Mutational Profiling of Medullary Thyroid Carcinoma via a Large-Scale Genomic Repository
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Genetic Differences by Race and Sex
3.2. Co-Occurrence and Mutual Exclusivity of Mutations
3.3. Primary vs. Metastatic Mutations
3.4. Most Common Specific Mutations in RET
3.5. Mutations Associated with Differential Survival
4. Discussion
4.1. Predominance of RET Alterations and Mutual Exclusivity with RAS Pathway Mutations
4.2. Recurrent Somatic Mutations Beyond the RET/RAS Axis
4.3. Association of NOTCH1 Mutations with Metastatic Disease
4.4. Preliminary Observations on Mutational Profiles Across Race and Sex
4.5. Potential Associations Between Gene Mutations and Survival Outcomes
4.6. Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
GENIE | AACR Project Genomics Evidence Neoplasia Information Exchange |
AACR | American Association for Cancer Research |
ABL1 | ABL proto-oncogene 1, non-receptor tyrosine kinase |
ARID1A | AT-Rich Interaction Domain 1A |
ATM | ATM Serine/Threonine Kinase |
ASXL1 | Additional Sex Combs Like Transcriptional Regulator 1 |
BRAF | B-Raf Proto-Oncogene, Serine/Threonine Kinase |
BLM | BLM RecQ Like Helicase |
BARD1 | BRCA1 Associated RING Domain 1 |
BRCA1 | BRCA1 DNA Repair Associated |
BRIP1 | BRCA1 interacting protein C-terminal helicase 1 |
CDH11 | Cadherin 11 |
CEA | Carcinoembryonic antigen |
COSMIC | Catalogue of Somatic Mutations in Cancer |
CNAs | Copy Number Alterations |
CDKN2A | Cyclin Dependent Kinase Inhibitor 2A |
CDKN2B | Cyclin Dependent Kinase Inhibitor 2B |
CRKL | CRK like proto-oncogene, adaptor protein (Crk-like protein) |
EBRT | External beam radiation therapy |
EXO1 | Exonuclease 1 |
FANCD2 | Fanconi anemia complementation group D2 |
FAT1 | FAT Atypical Cadherin 1 |
FGFR3 | Fibroblast growth factor receptor 3 |
FDR | False Discovery Rate |
FLT4 | Fms related receptor tyrosine kinase 4 |
FMTC | Familial Medullary Thyroid Cancer |
GATK | Genome Analysis Toolkit |
HRAS | Harvey Rat Sarcoma Viral Oncogene Homolog |
HNSCC | Head and Neck Squamous Cell Carcinoma |
IF del | In-frame deletion |
IMTCGS | International Medullary Thyroid Cancer Grading System |
JAK1 | Janus Kinase 1 |
KRAS | Kirsten Rat Sarcoma Viral Oncogene Homolog |
KIT | KIT Proto-Oncogene, Receptor Tyrosine Kinase |
KMT2A | Lysine Methyltransferase 2A |
KMT2D | Lysine Methyltransferase 2D |
MTC | Medullary Thyroid Cancer |
miRNA | MicroRNA |
MAPK | Mitogen-Activated Protein Kinase |
MKIs | Multi-kinase inhibitors |
MEN2A | Multiple Endocrine Neoplasia type 2A |
MEN2B | Multiple Endocrine Neoplasia type 2B |
MAF | Mutation Annotation Format |
MYH11 | Myosin Heavy Chain 11 |
NOTCH1 | Notch Receptor 1 |
PIK3C2G | Phosphatidylinositol-4-phosphate 3-kinase catalytic subunit type 2 gamma |
PI3K/AKT | Phosphoinositide 3-kinase/Protein Kinase B |
PARP | Poly (ADP-ribose) polymerase |
PAX3 | Paired box 3 |
PREX2 | Phosphatidylinositol-3,4,5-trisphosphate-dependent Rac exchange factor 2 |
RAI | Radioactive iodine |
RAF1 | RAF proto-oncogene serine/threonine-protein kinase |
RET | RET proto-oncogene |
SD | Standard deviation |
SMAD4 | SMAD family member 4 |
SMARCA4 | SWI/SNF Related, Matrix Associated, Actin Dependent Regulator Of Chromatin, Subfamily A, Member 4 |
SMC3 | Structural maintenance of chromosome 3 |
SRC | Proto-oncogene tyrosine-protein kinase SRC |
TET1 | Tet methylcytosine dioxygenase 1 |
TP53 | Tumor Protein P53 |
TKIs | Tyrosine kinase inhibitors |
UBR5 | Ubiquitin-Protein Ligase E3 Component N-Recognin 5 |
VAF | Variant Allele Frequency |
VEGFR | Vascular Endothelial Growth Factor Receptor |
WES | Whole-exome sequencing |
WGS | Whole-genome sequencing |
ZFHX3 | Zinc finger homeobox 3 |
References
- Segura, S.; Ramos-Rivera, G.; Suhrland, M. Educational Case: Endocrine Neoplasm: Medullary Thyroid Carcinoma. Acad. Pathol. 2018, 5, 2374289518775722. [Google Scholar] [CrossRef]
- Vaccaro, A.; Chen, H.; Kunnimalaiyaan, M. In-Vivo Activation of Raf-1 Inhibits Tumor Growth and Development in a Xenograft Model of Human Medullary Thyroid Cancer. Anticancer Drugs 2006, 17, 849–853. [Google Scholar] [CrossRef]
- Spitzweg, C.; Morris, J.C.; Bible, K.C. New Drugs for Medullary Thyroid Cancer: New Promises? Endocr. Relat. Cancer 2016, 23, R287–R297. [Google Scholar] [CrossRef]
- Roy, M.; Chen, H.; Sippel, R.S. Current Understanding and Management of Medullary Thyroid Cancer. Oncologist 2013, 18, 1093–1100. [Google Scholar] [CrossRef]
- Duda, O.R.; Slipetsky, R.R.; Bojko, N.I. Principles of Medullary Thyroid Cancer Staging According to AJCC TNM 8th Edition. Acta Med. Leopoliensia 2021, 27, 101–116. [Google Scholar] [CrossRef]
- Koehler, V.F.; Fuss, C.T.; Berr, C.M.; Frank-Raue, K.; Raue, F.; Hoster, E.; Hepprich, M.; Christ, E.; Pusl, T.; Reincke, M.; et al. Medullary Thyroid Cancer with Ectopic Cushing’s Syndrome: A Multicentre Case Series. Clin. Endocrinol. 2022, 96, 847–856. [Google Scholar] [CrossRef]
- Song, H.; Lin, C.; Yao, E.; Zhang, K.; Li, X.; Wu, Q.; Chuang, P.-T. Selective Ablation of Tumor Suppressors in Parafollicular C Cells Elicits Medullary Thyroid Carcinoma. J. Biol. Chem. 2017, 292, 3888–3899. [Google Scholar] [CrossRef]
- Machens, A.; Hauptmann, S.; Dralle, H. Increased Risk of Lymph Node Metastasis in Multifocal Hereditary and Sporadic Medullary Thyroid Cancer. World J. Surg. 2007, 31, 1960–1965. [Google Scholar] [CrossRef]
- Davies, L.; Morris, L.G.; Haymart, M.; Chen, A.Y.; Goldenberg, D.; Morris, J.; Ogilvie, J.B.; Terris, D.J.; Netterville, J.; Wong, R.J.; et al. American Association of Clinical Endocrinologists and American College of Endocrinology Disease State Clinical Review: The Increasing Incidence of Thyroid Cancer. Endocr. Pract. 2015, 21, 686–696. [Google Scholar] [CrossRef]
- Jara, M.A.; Castroneves, L.A. Overview of Management and Therapeutic Advances in Medullary Thyroid Cancer. Endocr. Oncol. 2025, 5, e240077. [Google Scholar] [CrossRef]
- Rezkallah, E.; Elsaify, A.; Elsaify, W.M. Medullary Thyroid Cancer: Case Series Reports and Literature Review. J. Cancer Tumor Int. 2021, 11, 29–37. [Google Scholar] [CrossRef]
- Chen, L.; Zhao, K.; Li, F.; He, X. Medullary Thyroid Carcinoma With Elevated Serum CEA and Normal Serum Calcitonin After Surgery: A Case Report and Literature Review. Front. Oncol. 2020, 10, 526716. [Google Scholar] [CrossRef]
- Siironen, P.; Hagström, J.; Mäenpää, H.O.; Louhimo, J.; Arola, J.; Haglund, C. Lymph Node Metastases and Elevated Postoperative Calcitonin: Predictors of Poor Survival in Medullary Thyroid Carcinoma. Acta Oncol. 2016, 55, 357–364. [Google Scholar] [CrossRef] [PubMed]
- Kim, B.H.; Kim, I.J. Recent Updates on the Management of Medullary Thyroid Carcinoma. Endocrinol. Metab. 2016, 31, 392–399. [Google Scholar] [CrossRef]
- Jarzab, B.; Krajewska, J. Multikinase Inhibitors for the Treatment of Progressive, Metastatic Medullary Thyroid Cancer—An Evolving Paradigm. Eur. Endocrinol. 2014, 10, 145–150. [Google Scholar] [CrossRef]
- Kelil, T.; Keraliya, A.R.; Howard, S.A.; Krajewski, K.M.; Braschi-Amirfarzan, M.; Hornick, J.L.; Ramaiya, N.H.; Tirumani, S.H. Current Concepts in the Molecular Genetics and Management of Thyroid Cancer: An Update for Radiologists. Radiographics 2016, 36, 1478–1493. [Google Scholar] [CrossRef]
- Trimboli, P.; Castellana, M.; Virili, C.; Giorgino, F.; Giovanella, L. Efficacy of Vandetanib in Treating Locally Advanced or Metastatic Medullary Thyroid Carcinoma According to RECIST Criteria: A Systematic Review and Meta-Analysis. Front. Endocrinol. 2018, 9, 224. [Google Scholar] [CrossRef] [PubMed]
- Vitale, G.; Gaudenzi, G.; Circelli, L.; Manzoni, M.F.; Bassi, A.; Fioritti, N.; Faggiano, A.; Colao, A.; NIKE Group. Animal Models of Medullary Thyroid Cancer: State of the Art and View to the Future. Endocr. Relat. Cancer 2017, 24, R1–R12. [Google Scholar] [CrossRef]
- Santoni, M.; Iacovelli, R.; Colonna, V.; Klinz, S.; Mauri, G.; Nuti, M. Antitumor Effects of the Multi-Target Tyrosine Kinase Inhibitor Cabozantinib: A Comprehensive Review of the Preclinical Evidence. Expert Rev. Anticancer Ther. 2021, 21, 1029–1054. [Google Scholar] [CrossRef]
- Schlumberger, M.; Elisei, R.; Müller, S.; Schöffski, P.; Brose, M.; Shah, M.; Licitra, L.; Krajewska, J.; Kreissl, M.; Niederle, B.; et al. Overall Survival Analysis of EXAM, a Phase III Trial of Cabozantinib in Patients with Radiographically Progressive Medullary Thyroid Carcinoma. Ann. Oncol. 2017, 28, 2813–2819. [Google Scholar] [CrossRef]
- Scirocchi, F.; Napoletano, C.; Pace, A.; Rahimi Koshkaki, H.; Di Filippo, A.; Zizzari, I.G.; Nuti, M.; Rughetti, A. Immunogenic Cell Death and Immunomodulatory Effects of Cabozantinib. Front. Oncol. 2021, 11, 755433. [Google Scholar] [CrossRef] [PubMed]
- Behrouz Salehian, R.S. RET Gene Abnormalities and Thyroid Disease: Who Should be Screened and When. J. Clin. Res. Pediatr. Endocrinol. 2013, 5, 70–78. [Google Scholar] [CrossRef]
- Okafor, C.; Hogan, J.; Raygada, M.; Thomas, B.J.; Akshintala, S.; Glod, J.W.; Del Rivero, J. Update on Targeted Therapy in Medullary Thyroid Cancer. Front. Endocrinol. 2021, 12, 708949. [Google Scholar] [CrossRef]
- Fitze, G. Management of Patients with Hereditary Medullary Thyroid Carcinoma. Eur. J. Pediatr. Surg. 2004, 14, 375–383. [Google Scholar] [CrossRef] [PubMed]
- Elisei, R.; Tacito, A.; Ramone, T.; Ciampi, R.; Bottici, V.; Cappagli, V.; Viola, D.; Matrone, A.; Lorusso, L.; Valerio, L.; et al. Twenty-Five Years Experience on RET Genetic Screening on Hereditary MTC: An Update on The Prevalence of Germline RET Mutations. Genes 2019, 10, 698. [Google Scholar] [CrossRef]
- Shin, Y.-J.; Kumarasamy, V.; Camacho, D.; Sun, D. Involvement of G-Quadruplex Structures in Regulation of Human RET Gene Expression by Small Molecules in Human Medullary Thyroid Carcinoma TT Cells. Oncogene 2015, 34, 1292–1299. [Google Scholar] [CrossRef] [PubMed]
- Maciel, L.M.Z.; Magalhães, P.K.R. Medullary Thyroid Carcinoma—Adverse Events during Systemic Treatment: Risk-Benefit Ratio. Arch. Endocrinol. Metab. 2017, 61, 398–402. [Google Scholar] [CrossRef]
- Dhar, S.S.; Lee, M.G. Cancer-Epigenetic Function of the Histone Methyltransferase KMT2D and Therapeutic Opportunities for the Treatment of KMT2D-Deficient Tumors. Oncotarget 2021, 12, 1296–1308. [Google Scholar] [CrossRef]
- Mardinian, K.; Adashek, J.J.; Botta, G.P.; Kato, S.; Kurzrock, R. SMARCA4: Implications of an Altered Chromatin-Remodeling Gene for Cancer Development and Therapy. Mol. Cancer Ther. 2021, 20, 2341–2351. [Google Scholar] [CrossRef]
- Kartha, N.; Shen, L.; Maskin, C.; Wallace, M.; Schimenti, J.C. The Chromatin Remodeling Component Arid1a Is a Suppressor of Spontaneous Mammary Tumors in Mice. Genetics 2016, 203, 1601–1611. [Google Scholar] [CrossRef]
- Phan, L.M.; Rezaeian, A.-H. ATM: Main Features, Signaling Pathways, and Its Diverse Roles in DNA Damage Response, Tumor Suppression, and Cancer Development. Genes 2021, 12, 845. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Guo, M.; Wei, H.; Chen, Y. Targeting P53 Pathways: Mechanisms, Structures and Advances in Therapy. Sig. Transduct. Target. Ther. 2023, 8, 92. [Google Scholar] [CrossRef] [PubMed]
- Binter, T.; Baumgartner-Parzer, S.; Schernthaner-Reiter, M.H.; Arikan, M.; Hargitai, L.; Niederle, M.B.; Niederle, B.; Scheuba, C.; Riss, P. Does Genotype-Specific Phenotype in Patients with Multiple Endocrine Neoplasia Type 2 Occur as Current Guidelines Predict? Cancers 2024, 16, 494. [Google Scholar] [CrossRef]
- Valdés, N.; Navarro, E.; Mesa, J.; Casterás, A.; Alcázar, V.; Lamas, C.; Tébar, J.; Castaño, L.; Gaztambide, S.; Forga, L. RET Cys634Arg Mutation Confers a More Aggressive Multiple Endocrine Neoplasia Type 2A Phenotype than Cys634Tyr Mutation. Eur. J. Endocrinol. 2015, 172, 301–307. [Google Scholar] [CrossRef]
- Machens, A.; Lorenz, K.; Weber, F.; Dralle, H. Dissection of RET p.M918T-Driven Progression of Hereditary vs. Sporadic Medullary Thyroid Cancer. Eur. J. Surg. Oncol. 2025, 51, 109549. [Google Scholar] [CrossRef]
- Romei, C.; Ciampi, R.; Casella, F.; Tacito, A.; Torregrossa, L.; Ugolini, C.; Basolo, F.; Materazzi, G.; Vitti, P.; Elisei, R. RET Mutation Heterogeneity in Primary Advanced Medullary Thyroid Cancers and Their Metastases. Oncotarget 2018, 9, 9875–9884. [Google Scholar] [CrossRef] [PubMed]
- Agrawal, N.; Jiao, Y.; Sausen, M.; Leary, R.; Bettegowda, C.; Roberts, N.J.; Bhan, S.; Ho, A.S.; Khan, Z.; Bishop, J.; et al. Exomic Sequencing of Medullary Thyroid Cancer Reveals Dominant and Mutually Exclusive Oncogenic Mutations in RET and RAS. J. Clin. Endocrinol. Metab. 2013, 98, E364–E369. [Google Scholar] [CrossRef]
- Guo, Y.-J.; Pan, W.-W.; Liu, S.-B.; Shen, Z.-F.; Xu, Y.; Hu, L.-L. ERK/MAPK Signalling Pathway and Tumorigenesis (Review). Exp. Ther. Med. 2020, 19, 1997–2007. [Google Scholar] [CrossRef]
- Regua, A.T.; Najjar, M.; Lo, H.-W. RET Signaling Pathway and RET Inhibitors in Human Cancer. Front. Oncol. 2022, 12, 932353. [Google Scholar] [CrossRef]
- FDA Grants Breakthrough Therapy Designation to Tipifarnib in HRAS + HNSCC. Targeted Oncology. Available online: https://www.targetedonc.com/view/fda-grants-breakthrough-therapy-designation-to-tipifarnib-in-hras-hnscc (accessed on 25 April 2025).
- U.S. Food and Drug Administration. FDA Approves Sotorasib with Panitumumab for KRAS G12C-Mutated Colorectal Cancer; FDA: Silver Spring, MD, USA, 2025. [Google Scholar]
- FDA Approves Selpercatinib for Medullary Thyroid Cancer with an RET Variant|Oncology Nursing Society. Available online: https://www.ons.org/publications-research/voice/news-views/09-2024/fda-approves-selpercatinib-medullary-thyroid-cancer (accessed on 25 April 2025).
- Nemtsova, M.V.; Kalinkin, A.I.; Kuznetsova, E.B.; Bure, I.V.; Alekseeva, E.A.; Bykov, I.I.; Khorobrykh, T.V.; Mikhaylenko, D.S.; Tanas, A.S.; Strelnikov, V.V. Mutations in Epigenetic Regulation Genes in Gastric Cancer. Cancers 2021, 13, 4586. [Google Scholar] [CrossRef]
- Yang, J.; Zhou, F.; Luo, X.; Fang, Y.; Wang, X.; Liu, X.; Xiao, R.; Jiang, D.; Tang, Y.; Yang, G.; et al. Enhancer Reprogramming: Critical Roles in Cancer and Promising Therapeutic Strategies. Cell Death Discov. 2025, 11, 84. [Google Scholar] [CrossRef] [PubMed]
- Xu, G.; Chhangawala, S.; Cocco, E.; Razavi, P.; Cai, Y.; E Otto, J.; Ferrando, L.; Selenica, P.; Ladewig, E.; Chan, C.; et al. ARID1A Determines Luminal Identity and Therapeutic Response in Estrogen-Receptor-Positive Breast Cancer. Nat. Genet. 2020, 52, 198–207. [Google Scholar] [CrossRef] [PubMed]
- Guo, C.; Chen, L.H.; Huang, Y.; Chang, C.-C.; Wang, P.; Pirozzi, C.J.; Qin, X.; Bao, X.; Greer, P.K.; McLendon, R.E.; et al. KMT2D Maintains Neoplastic Cell Proliferation and Global Histone H3 Lysine 4 Monomethylation. Oncotarget 2013, 4, 2144–2153. [Google Scholar] [CrossRef]
- Li, L.; Ying, J.; Li, H.; Zhang, Y.; Shu, X.; Fan, Y.; Tan, J.; Cao, Y.; Tsao, S.W.; Srivastava, G.; et al. The Human Cadherin 11 Is a Pro-Apoptotic Tumor Suppressor Modulating Cell Stemness through Wnt/β-Catenin Signaling and Silenced in Common Carcinomas. Oncogene 2012, 31, 3901–3912. [Google Scholar] [CrossRef]
- Su, Y.; Sai, Y.; Zhou, L.; Liu, Z.; Du, P.; Wu, J.; Zhang, J. Current Insights into the Regulation of Programmed Cell Death by TP53 Mutation in Cancer. Front. Oncol. 2022, 12, 1023427. [Google Scholar] [CrossRef]
- Anusewicz, D.; Orzechowska, M.; Bednarek, A.K. Notch Signaling Pathway in Cancer-Review with Bioinformatic Analysis. Cancers 2021, 13, 768. [Google Scholar] [CrossRef]
- Lobry, C.; Oh, P.; Mansour, M.R.; Look, A.T.; Aifantis, I. Notch Signaling: Switching an Oncogene to a Tumor Suppressor. Blood 2014, 123, 2451–2459. [Google Scholar] [CrossRef] [PubMed]
- Guenter, R.; Patel, Z.; Chen, H. Notch Signaling in Thyroid Cancer. In Notch Signaling in Embryology and Cancer: Notch Signaling in Cancer; Reichrath, J., Reichrath, S., Eds.; Springer International Publishing: Cham, Switzerland, 2021; pp. 155–168. [Google Scholar] [CrossRef]
- Jaskula-Sztul, R.; Pisarnturakit, P.; Landowski, M.; Chen, H.; Kunnimalaiyaan, M. Expression of the Active Notch1 Decreases MTC Tumor Growth In Vivo. J. Surg. Res. 2011, 171, 23–27. [Google Scholar] [CrossRef]
- McCaw, T.R.; Inga, E.; Chen, H.; Jaskula-Sztul, R.; Dudeja, V.; Bibb, J.A.; Ren, B.; Rose, J.B. Gamma Secretase Inhibitors in Cancer: A Current Perspective on Clinical Performance. Oncologist 2021, 26, e608–e621. [Google Scholar] [CrossRef]
- Osipo, C.; Zlobin, A.; Kuprys, O. Gamma Secretase Inhibitors of Notch Signaling. OncoTargets Ther. 2013, 6, 943–955. [Google Scholar] [CrossRef]
- Tsukada, K.; Jones, S.E.; Bannister, J.; Durin, M.-A.; Vendrell, I.; Fawkes, M.; Fischer, R.; Kessler, B.M.; Chapman, J.R.; Blackford, A.N. BLM and BRCA1-BARD1 coordinate complementary mechanisms of joint DNA molecule resolution. Molecular Cell 2024, 84, 640–658.e10. [Google Scholar] [CrossRef]
- Koyuncu, S.; Saez, I.; Lee, H.J.; Gutierrez-Garcia, R.; Pokrzywa, W.; Fatima, A.; Hoppe, T.; Vilchez, D. The ubiquitin ligase UBR5 suppresses proteostasis collapse in pluripotent stem cells from Huntington’s disease patients. Nat Commun 2018, 9, 2886. [Google Scholar] [CrossRef] [PubMed]
- MYH11—An Overview|ScienceDirect Topics [WWW Document], n.d. Available online: https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/myh11 (accessed on 10 June 2025).
- Dillon, K.M.; Bekele, R.T.; Sztupinszki, Z.; Hanlon, T.; Rafiei, S.; Szallasi, Z.; Choudhury, A.D.; Mouw, K.W. PALB2 or BARD1 Loss Confers Homologous Recombination Deficiency and PARP Inhibitor Sensitivity in Prostate Cancer. NPJ Precis. Onc. 2022, 6, 49. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.-H. Targeting the ATM Pathway in Cancer: Opportunities, Challenges and Personalized Therapeutic Strategies. Cancer Treat. Rev. 2024, 129, 102808. [Google Scholar] [CrossRef]
- Xu, B.; Fuchs, T.L.; Ahmadi, S.; Alghamdi, M.; Alzumaili, B.; Bani, M.-A.; Baudin, E.; Chou, A.; De Leo, A.; Fagin, J.A.; et al. International Medullary Thyroid Carcinoma Grading System: A Validated Grading System for Medullary Thyroid Carcinoma. J Clin Oncol 2022, 40, 96–104. [Google Scholar] [CrossRef] [PubMed]
- Yeh, T.; Yeung, M.; Sherman, E.J.; Tuttle, R.M.; Sabra, M.M. Structural Doubling Time Predicts Overall Survival in Patients with Medullary Thyroid Cancer in Patients with Rapidly Progressive Metastatic Medullary Thyroid Cancer Treated with Molecular Targeted Therapies. Thyroid 2020, 30, 1112–1119. [Google Scholar] [CrossRef]
- Nigam, A.; Untch, B.R.; Shaha, A.R. Tumor Grade as a Novel Predictor of Outcomes in Medullary Thyroid Cancer. J. Breast Cancer Res. 2023, 3, 4–7. [Google Scholar] [CrossRef]
- Gild, M.L.; Clifton-Bligh, R.J.; Wirth, L.J.; Robinson, B.G. Medullary Thyroid Cancer: Updates and Challenges. Endocr. Rev. 2023, 44, 934–946. [Google Scholar] [CrossRef]
Demographics | Category | N (%) |
---|---|---|
Sex | Male | 183 (57.7) |
Female | 129 (40.7) | |
Age category | Adult | 314 (99.1) |
Pediatric | 3 (0.9) | |
Ethnicity | Non-Hispanic | 185 (58.4) |
Unknown/Not Collected | 104 (32.8) | |
Spanish/Hispanic | 28 (8.8) | |
Race | White | 222 (70.0) |
Unknown/Not Collected | 38 (12.0) | |
Asian | 23 (7.3) | |
Other | 23 (7.3) | |
Sample Type | Metastasis | 187 (54.8) |
Primary | 136 (39.9) | |
Not Collected | 13 (3.8) |
Analysis Type | Gene | Details | p-Value |
---|---|---|---|
ASXL1BRIP1 | Enriched in Native American (1, 33.3%) | <0.0001 | |
SMC3 | Enriched in Asian (3, 12.0%) | <0.0001 | |
JAK1 | Enriched in Native American (1, 33.3%) | <0.0001 | |
PIK3C2G | Enriched in Native American (1, 33.3%) | <0.0001 | |
ABL1 | Enriched in Black (1, 11.1%) | <0.0001 | |
RAF1 | Enriched in Black (1, 11.1%) | <0.0001 | |
SMAD4 | Enriched in Black (1, 11.1%) | <0.0001 | |
SRC | Enriched in Black (1, 11.1%) | <0.0001 | |
FLT4 | Enriched in Native American (1, 33.3%) | <0.0001 | |
PREX2 | Enriched in Other (3, 12.0%) | <0.0001 | |
ZFHX3 | Enriched in Other (3, 12.0%) | <0.0001 | |
FANCD2 | Enriched in Other (3, 12.0%) | <0.0001 | |
CRKL | Enriched in Asian (2, 8.0%) | <0.001 | |
PAX3 | Enriched in Other (2, 8.0%) | <0.001 | |
MYC | Enriched in Unknown (1, 7.1%) | <0.001 | |
NSD2 | Enriched in Unknown (1, 7.1%) | <0.001 | |
SOCS1 | Enriched in Unknown (1, 7.1%) | <0.001 | |
BRIP1 | Enriched in Other (3, 12.0%) | <0.01 | |
Sex | Gene | Female vs. Male, (N) % | p-Value |
BRAF | 4 (2.90%) vs. 0 (0.00%) | 0.0277 | |
BRCA1 | 4 (2.90%) vs. 0 (0.00%) | 0.0277 | |
KIT | 4 (2.90%) vs. 0 (0.00%) | 0.0277 |
Mutation | Mutation Type | N (%) | COSMIC ID | Clinical/Domain Association |
---|---|---|---|---|
M918T | Missense | 82 (67.8%) | 295 | RET kinase domain; medullary thyroid carcinoma, MEN2B |
C634R | Missense | 12 (9.9%) | 28 | RET extracellular cysteine-rich domain; MEN2A, pheochromocytoma |
E632_L633 del | In-frame deletion (IF del) | 9 (7.4%) | - | Juxtamembrane domain; ligand-independent activation |
C634Y | Missense | 2 (1.7%) | 28 | Similar to C634R; MEN2A-associated |
S891A | Missense | 1 (0.8%) | 10 | RET kinase domain; TKI resistance |
Mutation | Differential Survival | N (%) | Corrected p-Value | Gene Function (GeneCards) |
---|---|---|---|---|
BARD1 | Reduces Survival | 3 (0.09%) | 0.036 | E3 ubiquitin-protein ligase |
BLM | Reduces Survival | 3 (0.09%) | 0.015 | DNA repair helicase |
UBR5 | Reduces Survival | 3 (0.09%) | 0.0027 | E3 ubiquitin-protein ligase |
MYH11 | Reduces Survival | 3 (0.09%) | 0.0027 | Major contractile protein |
ATM | Prolongs Survival | 16 (5.2%) | 0.0163 | Cell cycle checkpoint kinase |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hsia, B.; Torbenson, E.; Lang, N.; Silberstein, P.T. Mutational Profiling of Medullary Thyroid Carcinoma via a Large-Scale Genomic Repository. DNA 2025, 5, 35. https://doi.org/10.3390/dna5030035
Hsia B, Torbenson E, Lang N, Silberstein PT. Mutational Profiling of Medullary Thyroid Carcinoma via a Large-Scale Genomic Repository. DNA. 2025; 5(3):35. https://doi.org/10.3390/dna5030035
Chicago/Turabian StyleHsia, Beau, Elijah Torbenson, Nigel Lang, and Peter T. Silberstein. 2025. "Mutational Profiling of Medullary Thyroid Carcinoma via a Large-Scale Genomic Repository" DNA 5, no. 3: 35. https://doi.org/10.3390/dna5030035
APA StyleHsia, B., Torbenson, E., Lang, N., & Silberstein, P. T. (2025). Mutational Profiling of Medullary Thyroid Carcinoma via a Large-Scale Genomic Repository. DNA, 5(3), 35. https://doi.org/10.3390/dna5030035