Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (179)

Search Parameters:
Keywords = solvothermal crystallization

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 10223 KiB  
Article
Silver–Titania Nanocomposites for Photothermal Applications
by Leonardo Bottacin, Roberto Zambon, Francesca Tajoli, Veronica Zani, Roberto Pilot, Naida El Habra, Silvia Gross and Raffaella Signorini
Gels 2025, 11(6), 461; https://doi.org/10.3390/gels11060461 - 16 Jun 2025
Viewed by 477
Abstract
Local temperature measurement is crucial for understanding nanoscale thermal transport and developing nanodevices for biomedical, photonic, and optoelectronic applications. The rise of photothermal therapy for cancer treatment has increased the demand for high-resolution nanothermometric techniques capable of non-contact intracellular temperature measurement and modification. [...] Read more.
Local temperature measurement is crucial for understanding nanoscale thermal transport and developing nanodevices for biomedical, photonic, and optoelectronic applications. The rise of photothermal therapy for cancer treatment has increased the demand for high-resolution nanothermometric techniques capable of non-contact intracellular temperature measurement and modification. Raman spectroscopy meets this need: the ratio of anti-Stokes to Stokes Raman intensities for a specific vibrational mode correlates with local temperature through the Boltzmann distribution. The present study proposes a novel photothermal therapy agent designed to advance the current state of the art while adhering to green chemistry principles, thereby favoring low-temperature synthesis involving limited energy consumption. A key challenge in this field is to achieve close contact between plasmonic nanosystems, which act as nanoheaters, and local temperature sensors. This is achieved by employing silver nanoparticles as a heat release agent, coated with anatase-phase titanium dioxide, as a local temperature sensor. The proposed synthesis, which combines refluxing and subcritical solvothermal treatments, enables direct anatase formation, despite its metastability under standard conditions, thus eliminating the need for a calcination step. Structural characterization through SAED-HRTEM and Raman spectroscopy confirms the successful crystallization of the desired phase. Moreover, the nanothermometry measurements conducted at various wavelengths ultimately demonstrate both the effectiveness of these nanomaterials as thermometric probes, with a relative sensitivity of about 0.24 K−1%, and their capability as local heaters, with a release of a few tens of degrees. This work demonstrates a new synthetic strategy for these nanocomposites, which offers a promising pathway for the optimization of nanosystems in therapeutic applications. Full article
Show Figures

Graphical abstract

18 pages, 7043 KiB  
Article
Phase-Dependent Photocatalytic Activity of Nb2O5 Nanomaterials for Rhodamine B Degradation: The Role of Surface Chemistry and Crystal Structure
by Aarón Calvo-Villoslada, Inmaculada Álvarez-Serrano, María Luisa López, Paloma Fernández and Belén Sotillo
Nanomaterials 2025, 15(11), 846; https://doi.org/10.3390/nano15110846 - 1 Jun 2025
Viewed by 580
Abstract
Niobium oxides are promising materials for catalytic applications due to their unique structural versatility and surface chemistry. Nb2O5 nanomaterials were synthesized via a solvothermal method at 150 °C using niobium oxalate as a precursor. A comprehensive characterization of the material [...] Read more.
Niobium oxides are promising materials for catalytic applications due to their unique structural versatility and surface chemistry. Nb2O5 nanomaterials were synthesized via a solvothermal method at 150 °C using niobium oxalate as a precursor. A comprehensive characterization of the material was performed using electron microscopy, X-ray diffraction, and Raman spectroscopy. The as-prepared nanoparticles primarily crystallized in a mixture of the TT-Nb2O5 phase (TT from the German Tief-Tief, meaning “low-low”) and niobic acid, while subsequent thermal treatment at 900 and 1100 °C induced a phase transformation to T-Nb2O5 and H-Nb2O5, respectively (T from the German Tief, meaning “low”, and H from Hoch, meaning “high”). The as-prepared samples consist of micro-coils composed of interconnected nanometer-scale fibers, whereas the morphology changes into rods when they are treated at 1100 °C. The photocatalytic performance of the nanoparticles was evaluated by comparing the as-prepared and thermally treated samples. The as-prepared nanoparticles exhibited the highest photocatalytic activity under visible illumination, achieving 100% degradation after 180 min. More interestingly, the treatment of the as-prepared material with H2O2 modified the surface species formed on the Nb2O5, altering the photocatalytic behavior under various illumination conditions. This sample showed the highest photocatalytic activity under UV illumination, reaching 100% degradation after 75 min. On the other hand, the calcined samples are practically inactive, attributed to the loss of active catalytic sites during thermal treatment and phase transformation. Full article
(This article belongs to the Special Issue Synthesis and Properties of Metal Oxide Thin Films)
Show Figures

Figure 1

7 pages, 5843 KiB  
Proceeding Paper
Solvothermal Synthesis of Nanomagnetite-Coated Biochar for Efficient Arsenic and Fluoride Adsorption
by Diego-Antonio Corona-Martinez, Lourdes Díaz-Jiménez, Audberto Reyes-Rosas, Alejandro Zermeño-González, Luis Samaniego-Moreno and Sasirot Khamkure
Eng. Proc. 2025, 87(1), 67; https://doi.org/10.3390/engproc2025087067 - 16 May 2025
Viewed by 216
Abstract
Arsenic contamination in water demands effective, low-cost removal methods. This study introduces nanomagnetite-coated biochar derived from pecan nutshells for efficient arsenic adsorption. Utilizing a solvothermal method, uniform magnetite crystals were grown on biochar in a controlled process at 200 °C. The resulting bioadsorbent, [...] Read more.
Arsenic contamination in water demands effective, low-cost removal methods. This study introduces nanomagnetite-coated biochar derived from pecan nutshells for efficient arsenic adsorption. Utilizing a solvothermal method, uniform magnetite crystals were grown on biochar in a controlled process at 200 °C. The resulting bioadsorbent, characterized by XRD, SEM, and FTIR, exhibited a narrow size distribution and consistently high arsenic removal rates (97.30–98.76%). Biochar with varied particle sizes, synthesized at a short reaction time (6 h), showed the highest removal efficiency of arsenic (98.76%) and adsorption capacity (7.974 mg/g). This approach offers a sustainable for arsenic remediation, and ease of magnetic separation. Full article
(This article belongs to the Proceedings of The 5th International Electronic Conference on Applied Sciences)
Show Figures

Figure 1

15 pages, 4851 KiB  
Article
Shape-Engineering and Mechanism Investigation of AgCl Microcrystals
by Chunli Cai, Qian Wang, Changsheng Yin, Xuhuan Li, Rong Yang, Xiaodong Shen and Wenbo Xin
Crystals 2025, 15(5), 451; https://doi.org/10.3390/cryst15050451 - 10 May 2025
Cited by 1 | Viewed by 365
Abstract
AgCl microcrystals are used in visible light photocatalysis. However, their properties depend strongly on the morphology of the crystals and the degree of exposure of the crystal planes. Despite extensive research conducted on the synthesis of AgCl microcrystals, the majority of existing studies [...] Read more.
AgCl microcrystals are used in visible light photocatalysis. However, their properties depend strongly on the morphology of the crystals and the degree of exposure of the crystal planes. Despite extensive research conducted on the synthesis of AgCl microcrystals, the majority of existing studies have focused on the stable growth of crystals. The role of Cl ions concentration as a key factor controlling the microcrystals morphology has not been fully explored, which limits the precise tuning of the morphology of AgCl microcrystals. In this study, AgCl microcrystals with controllable morphology are successfully synthesized by a facile solvothermal method. During the preparation process, ethylene glycol (EG) is utilized as a solvent, while polyvinylpyrrolidone (PVP) is employed as a surfactant. We systematically investigate the etching mechanism of AgCl microcrystals by analyzing the effect of sodium chloride (NaCl) concentration on their morphology. This investigation involves the integration of diverse characterization methods, including scanning electron microscopy (SEM), X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy (EDS), and geometrical struc-ture analysis. The results demonstrate that Cl functions as both a surfactant, thereby promoting the nucleation of cubic microcrystals, and as an etchant, selectively etching the crystal surface. The order of selective etching on the crystal surface follows (100) planes > (110) planes > (111) planes. Based on this new mechanism, AgCl microcrystals with various morphologies, such as cube, octopod and dendrite, are successfully prepared, which provides a new idea for the precise design of noble metal halide microcrystals. Full article
(This article belongs to the Section Crystal Engineering)
Show Figures

Figure 1

19 pages, 6524 KiB  
Article
Hydrogen-Bonded Ladder Motifs in Naphthalene Dicarboxamides: Influence of Linear vs. Angular Amide Orientation
by Abdulrahman Mohabbat, István Boldog, Takin Haj Hassani Sohi, Nils Reistel, Philipp Seiffert and Christoph Janiak
Crystals 2025, 15(5), 406; https://doi.org/10.3390/cryst15050406 - 26 Apr 2025
Viewed by 944
Abstract
The crystal structures of naphthalene dicarboxamides, namely 1,4-naphthalene dicarboxamide (1,4-NDA), 2,6-naphthalene dicarboxamide (2,6-NDA), and 2,7-naphthalene dicarboxamide (2,7-NDA), are presented for the first time, along with an analysis of their supramolecular organization. The compounds, obtained in single-crystalline form via solvothermal crystallization from methanol, are [...] Read more.
The crystal structures of naphthalene dicarboxamides, namely 1,4-naphthalene dicarboxamide (1,4-NDA), 2,6-naphthalene dicarboxamide (2,6-NDA), and 2,7-naphthalene dicarboxamide (2,7-NDA), are presented for the first time, along with an analysis of their supramolecular organization. The compounds, obtained in single-crystalline form via solvothermal crystallization from methanol, are stable in air to near 350 °C and have melting points above 300 °C. In their densely packed structures (ρ = 1.43–1.47 cm3g−1) the combination of C11 (4) chains and R22(8) rings generates one-dimensional hydrogen-bonded ladders, with an additional R42(8) pattern. The amide groups and the naphthalene rings form dihedral angles between 22° and 40°. Neighboring H-bond ladders run parallel in 1,4-NDA and 2,6-NDA and are connected by means of the naphthalenedyil cores so that two-dimensional (2D) H-bonded sheets are obtained. Except for a weak intra-sheet π–π stacking in 1,4-NDA, there are no π–π stacking and C–H⋯π interactions. The R22(8) rings act as four-connected nodes, leading to the formation of two-dimensional H-bonded planar sheets with sql topology for the nearly linear dicarboxamides 1,4-NDA and 2,6-NDA and cds topology for the angular 2,7-NDA. Hirshfeld surface analysis and NCI plots provide additional insight into the H-bonding interactions. Full article
(This article belongs to the Section Crystal Engineering)
Show Figures

Graphical abstract

12 pages, 16337 KiB  
Article
Microwave-Assisted Solvothermal Synthesis of Cesium Tungsten Bronze Nanoparticles
by Jingyi Huang, Na Ta, Fengze Cao, Shuai He, Jianli He and Luomeng Chao
Nanomaterials 2025, 15(8), 627; https://doi.org/10.3390/nano15080627 - 20 Apr 2025
Viewed by 645
Abstract
Cesium tungsten bronzes (CsxWO3), as functional materials with excellent near-infrared shielding properties, demonstrate significant potential for applications in smart windows. However, traditional synthesis methods, such as solid-state reactions and solvothermal/hydrothermal approaches, typically require harsh conditions, including high temperatures (above [...] Read more.
Cesium tungsten bronzes (CsxWO3), as functional materials with excellent near-infrared shielding properties, demonstrate significant potential for applications in smart windows. However, traditional synthesis methods, such as solid-state reactions and solvothermal/hydrothermal approaches, typically require harsh conditions, including high temperatures (above 200 °C), high pressure, inert atmospheres, or prolonged reaction times. In this study, we propose an optimized microwave-assisted solvothermal synthesis strategy that significantly reduces the severity of reaction conditions through precise parameter control. When benzyl alcohol was employed as the solvent, CsxWO3 nanoparticles could be rapidly synthesized within a relatively short duration of 15 min at 180 °C, or alternatively obtained through 2 h at a low temperature of 140 °C. However, when anhydrous ethanol, which is cost-effective and environmentally friendly, was substituted for benzyl alcohol, successful synthesis was also achieved at 140 °C in 2 h. This method overcomes the limitations of traditional high-pressure reaction systems, achieving efficient crystallization under low-temperature and ambient-pressure conditions while eliminating safety hazards and significantly improving energy efficiency. The resulting materials retain excellent near-infrared shielding performance and visible-light transparency, providing an innovative solution for the safe, rapid, and controllable synthesis of functional nanomaterials. Full article
Show Figures

Graphical abstract

24 pages, 5572 KiB  
Review
Research Progress on Microwave Synthesis of 3d Transition Metal (Mn, Fe, Co, and Ni) Oxide Nanomaterials for Supercapacitors
by Chengqi Sun, Maosheng Ge, Shuhuang Tan, Yichen Liu, Haowei Wang, Wenhao Jiang, Shoujun Zhang and Yin Sun
Molecules 2025, 30(8), 1843; https://doi.org/10.3390/molecules30081843 - 19 Apr 2025
Cited by 1 | Viewed by 759
Abstract
3d transition metal oxides composed of Mn, Fe, Co, and Ni have emerged as promising candidates for supercapacitor electrode materials due to their high theoretical specific capacitance, abundant redox-active sites, variable oxidation states, environmental friendliness, and low cost. Various synthesis strategies have been [...] Read more.
3d transition metal oxides composed of Mn, Fe, Co, and Ni have emerged as promising candidates for supercapacitor electrode materials due to their high theoretical specific capacitance, abundant redox-active sites, variable oxidation states, environmental friendliness, and low cost. Various synthesis strategies have been developed to fabricate these nanostructures, including hydrothermal/solvothermal methods, sol–gel processing, and microwave-assisted synthesis. Among them, microwave irradiation technology, with its rapid heating characteristics and unique thermal/non-thermal effects, offers significant advantages in controlling crystallinity and particle size distribution, suppressing particle agglomeration, and enhancing material purity. Furthermore, microwave effects facilitate the self-assembly and morphological evolution of transition metal oxides, promote the formation of crystal defects, and strengthen interfacial interactions. These effects enable precise microstructural tuning, leading to an increased specific surface area and a higher density of active sites, ultimately enhancing specific capacitance, rate capability, and cycling stability. In recent years, microwave-assisted synthesis has made significant progress in constructing 3d transition metal oxides and their composites, particularly in the development of single-metal and binary-metal oxides, as well as their hybrids with carbon-based materials (e.g., graphene and carbon nanotubes) and other metal oxides. This review systematically summarizes the research progress on microwave-assisted techniques for 3d transition metal oxide-based nanomaterials, with a particular focus on the role of microwave effects in morphology control, interfacial optimization, and electrochemical performance enhancement. Additionally, key challenges in current research are critically analyzed, and potential optimization strategies are proposed. This review aims to provide new insights and perspectives for advancing microwave-assisted synthesis of 3d transition metal oxides in energy storage applications. Full article
(This article belongs to the Section Materials Chemistry)
Show Figures

Figure 1

21 pages, 13359 KiB  
Article
A Novel Zinc-Based MOF Featuring 2,4,6-Tris-(4-carboxyphenoxy)-1,3,5-triazine: Structure, Adsorption, and Photocatalytic Activity
by Magdalena Angelova, Hristina Lazarova, Vanya Kurteva, Rositsa Nikolova, Rusi Rusew and Boris Shivachev
Crystals 2025, 15(4), 348; https://doi.org/10.3390/cryst15040348 - 8 Apr 2025
Viewed by 703
Abstract
A metal–organic framework, MOF-S1, was synthesized via a solvothermal reaction between 2,4,6-tris-(4-carboxyphenoxy)-1,3,5-triazine (TCPT) and zinc nitrate hexahydrate. Single-crystal and powder X-ray diffraction analyses confirmed the formation of hexagonal rod-shaped crystals with a trigonal (P-31c) structure featuring a two-fold interpenetrated 3D framework. [...] Read more.
A metal–organic framework, MOF-S1, was synthesized via a solvothermal reaction between 2,4,6-tris-(4-carboxyphenoxy)-1,3,5-triazine (TCPT) and zinc nitrate hexahydrate. Single-crystal and powder X-ray diffraction analyses confirmed the formation of hexagonal rod-shaped crystals with a trigonal (P-31c) structure featuring a two-fold interpenetrated 3D framework. A comprehensive characterization—including NMR spectroscopy, thermogravimetric analysis, and surface area measurements (using Langmuir, t-plot, Horváth–Kawazoe, and Dubinin–Radushkevich models)—revealed an ultramicroporous material with a Langmuir surface area of 711 m2/g and a median pore width of ~6.5 Å. Adsorption studies using Congo Red, Methylene Blue, Methyl Orange, and Rhodamine B demonstrated the rapid uptake and effective removal from aqueous solutions, with kinetic modeling indicating a dominant chemisorption mechanism. Photocatalytic tests under UV irradiation yielded degradation efficiencies of ~93% for Methyl Orange and ~74% for Rhodamine B. These findings suggest that MOF-S1 is a promising candidate for wastewater treatment applications and UV-related processes, offering a strong adsorption capacity and thermal stability. Full article
Show Figures

Figure 1

18 pages, 24802 KiB  
Article
One-Step Solvothermal Synthesis of Fe3O4 Acicular Aggregates Induced by Reaction Medium and Urea for Photocatalytic Degradation of Azo Dyes
by Yaohui Xu, Yuting Li, Quanhui Hou, Liangjuan Gao and Zhao Ding
Nanomaterials 2025, 15(5), 341; https://doi.org/10.3390/nano15050341 - 22 Feb 2025
Viewed by 749
Abstract
Based on the magnetic sensitivity of Fe3O4 in various fields, we aimed to propose a one-step solvothermal process for the synthesis of single-phase Fe3O4 induced by the reaction medium and urea, avoiding high-temperature reduction in H2 [...] Read more.
Based on the magnetic sensitivity of Fe3O4 in various fields, we aimed to propose a one-step solvothermal process for the synthesis of single-phase Fe3O4 induced by the reaction medium and urea, avoiding high-temperature reduction in H2 or N2 atmospheres. Feasibility was tested with purified water (H2O), methyl alcohol (MA), ethyl alcohol (EA), and ethylene glycol (EG) as reaction media. The findings indicated that the solvothermal reaction system utilizing EA was more effective for the synthesis of cubic magnetic Fe3O4. Optimal conditions for synthesizing pure Fe3O4 were obtained by optimizing the urea amount and solvothermal reaction parameters. The optimal formulation consisted of 10 mmol of FeCl3, 80 mmol of urea, and 60 mL of EA subjected to a solvothermal process at 200 °C for 12 h. The resulting Fe3O4 (magnetite, cubic) exhibited commendable crystallization with a morphology of acicular aggregates and displayed excellent magnetic sensitivity properties with a magnetization of 92.2 emu/g at 15,000 Oe. The photocatalytic degradation behaviors of the resulting Fe3O4 to Methyl Orange, Orange G, and Acid Red 37 azo dyes and the repeated degradation performance of Methyl Orange dye were investigated. Nearly complete degradation of Methyl Orange dye occurred after 2.0 h of photocatalytic reaction, while Orange G and Acid Red 37 dyes achieved similar results after 3.5 and 4.5 h, respectively. The exploration strategy in this work for synthesizing magnetic Fe3O4 can be applied to design and fabricate other metal oxides or composites, potentially resulting in novel discoveries in morphology or performance. Full article
(This article belongs to the Special Issue Nanoscale Adsorbents for the Removal of Heavy Metals and Dyes)
Show Figures

Graphical abstract

15 pages, 8205 KiB  
Article
Antifungal Activity of Newly Formed Polymethylmethacrylate (PMMA) Modification by Zinc Oxide and Zinc Oxide–Silver Hybrid Nanoparticles
by Marek Witold Mazur, Anna Grudniak, Urszula Szałaj, Marcin Szerszeń, Jan Mizeracki, Mariusz Cierech, Elżbieta Mierzwińska-Nastalska and Jolanta Kostrzewa-Janicka
Polymers 2024, 16(24), 3512; https://doi.org/10.3390/polym16243512 - 17 Dec 2024
Cited by 1 | Viewed by 1004
Abstract
Incorporating nanoparticles into denture materials shows promise for the prevention of denture-associated fungal infections. This study investigates the antifungal properties of acrylic modified with microwave-sintered ZnO-Ag nanoparticles. ZnO-Ag nanoparticles (1% and 2.5% wt.) were synthesized via microwave solvothermal synthesis (MSS). Nanoparticles were characterized [...] Read more.
Incorporating nanoparticles into denture materials shows promise for the prevention of denture-associated fungal infections. This study investigates the antifungal properties of acrylic modified with microwave-sintered ZnO-Ag nanoparticles. ZnO-Ag nanoparticles (1% and 2.5% wt.) were synthesized via microwave solvothermal synthesis (MSS). Nanoparticles were characterized for phase purity, specific surface area (SSA), density, morphology, and elemental composition. ZnO and ZnO-Ag nanoparticles were added to acrylic material (PMMA) at concentrations of 1% and 2.5% and polymerized. Pure PMMA (control) and obtained PMMA-nanocomposites were cut into homogeneous 10 × 10 mm samples. Antifungal activity of nanoparticles and PMMA-nanocomposites against C. albicans was tested using minimal inhibitory concentration (MIC) determination, and biofilm formation was assessed using crystal violet staining followed by absorbance measurements. Laboratory tests confirmed phase purity and uniform, spherical particle distribution. MIC results show antifungal activity of 1% Ag nanoparticles and the PMMA-2.5% (ZnO-1% Ag) nanocomposite. PMMA-1% (ZnO-1% Ag) nanocomposite and 1% ZnO-Ag nanoparticles are efficient in preventing biofilm formation. However, ZnO nanoparticles showed antibiofilm activity, and the PMMA-ZnO nanocomposite does not protect against biofilm deposition. Incorporating hybrid ZnO-Ag nanoparticles into PMMA is a promising antibiofilm method, especially with ZnO-1% Ag nanoparticles. Full article
(This article belongs to the Special Issue Polymer Composites with Reinforcement for Dental Applications)
Show Figures

Figure 1

26 pages, 11772 KiB  
Article
DLP 3D-Printed Mullite Ceramics for the Preparation of MOFs Functionalized Monoliths for CO2 Capture
by Arianna Bertero, Bartolomeo Coppola, Yurii Milovanov, Paola Palmero, Julien Schmitt and Jean-Marc Tulliani
Ceramics 2024, 7(4), 1810-1835; https://doi.org/10.3390/ceramics7040114 - 29 Nov 2024
Cited by 2 | Viewed by 1413
Abstract
The aim of this work is to compare the traditional uniaxial pressing with an innovative shaping technique, Digital Light Processing (DLP), in the preparation of porous mullite (3Al2O3·2SiO2) supports to be functionalized with an active coating for [...] Read more.
The aim of this work is to compare the traditional uniaxial pressing with an innovative shaping technique, Digital Light Processing (DLP), in the preparation of porous mullite (3Al2O3·2SiO2) supports to be functionalized with an active coating for CO2 capture. Indeed, the fabrication of complex geometries with 3D-printing technologies allows the production of application-targeted solid sorbents with increased potentialities. Therefore, this research focused on the effect of the purity of the selected raw materials and of the microstructural porosity of 3D-printed ceramic substrates on the Metal Organic Frameworks (MOFs) coating efficiency. Two commercial mullite powders (Mc and Mf) differing in particle size distribution (D50 of 9.19 µm and 4.38 µm, respectively) and iron oxide content (0.67% and 0.38%) were characterized and used to produce the substrates, after ball-milling and calcination. Mc and Mf slurries were prepared with 69 wt% of solid loading and 5 wt% of dispersant: both show rheological behavior suitable for DLP and good printability. DLP 3D-printed and pressed pellets were sintered at three different temperatures: 1350 °C, 1400 °C and 1450 °C. Mf 3D-printed samples show slightly lower geometrical and Archimedes densities, compared to Mc pellets, probably due to the presence of lower Fe2O3 amounts and its effect as sintering aid. Mullite substrates were then successfully functionalized with HKUST-1 crystals by a two-step solvothermal synthesis process. Ceramic substrate porosity, depending on the shaping technique and opportunely tuned controlling the sintering temperature, was correlated with the functionalization efficiency in terms of MOFs deposition. Three-dimensional-printed substrates exhibit a higher and more homogeneous HKUST-1 uptake compared to the pressed pellets as DLP introduces desirable porosities able to enhance the functionalization. Therefore, this work provides preliminary guidelines to improve MOFs coating on mullite surfaces for CO2 capture applications, by opportunely tuning the substrate porosity. Full article
(This article belongs to the Special Issue Advances in Ceramics, 2nd Edition)
Show Figures

Graphical abstract

13 pages, 3551 KiB  
Article
Two Co(II) Isostructural Bifunctional MOFs via Mixed-Ligand Strategy: Syntheses, Crystal Structure, Photocatalytic Degradation of Dyes, and Electrocatalytic Water Oxidation
by Siyu Yue, Mengqi Tuo, Yemeng Sheng, Xinyu Guo, Jiufu Lu and Dong Wang
Molecules 2024, 29(21), 4989; https://doi.org/10.3390/molecules29214989 - 22 Oct 2024
Cited by 3 | Viewed by 1015
Abstract
The solvothermal reactions involving cobalt ions with 5-methylisophthalic acid (H2MIP) and 1,3-bis(2-methylimidazol)propane (BMIP) yielded two cobalt(II) organic frameworks: {[Co4(MIP)4(BMIP)3]·1/2DMA}n (SNUT-31) and {[Co4(MIP)4(BMIP)3]·(EtOH)2·H2O]} [...] Read more.
The solvothermal reactions involving cobalt ions with 5-methylisophthalic acid (H2MIP) and 1,3-bis(2-methylimidazol)propane (BMIP) yielded two cobalt(II) organic frameworks: {[Co4(MIP)4(BMIP)3]·1/2DMA}n (SNUT-31) and {[Co4(MIP)4(BMIP)3]·(EtOH)2·H2O]}n (SNUT-32) where DMA represents N,N-dimethylacetamide and EtOH signifies ethyl alcohol. Single-crystal X-ray diffraction analyses reveal that SNUT-31 and SNUT-32 possess an isomorphic structure, featuring a unique 2-fold interpenetration of 3D frameworks in a parallel manner. Notably, both SNUT-31 and SNUT-32 demonstrate remarkable performance in electrocatalytic oxygen evolution reactions and exhibit exceptional photocatalytic degradation capabilities against a model comprising three distinct dyes: rhodamine B, methyl orange, and methyl blue. Full article
(This article belongs to the Section Inorganic Chemistry)
Show Figures

Figure 1

14 pages, 2742 KiB  
Article
1D Lead Bromide Hybrids Directed by Complex Cations: Syntheses, Structures, Optical and Photocatalytic Properties
by Ya-Qi Liu, Sen Huang, Ji-Dong Leng and Wei-Quan Lin
Molecules 2024, 29(17), 4217; https://doi.org/10.3390/molecules29174217 - 5 Sep 2024
Viewed by 1068
Abstract
This study presents the synthesis, structural characterization, and evaluation of the photocatalytic performance of two novel one-dimensional (1D) lead(II) bromide hybrids, [Co(2,2′-bpy)3][Pb2Br6CH3OH] (1) and [Fe(2,2′-bpy)3][Pb2Br6] (2 [...] Read more.
This study presents the synthesis, structural characterization, and evaluation of the photocatalytic performance of two novel one-dimensional (1D) lead(II) bromide hybrids, [Co(2,2′-bpy)3][Pb2Br6CH3OH] (1) and [Fe(2,2′-bpy)3][Pb2Br6] (2), synthesized via solvothermal reactions. These compounds incorporate transition metal complex cations as structural directors, contributing to the unique photophysical and photocatalytic properties of the resulting materials. Single-crystal X-ray diffraction analysis reveals that both compounds crystallize in monoclinic space groups with distinct 1D lead bromide chain configurations influenced by the nature of the complex cations. Optical property assessments show band gaps of 3.04 eV and 2.02 eV for compounds 1 and 2, respectively, indicating their potential for visible light absorption. Photocurrent measurements indicate a significantly higher electron–hole separation efficiency in compound 2, correlated with its narrower band gap. Additionally, photocatalytic evaluations demonstrate that while both compounds degrade organic dyes effectively, compound 2 also exhibits notable hydrogen evolution activity under visible light, a property not observed in 1. These findings highlight the role of metal complex cations in tuning the electronic and structural properties of lead(II) bromide hybrids, enhancing their applicability in photocatalytic and optoelectronic devices. Full article
(This article belongs to the Special Issue Nonlinear Optical Materials: From Materials to Applications)
Show Figures

Graphical abstract

14 pages, 5710 KiB  
Article
Exploring the Capability of Cu-MoS2 Catalysts for Use in Electrocatalytic Overall Water Splitting
by Aviraj M. Teli, Rajneesh Kumar Mishra, Jae Cheol Shin and Wookhee Jeon
Micromachines 2024, 15(7), 876; https://doi.org/10.3390/mi15070876 - 3 Jul 2024
Cited by 6 | Viewed by 2230
Abstract
Herein, we prepare MoS2 and Cu-MoS2 catalysts using the solvothermal method, a widely accepted technique for electrocatalytic overall water-splitting applications. TEM and SEM images, standard tools in materials science, provide a clear view of the morphology of Cu-MoS2. HRTEM [...] Read more.
Herein, we prepare MoS2 and Cu-MoS2 catalysts using the solvothermal method, a widely accepted technique for electrocatalytic overall water-splitting applications. TEM and SEM images, standard tools in materials science, provide a clear view of the morphology of Cu-MoS2. HRTEM analysis, a high-resolution imaging technique, confirms the lattice spacing, lattice plane, and crystal structure of Cu-MoS2. HAADF and corresponding color mapping and advanced imaging techniques reveal the existence of the Cu-doping, Mo, and S elements in Cu-MoS2. Notably, Cu plays a crucial role in improving the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) of the Cu-MoS2 catalyst as compared with the MoS2 catalyst. In addition, the Cu-MoS2 catalyst demonstrates significantly lower overpotential (167.7 mV and 290 mV) and Tafel slopes (121.5 mV dec−1 and 101.5 mV dec−1), standing at −10 mA cm−2 and 10 mA cm−2 for HER and OER, respectively, compared to the MoS2 catalyst. Additionally, the Cu-MoS2 catalyst displays outstanding stability for 12 h at −10 mA cm−2 of HER and 12 h at 10 mA cm−2 of OER using chronopotentiaometry. Interestingly, the Cu-MoS2‖Cu-MoS2 cell displays a lower cell potential of 1.69 V compared with the MoS2‖MoS2 cell of 1.81 V during overall water splitting. Moreover, the Cu-MoS2‖Cu-MoS2 cell shows excellent stability when using chronopotentiaometry for 18 h at 10 mA cm−2. Full article
(This article belongs to the Special Issue Electrochemical Supercapacitors for Energy Harvesting and Storage)
Show Figures

Figure 1

15 pages, 14126 KiB  
Article
The Role of Oxygen Vacancies in Phase Transition and the Optical Absorption Properties within Nanocrystalline ZrO2
by Jing Ouyang, Yonghui Peng, Wentao Zhou, Xianfeng Liang, Gang Wang, Qi Zhang and Bo Yuan
Nanomaterials 2024, 14(11), 967; https://doi.org/10.3390/nano14110967 - 2 Jun 2024
Cited by 7 | Viewed by 2350
Abstract
Zirconia (ZrO2) nanoparticles were synthesized using a solvothermal method under varying synthesis conditions, namely acidic, neutral, and alkaline. X-ray diffraction (XRD) and field emission scanning electron microscopy (FESEM) were leveraged to investigate the phase evolution and topographical features in detail. The [...] Read more.
Zirconia (ZrO2) nanoparticles were synthesized using a solvothermal method under varying synthesis conditions, namely acidic, neutral, and alkaline. X-ray diffraction (XRD) and field emission scanning electron microscopy (FESEM) were leveraged to investigate the phase evolution and topographical features in detail. The resulting crystal phase structures and grain sizes exhibited substantial variation based on these conditions. Notably, the acidic condition fostered a monoclinic phase in ZrO2, while the alkaline condition yielded a combination of tetragonal and monoclinic phases. In contrast, ZrO2 obtained under neutral conditions demonstrated a refinement in grain sizes, constrained within a 1 nm scale upon an 800 °C thermal treatment. This was accompanied by an important transformation from a monoclinic phase to tetragonal phase in the ZrO2. Furthermore, a rigorous examination of XPS data and a UV-visible spectrometer (UV-vis) analysis revealed the significant role of oxygen vacancies in phase stabilization. The notable emergence of new energy bands in ZrO2, in stark contrast to the intrinsic bands observed in a pure monoclinic sample, are attributed to these oxygen vacancies. This research offers valuable insights into the novel energy bands, phase stability, and optical absorption properties influenced by oxygen vacancies in ZrO2. Moreover, it proposes an innovative energy level model for zirconia, underpinning its applicability in diverse technological areas. Full article
(This article belongs to the Special Issue Synthesis and Application of Optical Nanomaterials)
Show Figures

Figure 1

Back to TopTop