Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (676)

Search Parameters:
Keywords = somatic alterations

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
30 pages, 5307 KiB  
Article
Self-Normalizing Multi-Omics Neural Network for Pan-Cancer Prognostication
by Asim Waqas, Aakash Tripathi, Sabeen Ahmed, Ashwin Mukund, Hamza Farooq, Joseph O. Johnson, Paul A. Stewart, Mia Naeini, Matthew B. Schabath and Ghulam Rasool
Int. J. Mol. Sci. 2025, 26(15), 7358; https://doi.org/10.3390/ijms26157358 - 30 Jul 2025
Viewed by 169
Abstract
Prognostic markers such as overall survival (OS) and tertiary lymphoid structure (TLS) ratios, alongside diagnostic signatures like primary cancer-type classification, provide critical information for treatment selection, risk stratification, and longitudinal care planning across the oncology continuum. However, extracting these signals solely from sparse, [...] Read more.
Prognostic markers such as overall survival (OS) and tertiary lymphoid structure (TLS) ratios, alongside diagnostic signatures like primary cancer-type classification, provide critical information for treatment selection, risk stratification, and longitudinal care planning across the oncology continuum. However, extracting these signals solely from sparse, high-dimensional multi-omics data remains a major challenge due to heterogeneity and frequent missingness in patient profiles. To address this challenge, we present SeNMo, a self-normalizing deep neural network trained on five heterogeneous omics layers—gene expression, DNA methylation, miRNA abundance, somatic mutations, and protein expression—along with the clinical variables, that learns a unified representation robust to missing modalities. Trained on more than 10,000 patient profiles across 32 tumor types from The Cancer Genome Atlas (TCGA), SeNMo provides a baseline that can be readily fine-tuned for diverse downstream tasks. On a held-out TCGA test set, the model achieved a concordance index of 0.758 for OS prediction, while external evaluation yielded 0.73 on the CPTAC lung squamous cell carcinoma cohort and 0.66 on an independent 108-patient Moffitt Cancer Center cohort. Furthermore, on Moffitt’s cohort, baseline SeNMo fine-tuned for TLS ratio prediction aligned with expert annotations (p < 0.05) and sharply separated high- versus low-TLS groups, reflecting distinct survival outcomes. Without altering the backbone, a single linear head classified primary cancer type with 99.8% accuracy across the 33 classes. By unifying diagnostic and prognostic predictions in a modality-robust architecture, SeNMo demonstrated strong performance across multiple clinically relevant tasks, including survival estimation, cancer classification, and TLS ratio prediction, highlighting its translational potential for multi-omics oncology applications. Full article
(This article belongs to the Section Molecular Pathology, Diagnostics, and Therapeutics)
Show Figures

Figure 1

23 pages, 2002 KiB  
Article
Precision Oncology Through Dialogue: AI-HOPE-RTK-RAS Integrates Clinical and Genomic Insights into RTK-RAS Alterations in Colorectal Cancer
by Ei-Wen Yang, Brigette Waldrup and Enrique Velazquez-Villarreal
Biomedicines 2025, 13(8), 1835; https://doi.org/10.3390/biomedicines13081835 - 28 Jul 2025
Viewed by 394
Abstract
Background/Objectives: The RTK-RAS signaling cascade is a central axis in colorectal cancer (CRC) pathogenesis, governing cellular proliferation, survival, and therapeutic resistance. Somatic alterations in key pathway genes—including KRAS, NRAS, BRAF, and EGFR—are pivotal to clinical decision-making in precision oncology. However, the integration of [...] Read more.
Background/Objectives: The RTK-RAS signaling cascade is a central axis in colorectal cancer (CRC) pathogenesis, governing cellular proliferation, survival, and therapeutic resistance. Somatic alterations in key pathway genes—including KRAS, NRAS, BRAF, and EGFR—are pivotal to clinical decision-making in precision oncology. However, the integration of these genomic events with clinical and demographic data remains hindered by fragmented resources and a lack of accessible analytical frameworks. To address this challenge, we developed AI-HOPE-RTK-RAS, a domain-specialized conversational artificial intelligence (AI) system designed to enable natural language-based, integrative analysis of RTK-RAS pathway alterations in CRC. Methods: AI-HOPE-RTK-RAS employs a modular architecture combining large language models (LLMs), a natural language-to-code translation engine, and a backend analytics pipeline operating on harmonized multi-dimensional datasets from cBioPortal. Unlike general-purpose AI platforms, this system is purpose-built for real-time exploration of RTK-RAS biology within CRC cohorts. The platform supports mutation frequency profiling, odds ratio testing, survival modeling, and stratified analyses across clinical, genomic, and demographic parameters. Validation included reproduction of known mutation trends and exploratory evaluation of co-alterations, therapy response, and ancestry-specific mutation patterns. Results: AI-HOPE-RTK-RAS enabled rapid, dialogue-driven interrogation of CRC datasets, confirming established patterns and revealing novel associations with translational relevance. Among early-onset CRC (EOCRC) patients, the prevalence of RTK-RAS alterations was significantly lower compared to late-onset disease (67.97% vs. 79.9%; OR = 0.534, p = 0.014), suggesting the involvement of alternative oncogenic drivers. In KRAS-mutant patients receiving Bevacizumab, early-stage disease (Stages I–III) was associated with superior overall survival relative to Stage IV (p = 0.0004). In contrast, BRAF-mutant tumors with microsatellite-stable (MSS) status displayed poorer prognosis despite higher chemotherapy exposure (OR = 7.226, p < 0.001; p = 0.0000). Among EOCRC patients treated with FOLFOX, RTK-RAS alterations were linked to worse outcomes (p = 0.0262). The system also identified ancestry-enriched noncanonical mutations—including CBL, MAPK3, and NF1—with NF1 mutations significantly associated with improved prognosis (p = 1 × 10−5). Conclusions: AI-HOPE-RTK-RAS exemplifies a new class of conversational AI platforms tailored to precision oncology, enabling integrative, real-time analysis of clinically and biologically complex questions. Its ability to uncover both canonical and ancestry-specific patterns in RTK-RAS dysregulation—especially in EOCRC and populations with disproportionate health burdens—underscores its utility in advancing equitable, personalized cancer care. This work demonstrates the translational potential of domain-optimized AI tools to accelerate biomarker discovery, support therapeutic stratification, and democratize access to multi-omic analysis. Full article
Show Figures

Figure 1

16 pages, 916 KiB  
Review
Molecular Mechanisms and Pathways in Visceral Pain
by Qiqi Zhou and George Nicholas Verne
Cells 2025, 14(15), 1146; https://doi.org/10.3390/cells14151146 - 25 Jul 2025
Viewed by 317
Abstract
Chronic visceral pain, a significant contributor to morbidity in the United States, affects millions and results in substantial economic costs. Despite its impact, the mechanisms underlying disorders of gut–brain interaction (DGBIs), such as irritable bowel syndrome (IBS), remain poorly understood. Visceral hypersensitivity, a [...] Read more.
Chronic visceral pain, a significant contributor to morbidity in the United States, affects millions and results in substantial economic costs. Despite its impact, the mechanisms underlying disorders of gut–brain interaction (DGBIs), such as irritable bowel syndrome (IBS), remain poorly understood. Visceral hypersensitivity, a hallmark of chronic visceral pain, involves an enhanced pain response in internal organs to normal stimuli. Various factors like inflammation, intestinal hyperpermeability, and epigenetic modifications influence its presentation. Emerging evidence suggests that persistent colonic stimuli, disrupted gut barriers, and altered non-coding RNA (ncRNA) expression contribute to the pathophysiology of visceral pain. Additionally, cross-sensitization of afferent pathways shared by pelvic organs underpins the overlap of chronic pelvic pain disorders, such as interstitial cystitis and IBS. Central sensitization and viscerosomatic convergence further exacerbate pain, with evidence showing IBS patients exhibit hypersensitivity to both visceral and somatic stimuli. The molecular mechanisms of visceral pain involve critical mediators such as cytokines, prostaglandins, and neuropeptides, alongside ion channels like transient receptor potential vanilloid 1 (TRPV1) and acid-sensing ion channels (ASICs). These molecular insights indicate potential therapeutic targets and highlight the possible use of TRPV1 antagonists and ASIC inhibitors to mitigate visceral pain. This review explores the neurophysiological pathways of visceral pain, focusing on peripheral and central sensitization mechanisms, to advance the development of targeted treatments for chronic pain syndromes, particularly IBS and related disorders. Full article
(This article belongs to the Special Issue Molecular Mechanisms of Neuropathic Pain)
Show Figures

Figure 1

9 pages, 1016 KiB  
Communication
BCOR, BCORL1, and BCL6 Mutations in Pediatric Leukemias
by Thomas C. Fisher-Heath, Aastha Sharma, Mark S. Marshall, Tiffany Brown and Sandeep Batra
Cancers 2025, 17(15), 2443; https://doi.org/10.3390/cancers17152443 - 23 Jul 2025
Viewed by 255
Abstract
Somatic and epigenetic alterations contribute to myeloid leukemogenesis and play an important role in risk stratification and the optimization of treatment for myeloid malignancies. The significance of rare genetic alterations, such B-cell lymphoma-6 corepressor (BCOR) and B-cell lymphoma-6 corepressor-like protein 1 (BCORL1 [...] Read more.
Somatic and epigenetic alterations contribute to myeloid leukemogenesis and play an important role in risk stratification and the optimization of treatment for myeloid malignancies. The significance of rare genetic alterations, such B-cell lymphoma-6 corepressor (BCOR) and B-cell lymphoma-6 corepressor-like protein 1 (BCORL1) mutations, in pediatric acute myeloid leukemias (AML) and myelodysplastic syndrome (MDS) is unknown. We present a case series of pediatric and adolescent patients, with de novo AML, harboring BCOR/BCORL1 mutations. Studies involving larger cohorts of patients are needed to further elucidate the role of BCOR/BCORL1 mutations in pediatric AML and MDS. Full article
Show Figures

Figure 1

13 pages, 961 KiB  
Article
Molecular Landscape of Metastatic Lung Adenocarcinoma in Bulgarian Patients—A Prospective Study
by George Dimitrov, Vladislav Nankov, Natalia Chilingirova, Zornitsa Kamburova and Savelina Popovska
Int. J. Mol. Sci. 2025, 26(14), 7017; https://doi.org/10.3390/ijms26147017 - 21 Jul 2025
Viewed by 210
Abstract
Lung adenocarcinoma exhibits a heterogeneous molecular landscape shaped by key oncogenic drivers and tumor suppressor gene alterations. Mutation frequencies vary geographically, influenced by genetic ancestry and environmental factors. However, the molecular profile of lung adenocarcinoma in Bulgarian patients remains largely uncharacterized. We conducted [...] Read more.
Lung adenocarcinoma exhibits a heterogeneous molecular landscape shaped by key oncogenic drivers and tumor suppressor gene alterations. Mutation frequencies vary geographically, influenced by genetic ancestry and environmental factors. However, the molecular profile of lung adenocarcinoma in Bulgarian patients remains largely uncharacterized. We conducted a prospective study of 147 Bulgarian patients with metastatic lung adenocarcinoma, analyzing clinicopathologic features and somatic mutation frequencies using next-generation sequencing. Key mutations and their prevalence were assessed and compared with published data from other populations. The cohort included predominantly male patients (68.0%) with a median age of 67 years. TP53 mutations were most frequent (41.5%), followed by EGFR alterations (19.0%) and KRAS c.34G>T (p.Gly12Cys) (17.0%). Over half of the patients (51.0%) harbored two or more gene mutations. Mutation frequencies aligned closely with European cohorts, exhibiting a lower prevalence of EGFR mutations compared to East Asian populations. This study characterizes the molecular landscape of lung adenocarcinoma in Bulgaria, highlighting the predominance of TP53 and KRAS mutations. The findings emphasize the need for comprehensive molecular profiling to inform targeted therapies and support precision oncology approaches tailored to the Bulgarian population. Further research is needed to validate these results and improve clinical outcomes. Full article
(This article belongs to the Special Issue Advances in Lung Cancer: From Genetic Landscape to Treatment)
Show Figures

Figure 1

16 pages, 1317 KiB  
Systematic Review
Association Between Oral Dysbiosis and Depression: A Systematic Review
by Paula García-Rios, Miguel R. Pecci-Lloret, María Pilar Pecci-Lloret, Laura Murcia-Flores and Nuria Pérez-Guzmán
J. Clin. Med. 2025, 14(14), 5162; https://doi.org/10.3390/jcm14145162 - 21 Jul 2025
Viewed by 295
Abstract
Background: Depression is a mental disorder characterized by a combination of somatic and cognitive disturbances, in which a predominantly sad or irritable mood significantly interferes with the patient’s functioning. This condition can affect individuals of all ages and socioeconomic backgrounds. Currently, various [...] Read more.
Background: Depression is a mental disorder characterized by a combination of somatic and cognitive disturbances, in which a predominantly sad or irritable mood significantly interferes with the patient’s functioning. This condition can affect individuals of all ages and socioeconomic backgrounds. Currently, various studies are exploring a possible association between oral dysbiosis and depression—an increasingly relevant topic, as confirmation of such a relationship could position the oral microbiota as a potential etiological or diagnostic factor for depression, given its accessibility and ease of analysis. Aim: To present a qualitative synthesis of studies addressing how oral dysbiosis influences the onset of depression, as well as the importance of controlling this alteration of the oral microbiota to aid in the prevention of the disease. Materials and Methods: The PRISMA guidelines (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) outline the procedures to be followed for conducting this systematic review. The article search was carried out on 22 May 2025, across the PubMed, Scopus, Scielo, and The Cochrane Library databases, using terms related to “depression” and “oral dysbiosis”. Studies published within the last 10 years that addressed the potential association between oral dysbiosis, and depression were included. Furthermore, the quality of the studies was assessed using various tools depending on their design: the Newcastle–Ottawa Scale (NOS) was applied to case-control and cohort studies; the Joanna Briggs Institute (JBI) critical appraisal checklist was used for cross-sectional studies; and experimental studies were evaluated using SYRCLE’s Risk of Bias Tool. Results: A total of eleven studies were included in this systematic review. The findings suggest the presence of alterations in the oral microbiota of patients with depression, particularly in terms of composition, structure, and diversity. A reduction in alpha diversity—an indicator of local microbial balance—was observed, along with an increase in beta diversity, indicating greater inter-individual variability, which may be associated with inflammatory processes or immunological dysfunctions. Some studies reported differing results, which may be attributable to methodological variability regarding study design, or the populations sampled. Conclusions: This systematic review suggests that the oral microbiome could be considered a diagnostic biomarker and therapeutic target for depression, as the analyzed studies demonstrate a significant association between oral microbiome dysbiosis and this mental disorder. However, the methodological heterogeneity among the studies highlights the need for further research to confirm this potential relationship. Full article
Show Figures

Figure 1

12 pages, 641 KiB  
Article
Do Patients with Complaints Attributed to Chemicals in the Environment Trust in Biomonitoring as a Valid Diagnostic Tool? A Prospective, Observational Study from a German University Outpatient Clinic
by Claudia Schultz, Catharina Sadaghiani, Stefan Schmidt, Roman Huber and Vanessa M. Eichel
Int. J. Environ. Res. Public Health 2025, 22(7), 1143; https://doi.org/10.3390/ijerph22071143 - 18 Jul 2025
Viewed by 252
Abstract
Biomonitoring often yields normal results in patients who report environmental sensitivities, such as in multiple chemical sensitivity. This study examined whether biomonitoring results influence disease attribution and perception. Patients over 18 presenting for the first time to the University Environmental Medicine Outpatient Clinic [...] Read more.
Biomonitoring often yields normal results in patients who report environmental sensitivities, such as in multiple chemical sensitivity. This study examined whether biomonitoring results influence disease attribution and perception. Patients over 18 presenting for the first time to the University Environmental Medicine Outpatient Clinic in Freiburg with suspected complaints linked to heavy metals, wood preservatives, pesticides, solvents, or mold spores were included. Illness perceptions were assessed before and after biomonitoring using the Illness Perception Questionnaire (IPQ-R). Of 358 patients, 51 met inclusion criteria; 3 showed relevant findings, and 15 did not attribute their symptoms to environmental causes at baseline. The remaining 33 patients were analyzed. After receiving a normal biomonitoring result, only seven patients (21%) altered their illness attribution. These individuals also reported milder perceived consequences, less personal control over the illness, and showed lower levels of somatization and compulsiveness than those who maintained their original attribution. Most patients remained convinced of an environmental cause despite unremarkable findings. This suggests that a substantial subset of patients is strongly attached to an environmental explanation for their symptoms, with stable attribution linked to higher psychological symptom burden and a belief in personal control over the illness. Full article
(This article belongs to the Section Environmental Health)
Show Figures

Figure 1

13 pages, 860 KiB  
Article
Identification of Genetic Variants Using Next-Generation Sequencing in Pediatric Myelodysplastic Syndrome: From Disease Biology to Clinical Applications
by Viviane Lamim Lovatel, Gerson Moura Ferreira, Beatriz Ferreira da Silva, Rayane de Souza Torres, Rita de Cássia Barbosa da Silva Tavares, Ana Paula Silva Bueno, Eliana Abdelhay and Teresa de Souza Fernandez
Int. J. Mol. Sci. 2025, 26(14), 6907; https://doi.org/10.3390/ijms26146907 - 18 Jul 2025
Viewed by 219
Abstract
This study aimed to identify genetic variants using a customized next-generation sequencing (NGS) panel for pediatric myelodysplastic syndrome (pMDS) and to explore their associations with cytogenetic and clinical characteristics. Cytogenetic analyses were conducted using G-banding and fluorescence in situ hybridization. NGS was performed [...] Read more.
This study aimed to identify genetic variants using a customized next-generation sequencing (NGS) panel for pediatric myelodysplastic syndrome (pMDS) and to explore their associations with cytogenetic and clinical characteristics. Cytogenetic analyses were conducted using G-banding and fluorescence in situ hybridization. NGS was performed with the Ion Torrent Personal Genome Machine for the following genes: GATA2, RUNX1, CEBPA, ANKRD26, ETV6, SAMD9, SAMD9L, PTPN11, NRAS, SETBP1, DDX41, TP53, FLT3, SRP72, and JAK3. Analyses were performed with Ion Reporter 5.20.8.0 software. Genetic variants were classified using the dbSNP, 1000 Genomes, COSMIC, and Varsome databases. We analyzed 25 cases of pMDS; 15 presented abnormal karyotypes, and 19 showed genetic variants. Among the 29 variants identified across 12/15 genes, 27% were pathogenic and 14% were likely pathogenic, with NRAS and GATA2 most frequently associated with disease progression. A new somatic variant of uncertain significance in SETBP1 was detected in seven patients showing heterogeneous clinical outcomes. Genetic variants were found in 7/10 patients with normal karyotypes, indicating that submicroscopic alterations can shed light on disease biology. Our results highlight the critical role of a targeted NGS panel in identifying molecular alterations associated with pMDS pathogenesis, thereby enhancing diagnostic precision, prognosis, and aiding in treatment selection. Full article
Show Figures

Figure 1

16 pages, 831 KiB  
Article
Mutational Profiling of Medullary Thyroid Carcinoma via a Large-Scale Genomic Repository
by Beau Hsia, Elijah Torbenson, Nigel Lang and Peter T. Silberstein
DNA 2025, 5(3), 35; https://doi.org/10.3390/dna5030035 - 17 Jul 2025
Viewed by 246
Abstract
Background: Medullary thyroid cancer (MTC), a neuroendocrine tumor originating from thyroid parafollicular C-cells, presents therapeutic challenges, particularly in advanced stages. While RET proto-oncogene mutations are known drivers, a comprehensive understanding of the broader somatic mutation landscape is needed to identify novel therapeutic targets [...] Read more.
Background: Medullary thyroid cancer (MTC), a neuroendocrine tumor originating from thyroid parafollicular C-cells, presents therapeutic challenges, particularly in advanced stages. While RET proto-oncogene mutations are known drivers, a comprehensive understanding of the broader somatic mutation landscape is needed to identify novel therapeutic targets and improve prognostication. This study leveraged the extensive AACR Project GENIE dataset to characterize MTC genomics. Methods: A retrospective analysis of MTC samples from GENIE examined recurrent somatic mutations, demographic/survival correlations, and copy number variations using targeted sequencing data (significance: p < 0.05). Results: Among 341 samples, RET mutations predominated (75.7%, mostly M918T), followed by HRAS (10.0%) and KRAS (5.6%), with mutual exclusivity between RET and RAS alterations. Recurrent mutations included KMT2D (5.3%), CDH11 (5.3%), ATM (5.0%), and TP53 (4.1%). NOTCH1 mutations were enriched in metastatic cases (p = 0.023). Preliminary associations included sex-linked mutations (BRAF/BRCA1/KIT in females, p = 0.028), and survival (ATM associated with longer survival, p = 0.016; BARD1/BLM/UBR5/MYH11 with shorter survival, p < 0.05), though limited subgroup sizes warrant caution. Conclusions: This large-scale genomic analysis confirms the centrality of RET and RAS pathway alterations in MTC and their mutual exclusivity. The association of NOTCH1 mutations with metastasis suggests a potential role in disease progression. While findings regarding demographic and survival correlations are preliminary, they generate hypotheses for future validation. This study enhances the genomic foundation for understanding MTC and underscores the need for integrated clinico-genomic datasets to refine therapeutic approaches. Full article
Show Figures

Figure 1

40 pages, 2429 KiB  
Review
Hepatocytes as Model for Investigating Natural Senotherapeutic Compounds and Their Effects on Cell Cycle Dynamics and Genome Stability
by Anastasia Fizikova, Anna Prokhorova, Daria Churikova, Zahar Konstantinov, Roman Ivanov, Alexander Karabelsky and Stanislav Rybtsov
Int. J. Mol. Sci. 2025, 26(14), 6794; https://doi.org/10.3390/ijms26146794 - 16 Jul 2025
Viewed by 628
Abstract
DNA is inherently unstable and is susceptible to damage from both endogenous sources (such as reactive oxygen species) and exogenous factors (including UV, ionizing radiation, and chemicals). The accumulation of DNA damage manifests as genetic mutations, chromosomal instability, and the stalling of DNA [...] Read more.
DNA is inherently unstable and is susceptible to damage from both endogenous sources (such as reactive oxygen species) and exogenous factors (including UV, ionizing radiation, and chemicals). The accumulation of DNA damage manifests as genetic mutations, chromosomal instability, and the stalling of DNA replication and transcription processes. Accumulated DNA damage influences apoptosis and cell cycle checkpoints, serving as one of the key triggers for the manifestation of the senescent phenotype. Both aging and cancer are associated with the accumulation of mutations in somatic cells. Disruption of cell cycle control and uncontrolled proliferation are fundamental characteristics of any cancer cell, with the majority of anticancer drugs acting as inhibitors of cyclin-dependent kinases, thereby inducing a transition of cells into a senescent state. Consequently, disturbances in the dynamics and regulation of inflammatory responses, oxidative stress, cell proliferation, DNA damage repair, and epigenetic anomalies, along with the influence of retroviruses and transposons, lead to the accumulation of senescent cells within the human body, characterized by blocked replication and cell cycle, as well as a distinct secretory phenotype. The age-related or disease-associated accumulation of these senescent cells significantly alters the physiology of tissues and the organism as a whole. Many secondary metabolites of higher plants exhibit senolytic and senomorphic activities, although most of them are not fully characterized. In this review, we will explore the principal signaling pathways in mammalian cells that govern the cell cycle and cellular senescence, with a particular emphasis on how their dynamics, expression, and regulation have been modified through the application of senotherapeutic compounds. The second section of the review will identify key target genes for the metabolic engineering, primarily aimed at enhancing the accumulation of plant secondary metabolites with potential therapeutic benefits. Lastly, we will discuss the rationale for utilizing liver cells as a model system to investigate the effects of senolytic compounds on human physiology and health, as well as how senotherapeutic substances can be leveraged to improve gene therapy approaches based on CRISPR/Cas9 and prime-editing technologies. Full article
(This article belongs to the Collection State-of-the-Art Macromolecules in Russia)
Show Figures

Figure 1

13 pages, 628 KiB  
Article
High Prevalence of TERT and CTNNB1 Mutations in Brazilian HCC Tissues: Insights into Early Detection and Risk Stratification
by Thaís Barbosa Ferreira Sant’Anna, Mariana Leonardo Terra, Jose Junior França de Barros, Leonardo Alexandre de Souza Ruivo, Arlete Fernandes, Maria Dirlei Ferreira de Souza Begnami, Vera Lucia Nunes Pannain, Antônio Hugo José Fróes Marques Campos, Otacilio da Cruz Moreira and Natalia Motta de Araujo
Int. J. Mol. Sci. 2025, 26(13), 6503; https://doi.org/10.3390/ijms26136503 - 6 Jul 2025
Viewed by 399
Abstract
Hepatocellular carcinoma (HCC) is a major cause of cancer-related mortality worldwide, but its molecular drivers remain underexplored in Latin American populations. This study investigated the prevalence, co-occurrence, and tissue distribution of somatic mutations in the TERT promoter (C228T/C250T) and CTNNB1 exon 3, as [...] Read more.
Hepatocellular carcinoma (HCC) is a major cause of cancer-related mortality worldwide, but its molecular drivers remain underexplored in Latin American populations. This study investigated the prevalence, co-occurrence, and tissue distribution of somatic mutations in the TERT promoter (C228T/C250T) and CTNNB1 exon 3, as well as TERT gene expression, in liver tissues from Brazilian patients. A total of 85 samples (42 HCC, 21 cirrhosis, and 22 hepatitis) were analysed using Sanger sequencing and RT-qPCR. TERT promoter mutations were detected in 47.6% of HCC tissues, including C228T (45.2%) and C250T (2.4%), and were also present in 19% of cirrhotic tissues but absent in hepatitis samples, supporting their emergence in early hepatocarcinogenesis. CTNNB1 exon 3 mutations occurred in 17.2% of HCCs and significantly co-occurred with TERTp mutations (66.7%, p = 0.0485), although the number of CTNNB1-mutated cases was limited. TERT expression was significantly upregulated in HCC tissues regardless of mutation status (p < 0.001). This is the first study to characterise these mutations in Brazilian HCC patients, highlighting the C228T mutation as a promising biomarker for early detection and molecular surveillance in cirrhotic individuals. Despite the genetic admixture of the studied population, the mutational patterns were comparable to those reported in more homogeneous populations, reinforcing the global relevance of these molecular alterations. Full article
Show Figures

Figure 1

29 pages, 1100 KiB  
Review
Epigenetic Regulation of Erythropoiesis: From Developmental Programs to Therapeutic Targets
by Ninos Ioannis Vasiloudis, Kiriaki Paschoudi, Christina Beta, Grigorios Georgolopoulos and Nikoletta Psatha
Int. J. Mol. Sci. 2025, 26(13), 6342; https://doi.org/10.3390/ijms26136342 - 30 Jun 2025
Viewed by 576
Abstract
Erythropoiesis, the process driving the differentiation of hematopoietic stem and progenitor cells to mature erythrocytes, unfolds through tightly orchestrated developmental stages, each defined by profound epigenetic remodeling. From the initial commitment of hematopoietic progenitors to the terminal enucleation of erythrocytes, dynamic changes in [...] Read more.
Erythropoiesis, the process driving the differentiation of hematopoietic stem and progenitor cells to mature erythrocytes, unfolds through tightly orchestrated developmental stages, each defined by profound epigenetic remodeling. From the initial commitment of hematopoietic progenitors to the terminal enucleation of erythrocytes, dynamic changes in chromatin accessibility, transcription factor occupancy, and three-dimensional genome architecture govern lineage specification and stage-specific gene expression. Advances in our understanding of the regulatory genome have uncovered how non-coding elements, including enhancers, silencers, and insulators, shape the transcriptional landscape of erythroid cells. These elements work in concert with lineage-determining transcription factors to establish and maintain erythroid identity. Disruption of these epigenetic programs—whether by inherited mutations, somatic alterations, or environmental stress—can lead to a wide range of hematologic disorders. Importantly, this growing knowledge base has opened new therapeutic avenues, enabling the development of precision tools that target regulatory circuits to correct gene expression. These include epigenetic drugs, enhancer-targeted genome editing, and lineage-restricted gene therapies that leverage endogenous regulatory logic. As our understanding of erythroid epigenomics deepens, so too does our ability to design rational, cell-type-specific interventions for red blood cell disorders. Full article
(This article belongs to the Special Issue New Advances in Erythrocyte Biology and Functions)
Show Figures

Figure 1

23 pages, 788 KiB  
Review
Somatic Mutations Associated with Aldosterone-Producing Adenomas (APAs)
by Aina Nadheera Abd Rahman and Elena Aisha Azizan
Genes 2025, 16(7), 778; https://doi.org/10.3390/genes16070778 - 30 Jun 2025
Viewed by 427
Abstract
Hypertension is a critical health concern as it affects millions of people worldwide and leads to increased risk factors for other diseases such as cardiovascular diseases and stroke. Hypertension is commonly categorized into primary hypertension and secondary hypertension, with the latter frequently curable [...] Read more.
Hypertension is a critical health concern as it affects millions of people worldwide and leads to increased risk factors for other diseases such as cardiovascular diseases and stroke. Hypertension is commonly categorized into primary hypertension and secondary hypertension, with the latter frequently curable when caused by the presence of a benign adrenal adenoma that produces excessive adrenal hormones. The incidence rate of these adrenal adenomas is relatively high, in keeping with the hyperplastic/hypermutable characteristic of the adrenal gland. One of the most common functional adrenal adenomas are the aldosterone-producing adenomas (APAs), which develop from the adrenal cortex and, as per the name, produce excessive amounts of the adrenal hormone aldosterone, leading to hypertension. Investigations of genetic causes of these adenomas have revealed that the de novo somatic mutations that commonly cause the increase in aldosterone production mostly involve changes in intracellular concentration. Herein, we review the somatic genetic alterations that have been reported in APAs over the decade. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

18 pages, 319 KiB  
Review
Beliefs in Right Hemisphere Syndromes: From Denial to Distortion
by Karen G. Langer and Julien Bogousslavsky
Brain Sci. 2025, 15(7), 694; https://doi.org/10.3390/brainsci15070694 - 28 Jun 2025
Viewed by 397
Abstract
Striking belief distortions may accompany various disorders of awareness that are predominantly associated with right hemispheric cerebral dysfunction. Distortions may range on a continuum of pathological severity, from the unawareness of paralysis in anosognosia for hemiplegia, to a more startling disturbance in denial [...] Read more.
Striking belief distortions may accompany various disorders of awareness that are predominantly associated with right hemispheric cerebral dysfunction. Distortions may range on a continuum of pathological severity, from the unawareness of paralysis in anosognosia for hemiplegia, to a more startling disturbance in denial of paralysis where belief may starkly conflict with reality. The patients’ beliefs about their limitations typically represent attempts to make sense of limitations or to impart meaning to incongruous facts. These beliefs are often couched in recollections from past memories or previous experience, and are hard to modify even given new information. Various explanations of unawareness have been suggested, including sensory, cognitive, monitoring and feedback operations, feedforward mechanisms, disconnection theories, and hemispheric asymmetry hypotheses, along with psychological denial, to account for the curious lack of awareness in anosognosia and other awareness disorders. This paper addresses these varying explanations of the puzzling beliefs regarding hemiparesis in anosognosia. Furthermore, using the multi-dimensional nature of unawareness in anosognosia as a model, some startling belief distortions in other right-hemisphere associated clinical syndromes are also explored. Other neurobehavioral disturbances, though perhaps less common, reflect marked psychopathological distortions. Startling disorders of belief are notable in somatic illusions, non-recognition or delusional misattribution of limb ownership (asomatognosia, somatoparaphrenia), or delusional identity (Capgras syndrome) and misidentification phenomena. Difficulty in updating beliefs as a source of unawareness in anosognosia and other awareness disorders has been proposed. Processes of belief development are considered to be patterns of thought, memories, and experience, which coalesce in a sense of the bodily and personal self. A common consequence of such disorders seems to be an altered representation of the self, self-parts, or the external world. Astonishing nonveridical beliefs about the body, about space, or about the self, continue to invite exploration and to stimulate fascination. Full article
(This article belongs to the Special Issue Anosognosia and the Determinants of Self-Awareness)
17 pages, 584 KiB  
Review
Molecular Genetics of Renal Cell Carcinoma: A Narrative Review Focused on Clinical Relevance
by Braden Millan, Lauren Loebach, Ruben Blachman-Braun, Milan H. Patel, Jaskirat Saini, W. Marston Linehan and Mark W. Ball
Curr. Oncol. 2025, 32(6), 359; https://doi.org/10.3390/curroncol32060359 - 18 Jun 2025
Viewed by 851
Abstract
Molecular testing in renal cell carcinoma (RCC) has allowed for a better understanding of the biology of both sporadic and hereditary diseases, where genetic testing is currently recommended in the guidelines for a select population with risk factors. Historically, screening, surveillance, and management [...] Read more.
Molecular testing in renal cell carcinoma (RCC) has allowed for a better understanding of the biology of both sporadic and hereditary diseases, where genetic testing is currently recommended in the guidelines for a select population with risk factors. Historically, screening, surveillance, and management decisions were based solely on clinicopathologic data; however, we now know that molecular profiling can enhance decision making, altering the treatment plan, approach, or selection of systemic therapy and enhancing the delivery of precision oncologic care. Advances and the increasing availability of next-generation sequencing technologies have improved the identification of germline and somatic variants in key RCC-associated genes. Given the molecular heterogeneity of RCC, these modern methods can identify unique genetic events that occur in a single individual, allowing for distinction between a metachronous tumor from metastases. Separate four-tier systems have been proposed to categorize germline and somatic variants according to their clinical significance, which should be highlighted. Additionally, emerging technologies, such as liquid biopsy, show potential for enhancing precision oncology in RCC. With this said, challenges, such as variant interpretation, ethical considerations, and accessibility, persist. This review examines the molecularly defined RCC, genetic testing methodologies currently available, their current clinical applications, limitations, and future directions. Full article
(This article belongs to the Section Genitourinary Oncology)
Show Figures

Figure 1

Back to TopTop