colorectal cancer (CRC). Thus, combined therapy incorporating usnic acid (UA) and antibiotics such as ceftazidime (CAZ), co-encapsulated in liposomes, could be an alternative. Coating the liposomes with chitosan (Chi) could facilitate the oral administration of this nanocarrier. Liposomes were prepared using the lipid film hydration method, followed by sonication and chitosan coating via the drip technique. Characterization included particle size, polydispersity index, zeta potential, pH, encapsulation efficiency, and physicochemical analyses. The minimum inhibitory concentration and minimum bactericidal concentration were determined against E. coli ATCC 25922, NCTC 13846, and H10407 using the microdilution method. Antibiofilm assays were conducted using the crystal violet method. The liposomes exhibited sizes ranging from 116.5 ± 5.3 to 240.3 ± 3.5 nm and zeta potentials between +16.4 ± 0.6 and +28 ± 0.8 mV. The encapsulation efficiencies were 51.5 ± 0.2% for CAZ and 99.94 ± 0.1% for UA. Lipo-CAZ-Chi and Lipo-UA-Chi exhibited antibacterial activity, inhibited biofilm formation, and preformed biofilms of E. coli. The Lipo-CAZ-UA-Chi and Lipo-CAZ-Chi + Lipo-UA-Chi formulations showed enhanced activities, potentially due to co-encapsulation or combination effects. These findings suggest potential for in vivo oral administration in future antibacterial and antibiofilm therapies against CRC-inducing bacteria. Full article
(This article belongs to the Section Pharmaceutical Technology)
Show Figures

Figure 1

23 pages, 9770 KiB  
Article
Tunable Oxidized-Chitin Hydrogels with Customizable Mechanical Properties by Metal or Hydrogen Ion Exposure
by Angelica Mucaria, Demetra Giuri, Claudia Tomasini, Giuseppe Falini and Devis Montroni
Mar. Drugs 2024, 22(4), 164; https://doi.org/10.3390/md22040164 - 3 Apr 2024
Viewed by 2133
Abstract
This study focuses on the optimization of chitin oxidation in C6 to carboxylic acid and its use to obtain a hydrogel with tunable resistance. After the optimization, water-soluble crystalline β-chitin fibrils (β-chitOx) with a degree of functionalization of 10% were obtained. Diverse reaction [...] Read more.
This study focuses on the optimization of chitin oxidation in C6 to carboxylic acid and its use to obtain a hydrogel with tunable resistance. After the optimization, water-soluble crystalline β-chitin fibrils (β-chitOx) with a degree of functionalization of 10% were obtained. Diverse reaction conditions were also tested for α-chitin, which showed a lower reactivity and a slower reaction kinetic. After that, a set of hydrogels was synthesized from β-chitOx 1 wt.% at pH 9, inducing the gelation by sonication. These hydrogels were exposed to different environments, such as different amounts of Ca2+, Na+ or Mg2+ solutions, buffered environments such as pH 9, PBS, pH 5, and pH 1, and pure water. These hydrogels were characterized using rheology, XRPD, SEM, and FT-IR. The notable feature of these hydrogels is their ability to be strengthened through cation chelation, being metal cations or hydrogen ions, with a five- to tenfold increase in their storage modulus (G’). The ions were theorized to alter the hydrogen-bonding network of the polymer and intercalate in chitin’s crystal structure along the a-axis. On the other hand, the hydrogel dissolved at pH 9 and pure water. These bio-based tunable hydrogels represent an intriguing material suitable for biomedical applications. Full article
(This article belongs to the Special Issue Application of Marine Chitin and Chitosan, 3rd Edition)
Show Figures

Figure 1

11 pages, 3873 KiB  
Article
Sonic Crystal Noise Barrier with Resonant Cavities for Train Brake Noise Mitigation
by David Ramírez-Solana, Jaime Galiana-Nieves, Rubén Picó, Javier Redondo, Valentino Sangiorgio, Angelo Vito Graziano and Nicola Parisi
Appl. Sci. 2024, 14(7), 2753; https://doi.org/10.3390/app14072753 - 25 Mar 2024
Cited by 6 | Viewed by 1744
Abstract
In an experimental investigation, the development of sonic crystal noise barriers (SCNBs) is undertaken to address the issue of train brake noise (TBN), focusing on the use of local resonances in scatterers of sonic crystals. Recent research has shown that the inclusion of [...] Read more.
In an experimental investigation, the development of sonic crystal noise barriers (SCNBs) is undertaken to address the issue of train brake noise (TBN), focusing on the use of local resonances in scatterers of sonic crystals. Recent research has shown that the inclusion of cavity resonators in the crystal scatterers allows for the modification of their insulating properties. In those works, it has been demonstrated that this interaction can be used to build highly insulating structures. The study proposes an SCNB design that includes a resonant cavity specifically to mitigate TBN and validates this design through experimental measures. The experiments confirm the enhanced sound insulation capabilities of SCNBs, compare them to the conventional noise barriers ones and demonstrate the applicability and effectiveness of the proposed design in real-world scenarios. Full article
(This article belongs to the Special Issue Measurement, Simulation and Design of Sound in Urban Spaces)
Show Figures

Figure 1

Back to TopTop